Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563292

RESUMO

Concentrations of dissolved nitrogen in seawater can affect the resilience of the cnidarian-dinoflagellate symbiosis to climate change-induced bleaching. However, it is not yet known how the assimilation and translocation of the various nitrogen forms change during heat stress, nor how the symbiosis responds to nutrient depletion, which may occur due to increasing water stratification. Here, the tropical scleractinian coral Stylophora pistillata, in symbiosis with dinoflagellates of the genus Symbiodinium, was grown at different temperatures (26°C, 30°C and 34°C), before being placed in nutrient-replete or -depleted seawater for 24 h. The corals were then incubated with 13C-labelled sodium bicarbonate and different 15N-labelled nitrogen forms (ammonium, urea and dissolved free amino acids) to determine their assimilation rates. We found that nutrient depletion inhibited the assimilation of all nitrogen sources studied and that heat stress reduced the assimilation of ammonium and dissolved free amino acids. However, the host assimilated over 3-fold more urea at 30°C relative to 26°C. Overall, both moderate heat stress (30°C) and nutrient depletion individually decreased the total nitrogen assimilated by the symbiont by 66%, and combined, they decreased assimilation by 79%. This led to the symbiotic algae becoming nitrogen starved, with the C:N ratio increasing by over 3-fold at 34°C, potentially exacerbating the impacts of coral bleaching.


Assuntos
Antozoários , Dinoflagellida , Resposta ao Choque Térmico , Simbiose , Antozoários/fisiologia , Antozoários/metabolismo , Animais , Dinoflagellida/fisiologia , Dinoflagellida/metabolismo , Resposta ao Choque Térmico/fisiologia , Nutrientes/metabolismo , Nitrogênio/metabolismo , Compostos de Nitrogênio/metabolismo , Água do Mar/química , Temperatura Alta , Aminoácidos/metabolismo
2.
Sci Total Environ ; 929: 172090, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556020

RESUMO

Mesophotic coral reefs have been proposed as refugia for corals, providing shelter and larval propagules for shallow water reefs that are disproportionately challenged by global climate change and local anthropogenic stressors. For mesophotic reefs to be a viable refuge, firstly, deep origin larvae must survive on shallow reefs and, secondly, the two environments must be physically connected. This study tested the first condition. Planulae of the reef-building coral Stylophora pistillata from 5-8 and 40-44 m depth in the Gulf of Aqaba were tested in a long-term reciprocal transplantation experiment for their ability to settle and acclimate to depth in situ. We assessed survival rates, photochemical, physiological, and morphological characteristics in juveniles grown at either their parental origin or transplantation depth. Differences in gene expression patterns were compared between mesophotic and shallow corals at the adult, juvenile, and planula life stages. We found high mortality rates among all mesophotic-origin planulae, irrespective of translocation depth. Gene expression patterns suggested that deep planulae lacked settlement competency and experienced increased developmental stress upon release. For surviving shallow origin juveniles, symbiont photochemical acclimation to depth occurred within 8 days, with symbiont communities showing changes in photochemical traits without algal symbiont shuffling. However, coral host physiological and morphological acclimation towards the typical deep phenotype was incomplete within 60 days. Gene expression was influenced by both life stage and depth. A set of differentially expressed genes (DEGs) associated with initial stress responses following transplantation, latent stress response, and environmental effects of depth was identified. This study therefore refutes the Deep Reef Refugia Hypothesis, as the potential for mesophotic-origin S. pistillata planulae to recruit to the shallow reef is low. The potential remains for shallow planulae to survive at mesophotic depths.


Assuntos
Aclimatação , Antozoários , Recifes de Corais , Animais , Antozoários/fisiologia , Antozoários/genética , Simbiose , Mudança Climática
3.
Sci Total Environ ; 858(Pt 2): 159944, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351498

RESUMO

Phosphorus (P) is an essential but limiting nutrient for coral growth due to low concentrations of dissolved inorganic concentrations (DIP) in reef waters. P limitation is often exacerbated when concentrations of dissolved inorganic nitrogen (DIN) increase in the reef. To increase their access to phosphorus, corals can use organic P dissolved in seawater (DOP). They possess phosphatase enzymes that transform DOP into DIP, which can then be taken up by coral symbionts. Although the concentration of DOP in reef waters is much higher than DIP, the dependence of corals on this P source is still poorly understood, especially with different concentrations of DIN in seawater. As efforts to predict the future of corals increase, improved knowledge of the P requirements of corals living under different DIN concentrations may be key to predicting coral health. In this study, we investigated P content and phosphatase activities (PAs) in Stylophora pistillata maintained under nutrient starvation, long-term nitrogen enrichment (nitrate or ammonium at 2 µM) and short-term (few hours) nitrogen pulses. Results show that under nutrient depletion and ammonium-enriched conditions, a significant increase in PAs was observed compared to control conditions, with no change in the N:P ratio of the coral tissue. On the contrary, under nitrate enrichment, there was no increase in PAs compared to control conditions, but an increase in the N:P ratio of the coral tissue. These results suggest that under nitrate enrichment, corals were unable to increase their ability to rely on DOP and replenish their cellular P content. An increase in cellular N:P ratio is detrimental to coral health as it increases the susceptibility of coral bleaching under thermal stress. These results provide an overall view of the P requirements of corals exposed to different nutrient conditions and improve our understanding of the effects of nitrogen enrichment on corals.


Assuntos
Compostos de Amônio , Antozoários , Dinoflagellida , Animais , Simbiose , Nitratos , Matéria Orgânica Dissolvida , Nitrogênio , Fósforo , Compostos Orgânicos , Nutrientes , Óxidos de Nitrogênio , Monoéster Fosfórico Hidrolases , Recifes de Corais
4.
Ecol Evol ; 12(10): e9450, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36284520

RESUMO

Ocean warming is leading to more frequent coral bleaching events. However, cold stress can also induce bleaching in corals. Here, we report observations of a boreal winter bleaching event in January 2020 in the central Red Sea, mainly within a population of the branching coral Stylophora pistillata on an offshore reef flat. Sea surface temperatures (SSTs) rarely fall below 24°C in this region, but data loggers deployed on several nearby reef flats recorded overnight seawater temperatures as low as 18°C just 3 days before the observations. The low temperatures coincided with an extremely low tide and cool air temperatures, likely resulting in the aerial exposure of the corals during the night time low-tide event. The risk of aerial exposure is rare in winter months, as the Red Sea exhibits seasonal fluctuations in sea level with winter values typically 0.3-0.4 m higher than in summer. These observations are notable for a region typically characterized as a high-temperature sea, and highlight the need for long-term monitoring programs as this rare event may have gone unnoticed.

5.
Mar Environ Res ; 176: 105612, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35338950

RESUMO

Aggregated larval co-settlement has been documented in myriad marine invertebrate taxa, shaping adult population structures. Still, kinship settlement patterns in brooding corals have not been studied in detail, especially under scenarios of enhanced larval assemblies. Employing two sets of ex-situ experiments, planulae staining for kinship resolution and a computer random settlement simulation, we show that larval settlement of the coral Stylophora pistillata, a brooding species in the Gulf of Aqaba/Eilat, is mostly affected by the number of larval donors, and that larvae tend to aggregate (up to 50% tissue-contacts; distances <3 mm), compared to 3% predicted in a computer simulation, all without a kinship-bias. Field surveys on juvenile colonies revealed a similar clustering pattern. Although aggregated settlement inevitably carries disadvantages such as intraspecific competition, it may be bracketed in adult colonies with benefits such as enhanced fertilization and chimerism-related ecological advantages, including augmented colony size and survivorship. These improved life-history traits of brooding coral species that aggregate could be harnessed as applied ecological engineering tools in reef restoration acts.


Assuntos
Antozoários , Animais , Simulação por Computador , Recifes de Corais , Larva
6.
Glob Chang Biol ; 27(20): 5276-5294, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34310005

RESUMO

The integrity of coral reefs worldwide is jeopardized by ocean acidification (OA). Most studies conducted so far have focused on the vulnerability to OA of corals inhabiting shallow reefs while nothing is currently known about the response of mesophotic scleractinian corals. In this study, we assessed the susceptibility to OA of corals, together with their algal partners, inhabiting a wide depth range. We exposed fragments of the depth generalist coral Stylophora pistillata collected from either 5 or 45 m to simulated future OA conditions, and assessed key molecular, physiological and photosynthetic processes influenced by the lowered pH. Our comparative analysis reveals that mesophotic and shallow S. pistillata corals are genetically distinct and possess different symbiont types. Under the exposure to acidification conditions, we observed a 50% drop of metabolic rate in shallow corals, whereas mesophotic corals were able to maintain unaltered metabolic rates. Overall, our gene expression and physiological analyses show that mesophotic corals possess a greater capacity to cope with the effects of OA compared to their shallow counterparts. Such capability stems from physiological characteristics (i.e., biomass and lipids energetics), a greater capacity to regulate cellular acid-base parameters, and a higher baseline expression of cell adhesion and extracellular matrix genes. Moreover, our gene expression analysis suggests that the enhanced symbiont photochemical efficiency under high pCO2 levels could prevent acidosis of the host cells and it could support a greater translocation of photosynthates, increasing the energy pool available to the host. With this work, we provide new insights on the response to OA of corals living at mesophotic depths. Our investigation discloses key genetic and physiological traits underlying the potential for corals to cope with future OA conditions.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
7.
Proc Biol Sci ; 288(1953): 20210328, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34157872

RESUMO

With coral reefs declining globally, resilience of these ecosystems hinges on successful coral recruitment. However, knowledge of the acclimatory and/or adaptive potential in response to environmental challenges such as ocean acidification (OA) in earliest life stages is limited. Our combination of physiological measurements, microscopy, computed tomography techniques and gene expression analysis allowed us to thoroughly elucidate the mechanisms underlying the response of early-life stages of corals, together with their algal partners, to the projected decline in oceanic pH. We observed extensive physiological, morphological and transcriptional changes in surviving recruits, and the transition to a less-skeleton/more-tissue phenotype. We found that decreased pH conditions stimulate photosynthesis and endosymbiont growth, and gene expression potentially linked to photosynthates translocation. Our unique holistic study discloses the previously unseen intricate net of interacting mechanisms that regulate the performance of these organisms in response to OA.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
8.
PeerJ ; 9: e11100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828920

RESUMO

Global climate change is causing increasing variability and extremes in weather worldwide, a trend set to continue. In recent decades both anomalously warm and cold seawater temperatures have resulted in mass coral bleaching events. Whilst corals' response to elevated temperature has justifiably attracted substantial research interest, coral physiology under cold water stress is relatively unfamiliar. The response to below typical winter water temperature was tested for two common reef building species from the Gulf of Aqaba in an ex situ experiment. Stylophora pistillata and Acropora eurystoma were exposed to 1 or 3 °C below average winter temperature and a suite of physiological parameters were assessed. At 3 °C below winter minima (ca. 18.6 °C), both species had significant declines in photosynthetic indices (maximum quantum yield, electron transport rate, saturation irradiance, and photochemical efficiency) and chlorophyll concentration compared to corals at ambient winter temperatures. It was previously unknown that corals at this site live close to their cold-water bleaching threshold and may be vulnerable as climate variability increases in magnitude. In order to determine if a cold winter reduces the known heat resistance of this population, the corals were subsequently exposed to an acute warm period at 30 °C the following summer. Exposed to above typical summer temperatures, both species showed fewer physiological deviations compared to the cold-water stress. Therefore, the cold winter experience did not increase corals' susceptibility to above ambient summer temperatures. This study provides further support for the selection of heat tolerant genotypes colonising the Red Sea basin and thereby support the mechanism behind the Reef Refuge Hypothesis.

9.
Mar Pollut Bull ; 162: 111830, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234258

RESUMO

Most contemporary coral reefs live under both global (e.g. warming and acidification) and local (e.g. overfishing, pollution) stressors, which may synergistically undermine their resilience to thermal bleaching and diseases. While heavy metal toxicity in reefs has been well characterized, information on corals recovery from acute contamination is lacking. We studied for 42 days the ability of the coral Stylophora pistillata from the Gulf of Aqaba (northern Red Sea) to recover from a short (3 days) and prolonged (14 days) copper (Cu) contamination (1 µg L-1), after 11 ('Exp3/D11') and 28 ('Exp14/D28') days of depuration, respectively. Cu caused a decrease in chlorophyll content after 3 days, and in net photosynthesis (Pn) after 14 and 42 days. 'Exp14/D28' showed successful recovery based on Pn and relative electron transport rate, as opposed to 'Exp3/D11'. Results suggest the depuration time may be of greater importance than the exposure period to recover from such contamination.


Assuntos
Antozoários , Animais , Conservação dos Recursos Naturais , Cobre/toxicidade , Recifes de Corais , Pesqueiros , Oceano Índico
10.
Sci Total Environ ; 733: 139030, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446051

RESUMO

Coral bleaching due to global warming currently is the largest threat to coral reefs, which may be exacerbated by altered water quality. Elevated levels of the UV filter oxybenzone in coastal waters as a result of sunscreen use have recently been demonstrated. We studied the effect of chronic oxybenzone exposure and elevated water temperature on coral health. Microcolonies of Stylophora pistillata and Acropora tenuis were cultured in 20 flow-through aquaria, of which 10 were exposed to oxybenzone at a field-relevant concentration of ~0.06 µg L-1 at 26 °C. After two weeks, half of the corals experienced a heat wave culminating at 33 °C. All S. pistillata colonies survived the heat wave, although heat reduced growth and zooxanthellae density, irrespective of oxybenzone. Acropora tenuis survival decreased to 0% at 32 °C, and oxybenzone accelerated mortality. Oxybenzone and heat significantly impacted photosynthetic yield in both species, causing a 5% and 22-33% decrease, respectively. In addition, combined oxybenzone and temperature stress altered the abundance of five bacterial families in the microbiome of S. pistillata. Our results suggest that oxybenzone adds insult to injury by further weakening corals in the face of global warming.


Assuntos
Antozoários , Animais , Benzofenonas , Recifes de Corais , Temperatura Alta , Temperatura
11.
Proc Biol Sci ; 286(1896): 20182444, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963934

RESUMO

Light has been demonstrated to enhance calcification rates in hermatypic coral species. To date, it remains unresolved whether calcifying epithelia change their ion transport activity during illumination, and whether such a process is mediated by the endosymbiotic algae or can be controlled by the coral host itself. Using a modified Ussing chamber in combination with H+ sensitive microelectrode measurements, the present work demonstrates that light triggers the generation of a skeleton positive potential of up to 0.9 mV in the hermatypic coral Stylophora pistillata. This potential is generated by a net flux of cations towards the skeleton and reaches its maximum at blue (450 nm) light. The effects of pharmacological inhibitors targeting photosynthesis 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and anion transport 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) were investigated by pH microelectrode measurements in coral tissues demonstrating a rapid decrease in tissue pH under illumination. However, these inhibitors showed no effect on the electrophysiological light response of the coral host. By contrast, metabolic inhibition by cyanide and deoxyglucose reversibly inhibited the light-induced cation flux towards the skeleton. These results suggest that ion transport across coral epithelia is directly triggered by blue light, independent of photosynthetic activity of algal endosymbionts. Measurements of this very specific and quantifiable physiological response can provide parameters to identify photoreception mechanisms and will help to broaden our understanding of the mechanistic link between light stimulation and epithelial ion transport, potentially relevant for calcification in hermatypic corals.


Assuntos
Antozoários/efeitos da radiação , Cátions/metabolismo , Transporte de Íons/efeitos da radiação , Luz , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Calcificação Fisiológica , Cátions/efeitos da radiação , Fenômenos Eletrofisiológicos
12.
Mar Pollut Bull ; 131(Pt A): 701-711, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29886997

RESUMO

Environmental stressors are adversely affecting coral reef ecosystems. There is ample evidence that scleractinian coral growth and physiology may be compromised by reduced pH, and elevated temperature, and that this is exacerbated by local environmental stressors. The Gulf of Aqaba is considered a coral reef refuge from acidification and warming but coastal development and nutrient effluent may pose a local threat. This study examined the effects of select forecasted environmental changes (acidification, warming, and increased nutrients) individually and in combination on the coral holobiont Stylophora pistillata from the Gulf of Aqaba to understand how corals in a potential global climate change refugia may fare in the face of local eutrophication. The results indicate interactions between all stressors, with elevated nutrient concentrations having the broadest individual and additive impacts upon the performance of S. pistillata. These findings highlight the importance of maintaining oligotrophic conditions to secure these reefs as potential refugia.


Assuntos
Antozoários/fisiologia , Eutrofização , Animais , Mudança Climática , Recifes de Corais , Ecossistema , Oceano Índico
13.
BMC Biol ; 15(1): 117, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29216891

RESUMO

BACKGROUND: Climate change causes the breakdown of the symbiotic relationships between reef-building corals and their photosynthetic symbionts (genus Symbiodinium), with thermal anomalies in 2015-2016 triggering the most widespread mass coral bleaching on record and unprecedented mortality on the Great Barrier Reef. Targeted studies using specific coral stress indicators have highlighted the complexity of the physiological processes occurring during thermal stress, but have been unable to provide a clear mechanistic understanding of coral bleaching. RESULTS: Here, we present an extensive multi-trait-based study in which we compare the thermal stress responses of two phylogenetically distinct and widely distributed coral species, Acropora millepora and Stylophora pistillata, integrating 14 individual stress indicators over time across a simulated thermal anomaly. We found that key stress responses were conserved across both taxa, with the loss of symbionts and the activation of antioxidant mechanisms occurring well before collapse of the physiological parameters, including gross oxygen production and chlorophyll a. Our study also revealed species-specific traits, including differences in the timing of antioxidant regulation, as well as drastic differences in the production of the sulfur compound dimethylsulfoniopropionate during bleaching. Indeed, the concentration of this antioxidant increased two-fold in A. millepora after the corals started to bleach, while it decreased 70% in S. pistillata. CONCLUSIONS: We identify a well-defined cascading response to thermal stress, demarking clear pathophysiological reactions conserved across the two species, which might be central to fully understanding the mechanisms triggering thermally induced coral bleaching. These results highlight that bleaching is a conserved mechanism, but specific adaptations linked to the coral's antioxidant capacity drive differences in the sensitivity and thus tolerance of each coral species to thermal stress.


Assuntos
Antozoários/fisiologia , Antioxidantes/fisiologia , Dinoflagellida/fisiologia , Temperatura Alta/efeitos adversos , Estresse Fisiológico , Simbiose , Animais , Modelos Biológicos , Especificidade da Espécie , Análise de Sistemas
14.
Curr Biol ; 27(20): 3191-3196.e3, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29033329

RESUMO

Calcium carbonate platforms produced by reef-building stony corals over geologic time are pervasive features around the world [1]; however, the mechanism by which these organisms produce the mineral is poorly understood (see review by [2]). It is generally assumed that stony corals precipitate calcium carbonate extracellularly as aragonite in a calcifying medium between the calicoblastic ectoderm and pre-existing skeleton, separated from the overlying seawater [2]. The calicoblastic ectoderm produces extracellular matrix (ECM) proteins, secreted to the calcifying medium [3-6], which appear to provide the nucleation, alteration, elongation, and inhibition mechanisms of the biomineral [7] and remain occluded and preserved in the skeleton [8-10]. Here we show in cell cultures of the stony coral Stylophora pistillata that calcium is concentrated in intracellular pockets that are subsequently exported from the cell where a nucleation process leads to the formation of extracellular aragonite crystals. Analysis of the growing crystals by lattice light-sheet microscopy suggests that the crystals elongate from the cells' surfaces outward.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica , Carbonato de Cálcio/química , Animais , Células Cultivadas , Cristalização , Microscopia
15.
PeerJ ; 5: e3802, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29038747

RESUMO

Recent research suggests that prior exposure of several months to elevated irradiance induces enhanced thermal tolerance in scleractinian corals. While this tolerance has been reported at the species level, individual coral colonies may react differently due to individual variability in thermal tolerance. As thermal anomalies are predicted to become common in the upcoming future, intraspecific variation may be key to the survival of coral populations. In order to study light-history based thermal stress responses on individual colonies, we developed a preliminary microcosm experiment where three randomly chosen, aquacultured colonies of the model coral Stylophora pistillata were exposed to two irradiance treatments (200 and 400 µmol photons m-2 s-1) for 31 days, followed by artificially induced heat stress (∼33.4 °C). We found different responses to occur at both the intraspecific and the intracolonial levels, as indicated by either equal, less severe, delayed, and/or even non-necrotic responses of corals previously exposed to the irradiance of 400 compared to 200 µmol photons m-2 s-1. In addition, all individual colonies revealed light-enhanced calcification. Finally, elevated irradiance resulted in a lower chlorophyll a concentration in one colony compared to the control treatment, and the same colony displayed more rapid bleaching compared to the other ones. Taken together, this study highlights the potential importance of intra-individual variability in physiological responses of scleractinian corals and provides recommendations for improving methodological designs for future studies.

16.
Front Microbiol ; 8: 1094, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659905

RESUMO

The coral holobiont is the assemblage of coral host and its microbial symbionts, which functions as a unit and is responsive to host species and environmental factors. Although monitoring surveys have been done to determine bacteria associated with coral, none have persisted for >1 year. Therefore, potential variations in minor or dominant community members that occur over extended intervals have not been characterized. In this study, 16S rRNA gene amplicon pyrosequencing was used to investigate the relationship between bacterial communities in healthy Stylophora pistillata in tropical and subtropical Taiwan over 2 years, apparently one of the longest surveys of coral-associated microbes. Dominant bacterial genera in S. pistillata had disparate changes in different geographical setups, whereas the constitution of minor bacteria fluctuated in abundance over time. We concluded that dominant bacteria (Acinetobacter, Propionibacterium, and Pseudomonas) were stable in composition, regardless of seasonal and geographical variations, whereas Endozoicomonas had a geographical preference. In addition, by combining current data with previous studies, we concluded that a minor bacteria symbiont, Ralstonia, was a keystone species in coral. Finally, we concluded that long-term surveys for coral microbial communities were necessary to detect compositional shifts, especially for minor bacterial members in corals.

17.
R Soc Open Sci ; 4(5): 170038, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28573008

RESUMO

Coral reefs are currently experiencing substantial ecological impoverishment as a result of anthropogenic stressors, and the majority of reefs are facing immediate risk. Increasing ocean surface temperatures induce frequent coral mass bleaching events-the breakdown of the nutritional photo-symbiosis with intracellular algae (genus: Symbiodinium). Here, we report that Stylophora pistillata from a highly diverse reef in the Gulf of Aqaba showed no signs of bleaching despite spending 1.5 months at 1-2°C above their long-term summer maximum (amounting to 11 degree heating weeks) and a seawater pH of 7.8. Instead, their symbiotic dinoflagellates exhibited improved photochemistry, higher pigmentation and a doubling in net oxygen production, leading to a 51% increase in primary productivity. Nanoscale secondary ion mass spectrometry imaging revealed subtle cellular-level shifts in carbon and nitrogen metabolism under elevated temperatures, but overall host and symbiont biomass proxies were not significantly affected. Now living well below their thermal threshold in the Gulf of Aqaba, these corals have been evolutionarily selected for heat tolerance during their migration through the warm Southern Red Sea after the last ice age. This may allow them to withstand future warming for a longer period of time, provided that successful environmental conservation measures are enacted across national boundaries in the region.

18.
Nanotoxicology ; 11(2): 289-303, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248594

RESUMO

Water ecosystems represent main targets of unintentional contamination of nanomaterials, due to industrial waste or other anthropogenic activities. Nanoparticle insult to living organisms may occur in a sequential way, first by chemical interactions of the material with the target membrane, then by progressive internalisation and interaction with cellular structures and organelles. These events trigger a signal transduction, through which cells modulate molecular pathway in order to respond and survive to the external elicitation. Therefore, the analysis of the global changes of the molecular machinery, possibly induced in an organism upon exposure to a given nanomaterial, may provide unique clues for proper and exhaustive risk assessment. Here, we tested the impact of core/shell CdSe/ZnS QDs coated by a positively charged polymer on two aquatic species, the polyp Hydra vulgaris and the coral S. pistillata, representative of freshwater and sea habitats, respectively. By using reliable approaches based on animal behaviour and physiology together with a whole transcriptomic profiling, we determined several toxicity endpoints. Despite the difference in the efficiency of uptake, both species were severely affected by QD treatment, resulting in dramatic morphological damages and tissue bleaching. Global transcriptional changes were also detected in both organisms, but presenting different temporal dynamics, suggesting both common and divergent functional responses in the two sentinel organisms. Due to the striking conservation of structure and genomic organisation among animals throughout evolution, our expression profiling offers new clues to identify novel molecular markers and pathways for comparative transcriptomics of nanotoxicity.


Assuntos
Antozoários/efeitos dos fármacos , Compostos de Cádmio/toxicidade , Água Doce/química , Hydra/efeitos dos fármacos , Pontos Quânticos/toxicidade , Compostos de Selênio/toxicidade , Compostos de Zinco/toxicidade , Animais , Antozoários/genética , Antozoários/metabolismo , Compostos de Cádmio/química , Coloides , Endocitose/efeitos dos fármacos , Perfilação da Expressão Gênica , Hydra/genética , Hydra/metabolismo , Pontos Quânticos/química , Compostos de Selênio/química , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos , Compostos de Zinco/química
19.
Cell Tissue Res ; 368(2): 311-323, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28138798

RESUMO

Because hermatypic species use symbiotic algal photosynthesis, most of the literature in this field focuses on this autotrophic mode and very little research has studied the morphology of the coral's digestive system or the digestion process of particulate food. Using histology and histochemestry, our research reveals that Stylophora pistillata's digestive system is concentrated at the corals' peristome, actinopharynx and mesenterial filaments (MF). We used in-situ hybridization (ISH) of the RNA transcript of the gene that codes for the S. pistillata digestive enzyme, chymotrypsinogen, to shed light on the functionality of the digestive system. Both the histochemistry and the ISH pointed to the MF being specialized digestive organs, equipped with large numbers of acidophilic and basophilic granular gland cells, as well as acidophilic non-granular gland cells, some of which produce chymotrypsinogen. We identified two types of MF: short, trilobed MF and unilobed, long and convoluted MF. Each S. pistillata polyp harbors two long convoluted MF and 10 short MF. While the short MF have neither secreting nor stinging cells, each of the convoluted MF display gradual cytological changes along their longitudinal axis, alternating between stinging and secreting cells and three distinctive types of secretory cells. These observations indicate the important digestive role of the long convoluted MF. They also indicate the existence of novel feeding compartments in the gastric cavity of the polyp, primarily in the nutritionally active peristome, in the actinopharynx and in three regions of the MF that differ from each other in their cellular components, general morphology and chymotrypsinogen excretion.


Assuntos
Antozoários/anatomia & histologia , Sistema Digestório/anatomia & histologia , Sequência de Aminoácidos , Animais , Quimotripsinogênio/química , Quimotripsinogênio/metabolismo , Sistema Digestório/citologia , Hibridização In Situ , Alinhamento de Sequência
20.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865302

RESUMO

Corals are among the most active producers of dimethylsulfoniopropionate (DMSP), a key molecule in marine sulfur cycling, yet the specific physiological role of DMSP in corals remains elusive. Here, we examine the oxidative stress response of three coral species (Acropora millepora, Stylophora pistillata and Pocillopora damicornis) and explore the antioxidant role of DMSP and its breakdown products under short-term hyposalinity stress. Symbiont photosynthetic activity declined with hyposalinity exposure in all three reef-building corals. This corresponded with the upregulation of superoxide dismutase and glutathione in the animal host of all three species. For the symbiont component, there were differences in antioxidant regulation, demonstrating differential responses to oxidative stress between the Symbiodinium subclades. Of the three coral species investigated, only A. millepora provided any evidence of the role of DMSP in the oxidative stress response. Our study reveals variability in antioxidant regulation in corals and highlights the influence life-history traits, and the subcladal differences can have on coral physiology. Our data expand on the emerging understanding of the role of DMSP in coral stress regulation and emphasizes the importance of exploring both the host and symbiont responses for defining the threshold of the coral holobiont to hyposalinity stress.


Assuntos
Antozoários/fisiologia , Glutationa/metabolismo , Salinidade , Compostos de Sulfônio/metabolismo , Superóxido Dismutase/metabolismo , Animais , Dinoflagellida/fisiologia , Especificidade da Espécie , Estresse Fisiológico , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA