Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
AAPS J ; 26(4): 76, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955873

RESUMO

The selection of skin is crucial for the in vitro permeation test (IVPT). The purpose of this study was to investigate the influence of different freezing-thawing processes on the barrier function of skin and the transdermal permeability of granisetron and lidocaine. Rat and hairless mouse skins were thawed at three different conditions after being frozen at -20℃ for 9 days: thawed at 4℃, room temperature (RT), and 32℃. There were no significant differences in the steady-state fluxes of drugs between fresh and thawed samples, but compared with fresh skin there were significant differences in lag time for the permeation of granisetron in rat skins thawed at RT and 32℃. Histological research and scanning electron microscopy images showed no obvious structural damage on frozen/thawed skin, while immunohistochemical staining and enzyme-linked immunosorbent assay for the tight junction (TJ) protein Cldn-1 showed significantly impaired epidermal barrier. It was concluded that the freezing-thawing process increases the diffusion rate of hydrophilic drugs partly due to the functional degradation of TJs. It's recommended that hairless, inbred strains and identical animal donors should be used, and the selected thawing method of skin should be validated prior to IVPT, especially for hydrophilic drugs.


Assuntos
Congelamento , Camundongos Pelados , Permeabilidade , Absorção Cutânea , Pele , Animais , Pele/metabolismo , Camundongos , Absorção Cutânea/efeitos dos fármacos , Ratos , Masculino , Administração Cutânea , Lidocaína/administração & dosagem , Lidocaína/farmacocinética , Ratos Sprague-Dawley
2.
BMC Pharmacol Toxicol ; 25(1): 21, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409046

RESUMO

This study aimed to design and evaluate the transdermal permeation of Huperzine A ethosomes gel in vitro. Huperzine A ethosomes were prepared using the injection method, and their physical and chemical properties were characterized. A comparison was made between Huperzine A ethosomes gel, ordinary gel, and cream. The Franz diffusion cell test on mouse abdominal skin was conducted, and Huperzine A concentration was determined using LC-MS/MS. Transdermal volume, skin retention, and transdermal rate were used to assess the percutaneous permeability of the three preparations. Results demonstrated that Huperzine A ethosomes gel exhibited significantly higher accumulative permeation, transdermal rate, and skin retention compared to ordinary gel and cream. The findings suggest that Huperzine A ethosomes gel, with its controllable quality and favorable transdermal absorption properties, holds potential as a safe option for clinical administration.


Assuntos
Alcaloides , Sesquiterpenos , Pele , Espectrometria de Massas em Tandem , Camundongos , Animais , Cromatografia Líquida , Administração Cutânea , Lipossomos
3.
J Cosmet Dermatol ; 23(3): 1015-1028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38268219

RESUMO

BACKGROUND: Tocopherols are well-known antioxidant and moisturizing agent. Tocopherol succinate (TS) are widely used in many skin products especially used in anti-aging and skin whitening product formulation. AIM: We previously reported the successful synthesis and preliminary characterizations of stable TS ethosomal gels (TSEG) (DOI: 10.1111/jocd.14907). Herein, we develop and further characterize TSEG to enhance the stability of the developed formulation with increased permeation through skin. METHODS: Cold method technique was used to prepare TS ethosomes. The developed ethosomal vesicle size was 250 nm, which allowed TS to penetrate through the stratum corneum layer and act on melanocytes. For stability study was assessed by thermogravimetric analysis (TGA) by placing TSEG and unloaded/control ethosomal gel (CEG) at various temperature conditions, that is, 8°C, 25°C, 40°C, and 40°C ± 75% RH for 3 months. Organoleptic evaluation was done in terms of color, odor, and phase separation. Transmission electron microscopy (TEM), Fourier Transform infrared spectroscopy (FTIR), x-ray diffraction spectroscopy (XRD), zeta potential (ZP) and particle size (PS) was used for TSEG physical characterizations. In vitro dissolution and ex-vivo permeation studies (using Franz diffusion cell) were performed for both TSEG and CEG formulations. Human women (N = 34) were used to evaluate in vivo biophysical parameters including erythema, melanin, moisture content, sebum level, and skin elasticity. RESULTS: Developed formulation was highly thermostable during the 3 months. Erythema, melanin, and sebum level decreased while marked improvement (p < 0.05) in moisture content and elasticity have been observed for the developed TSEG. CONCLUSION: The developed TSEG formulation was found to be efficient, safe (no adverse effects observed), stable (at least for 3 months), and easy to use for topical application with improved skin complexation and skin integrity.


Assuntos
Absorção Cutânea , alfa-Tocoferol , Humanos , Feminino , alfa-Tocoferol/metabolismo , Administração Cutânea , Melaninas/metabolismo , Lipossomos/metabolismo , Pele/metabolismo , Eritema , Géis/metabolismo
4.
Drug Deliv Transl Res ; 14(3): 802-811, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38082031

RESUMO

The aim of this study was to design a tulobuterol (TUL) patch with good penetration behavior and mechanical properties. Particular attention was paid to the effect of transdermal permeation enhancers on the release process of metal ligand-based acrylic pressure-sensitive adhesive (AA-NAT/Fe3+). The type and dosage of the enhancers were screened by in vitro transdermal penetration in rat skin. The optimized formulation was evaluated in a pharmacokinetic study in rats. Furthermore, the molecular mechanism by which Azone (AZ) improves the release rate of TUL from AA-NAT/Fe3+ was investigated by FT-IR, shear strength test, rheological study, and molecular simulation. As a result, the optimized formula using AA-NAT/Fe3+ showed better mechanical properties compared to commercial products. Meanwhile, the AUC0-t and Cmax of the optimized patch were 1045 ± 89 ng/mL·h and 106.8 ± 28.5 ng/mL, respectively, which were not significantly different from those of the commercial product. In addition, AZ increased the mobility of the pressure-sensitive adhesive (PSA) rather than decreasing the drug-PSA interaction, which was the main factor in enhancing TUL release from the patch. In conclusion, a TUL transdermal drug delivery patch was successfully developed using metal-coordinated PSA, and a reference was provided for the design of metal-coordinated acrylic PSA for transdermal patch delivery applications.


Assuntos
Adesivos , Absorção Cutânea , Terbutalina/análogos & derivados , Ratos , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Ligantes , Administração Cutânea , Pele/metabolismo , Adesivo Transdérmico
5.
Pharm Dev Technol ; 29(1): 40-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38078863

RESUMO

Nebivolol (NBV), a BCS class II anti-hypertensive drug, suffers from limited solubility and oral bioavailability. Nanosized ethosomes were adopted as an approach to solubilize and deliver NBV transdermally, as a substitute to oral route. Ethosomal dispersions were prepared employing thin film hydration method. Formulation variables were adjusted to obtain entrapment efficiency; EE > 50%, particle size; PS < 100 nm, zeta potential; ZP > ±25 mV, and polydispersity index; PDI < 0.5. The optimized ethosomal dispersion (OED) showed accepted EE 86.46 ± 0.15%, PS 73.50 ± 0.08 nm, ZP 33.75 ± 1.20 mV, and PDI 0.31 ± 0.07. It also showed enhanced cumulative amount of NBV permeated at 8 h (Q8) 71.26 ± 1.46% and 24 h (Q24) 98.18 ± 1.02%. TEM images denoted spherical vesicles with light colored lipid bi-layer and dark core. Confocal laser scanning microscopy showed deeply localized intradermal and transfollicular permeation of the fluorolabelled OED (FL-OED). Nanosized FL-OED (<100 nm) can permeate through hair follicles creating a drug reservoir for enhanced systemic absorption. OED formulated into transdermal patch (OED-TP1) exhibited accepted physicochemical properties including; thickness 0.14 ± 0.01 mm, folding endurance 151 ± 0.07, surface pH 5.80 ± 0.15, drug content 98.64 ± 2.01%, mucoadhesion 8534 ± 0.03, Q8 87.61 ± 0.11%, and Q24 99.22 ± 0.24%. In vivo pharmacokinetic studies showed significantly enhanced bioavailability of OED-TP1 by 7.9 folds compared to oral Nevilob® tablets (p = 0.0002). It could be concluded that OED-TP1 can be a promising lipid nanocarrier TDDS for NBV and an efficacious alternative route of administration for hypertensive patients suffering from dysphagia.


Ethosomes loaded with lipophilic drugs, as NBV, can have two possible pathways of permeation through the skin; intradermal and transfollicular.Nanosized ethosomes (< 100 nm) can produce efficient intradermal and transfollicular reservoirs for sustained drug delivery.The formulated transdermal patch loaded with the optimized ethosomal dispersion (OED) showed enhanced bioavailability by 7.9 folds compared to Nevilob® oral tablets.


Assuntos
Lipídeos , Pele , Humanos , Nebivolol , Administração Cutânea , Microscopia Confocal , Tamanho da Partícula , Lipossomos/química
6.
Pharmaceutics ; 15(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111529

RESUMO

This study aimed to develop and evaluate nicotine--stearic acid conjugate-loaded solid lipid nanoparticles (NSA-SLNs) for transdermal delivery in nicotine replacement therapy (NRT). Nicotine conjugation to stearic acid prior to SLN formulation greatly increased drug loading. SLNs loaded with a nicotine-stearic acid conjugate were characterized for size, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, and morphology. Pilot in vivo testing was carried out in New Zealand Albino rabbits. The size, PDI, and ZP of nicotine-stearic acid conjugate-loaded SLNs were 113.5 ± 0.91 nm, 0.211 ± 0.01, and -48.1 ± 5.75 mV, respectively. The entrapment efficiency of nicotine-stearic acid conjugate in SLNs was 46.45 ± 1.53%. TEM images revealed that optimized nicotine-stearic acid conjugate-loaded SLNs were uniform and roughly spherical in shape. Nicotine-stearic acid conjugate-loaded SLNs showed enhanced and sustained drug levels for up to 96 h in rabbits when compared with the control nicotine formulation in 2% HPMC gel. To conclude, the reported NSA-SLNs could be further explored as an alternative for treating smoking cessation.

7.
Eur J Pharm Biopharm ; 181: 239-248, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36384197

RESUMO

Enhancement of skin permeation of drugs is affected by the simultaneous co-permeation of excipients that hinder the predictivity of in vitro tests. The collaborative effects of two permeation enhancers (ethanol and d-limonene) of a lipophilic drug (alprazolam) have been simultaneously assessed in human skin under different in vitro conditions: integrated setups of diffusion cell experiments with selective concentration gradients of permeants (asymmetric) or without (symmetric) have been combined with coadministration dosages (all-in-one) at different concentrations or short-time skin pretreatment to scrutiny this mutual performance. Findings: Drug permeation is increased under moderated supersaturation but reaches a stationary level above 33 % of its solubility. Ethanol in absence of a concentration gradient increases ca.5 times basal drug permeation. Limonene until 20 % permeates human skin proportionally to its donor concentration but its effect does not depend on ethanol in symmetric conditions and is based on skin imbibition rather than on a carry-on effect. Simultaneous permeation of ethanol and limonene reaches a stationary state after 1.5 h, enough time to achieve maximal enhancement of alprazolam permeation. Additive enhancement is based on ethanol solubilisation maximized by skin saturation of terpene. Complementary analyses of skin disruption published in the literature are in line with these assessments and consolidate them.


Assuntos
Etanol , Excipientes , Humanos , Limoneno
8.
Saudi Pharm J ; 30(4): 382-397, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35527836

RESUMO

The transdermal permeation of curcumin aided by choline and geranic acid ionic liquid (CAGE-IL) was addressed as a potential treatment for skin diseases. An in-depth analysis of the effect of CAGE-IL concentration in the enhancement of transdermal permeation of curcumin was performed, and the results were modelled via nonlinear regression analysis. The results obtained showed that a low percentage of CAGE-IL (viz. 2.0%, w/w) was effective in disrupting the skin structure in a transient fashion, facilitating the passage of curcumin dissolved in it.

9.
Pharmaceutics ; 14(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35456612

RESUMO

Psoriasis is a clinically heterogeneous skin disease with an important genetic component, whose pathophysiology is not yet fully understood and for which there is still no cure. Hence, alternative therapies have been evaluated, using plant species such as turmeric (Curcuma longa Linn.) in topical preparations. However, the stratum corneum is a barrier to be overcome, and ionic liquids have emerged as potential substances that promote skin permeation. Thus, the main objective of this research was to evaluate a biopolysaccharide hydrogel formulation integrating curcumin with choline and geranic acid ionic liquid (CAGE-IL) as a facilitator of skin transdermal permeation, in the treatment of chemically induced psoriasis in mice. The developed gel containing curcumin and CAGE-IL showed a high potential for applications in the treatment of psoriasis, reversing the histological manifestations of psoriasis to a state very close to that of normal skin.

10.
Pharmacol Res Perspect ; 10(2): e00919, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35306752

RESUMO

In clinical practice, pregabalin is orally administered for neuropathic pain, but causes severe central nervous system side effects, such as dizziness, which results in dose limitation or discontinuation. To reduce the central side effects of pregabalin, we developed four pregabalin preparations for transdermal application: 0.4% aqueous solution, pluronic lecithin organogel (PLO gel), hydrophilic cream, and lipophilic cream. Transdermal permeabilities of pregabalin among the four formulations were compared in vitro using hairless mouse skin. The longitudinal distribution of pregabalin within the skin was analyzed using mass spectrometric (MS) imaging. Furthermore, the in vivo analgesic effects of the formulations were evaluated using the von Frey filament test in a mouse model of diabetic neuropathy (DN). The PLO gel showed the highest permeability of pregabalin, followed by the aqueous solution, and no permeation was observed in the two cream formulations. The MS imaging analysis showed that pregabalin was distributed up to the dermis in the PLO gel 1 h after application, while the aqueous solution was distributed near the epidermis. A significant analgesic effect (p < .05) was observed 1.5 h after PLO gel application in the DN model mice, but the aqueous solution had no effect. This study indicated for the first time that pregabalin penetrated beyond the skin epidermis up to the dermis, from the PLO gel formulation, and that the application of this formulation exhibited an in vivo analgesic effect in the mouse model of DN.


Assuntos
Lecitinas , Poloxâmero , Analgésicos/uso terapêutico , Animais , Géis/química , Lecitinas/química , Camundongos , Pregabalina/uso terapêutico
11.
J Pharm Sci ; 111(7): 1962-1972, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34999089

RESUMO

At present, transdermal permeation enhancing dynamics studies on permeation enhancers are still limited. In this study, these dynamics were established based on the content of enhancer Plurol Oleique CC in skin (CPOCC) and the increment of drug permeation amount (ΔQ). A new concept deemed "permeation enhancement window" (ΔCPOCC), comprised of a threshold dose (Cthr), maximal dose (Cmax) and permeation enhancement efficiency (Eff) was used to evaluate the enhancement effect of POCC for different drugs. According to results of FT-IR, ATR-FTIR and DSC analyses, the higher CPOCC of patches containing acidic drugs vs. basic drugs resulted from their stronger interaction with pressure-sensitive adhesives, leading to more free POCC and a greater disturbing effect on stratum corneum (SC) lipids. Below Cthr, a longer lag phase for acidic drugs resulted from more POCC required to compete with ceramide. When CPOCC exceeded Cmax by about 400 µg/g, plateau phases for all drugs were reached due to the upper limit of SC lipid fluidity, as confirmed by SAXS and Raman imaging. In summary, the differences in the permeation enhancement window for the test drugs resulted from the varied interaction strengths among POCC, drugs and adhesives, as well as changeable SC lipid fluidity.


Assuntos
Absorção Cutânea , Pele , Administração Cutânea , Lipídeos/farmacologia , Espalhamento a Baixo Ângulo , Pele/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
12.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6607-6614, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604909

RESUMO

This study aimed to improve the transdermal permeation quantity of Baimai Ointment by investigating the enhancing effects of physical and chemical permeation promoting methods on transdermal permeation of Baimai Ointment. The improved Franz diffusion cell method was used for in vitro transdermal experiment. The abdominal skin of mice was used, and the skin was treated with 3% propylene glycol in the chemical enhancement group. Ultrasonic technology was introduced in the physical enhancement group. The conditions of ultrasonic technology were optimized by single factor trial. Taking Q_(EF) and ER as the indexes of penetration promotion performance, the enhancing effects of the two methods were compared. The results showed that the promotion performance of 3% propylene glycol for ammonium glycyrrhizinate, nardosinone and curcumin of the chemical enhancement group were 1.74, 1.60, and 3.73 times higher than those of the blank group, respectively. The overall permeation efficiency of the Baimai Ointment was significantly improved. The comprehensive promoting effect on each component was curcumin>ammonium glycyrrhizinate>nardosinone. In the physical enhancement group, the penetration promoting effect of ultrasonic power 1.0 W was better than that of 2.0 W and 0.5 W, ultrasonic time 5 min was better than 3 min and 8 min, and the ultrasonic frequency 1 MHz was better than 3 MHz. Therefore, the optimal ultrasonic condition was 1.0 W-5 min-1 MHz. Under this condition, in terms of the transdermal permeation for ammonium glycyrrhizinate, the Q_(EF) and ER of the ultrasonic technology were better than those of 3% propylene glycol. In terms of the transdermal permeation for nardosinone and curcumin, the QEF and ER of 3% propylene glycol were better than those of the ultrasonic technology. Therefore, 3% propylene glycol combined with ultrasonic technology can be used to promote permeation of Baimai Ointment that contains both water-soluble and fat-soluble components in the clinical application. This study provides a theoretical basis for the clinical application of Baimai Ointment and other transdermal preparations.


Assuntos
Compostos de Amônio , Curcumina , Camundongos , Animais , Absorção Cutânea , Curcumina/farmacologia , Ultrassom , Administração Cutânea , Pele , Propilenoglicol/metabolismo , Propilenoglicol/farmacologia , Compostos de Amônio/metabolismo , Compostos de Amônio/farmacologia , Permeabilidade
13.
Eur J Pharm Sci ; 164: 105909, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34126240

RESUMO

Noopept (NPT), a potent neuroprotective agent, suffers the problem of poor oral bioavailability (~10%) and thus demands exploration of ways of bioavailability improvement. Present work focuses on confronting this issue via development of NPT loaded ultradeformable liposomes (UDL) and its further incorporation in fast dissolving microneedle patch (MNP) for transdermal route. A combination of Phospholipon 90 G and Phospholipon 90H was used as bilayer forming lipids while sodium deoxycholate was used as edge activator to formulate NPT UDL by ethanol injection method. QbD approach was adapted to optimize NPT UDL considering vesicle size and entrapment efficiency as critical quality attributes (CQA). Fractional factorial design established amount of lipids, surfactant and NPT as critical material attributes and their optimum levels were statistically derived using combined D-optimal design. These optimized NPT UDL were fabricated as fast dissolving MNP and exhaustively evaluated to establish their safety, efficacy and stability. NPT UDL MNP possessed axial needle fracture force of 0.688 N which was sufficient enough to breach stratum corneum. Physical stability evaluation revealed that NPT UDL re-dispersion obtained from MNP matrix dissolution possessed identical vesicle shape and size while retaining > 99% NPT when compared to optimized NPT UDL. In vitro viability of HaCaT cells after exposure to NPT UDL MNP matrix was found to be 89.74% supporting the formulation as safe for transdermal application. NPT UDL MNP showed a 6.5-fold increase in steady state flux across full thickness pig ear skin as compared to NPT suspension. A 3-fold increase in relative bioavailability with similar pharmacological response as compared to oral NPT suspension was also observed during PK-PD studies in Sprague Dawley rats. Results were found fairly encouraging and created a scope of reducing both dose and dosing frequency to eventually improve the associated patient compliance.


Assuntos
Demência , Lipossomos , Administração Cutânea , Animais , Dipeptídeos , Humanos , Agulhas , Ratos , Ratos Sprague-Dawley , Absorção Cutânea , Suínos
14.
Pharmaceutics ; 13(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924325

RESUMO

In the present research work, we addressed the changes in skin by which deep eutectic solvents (DES) enhanced transdermal permeation of bioactive compounds and propose a rationale for this mechanism. Several studies showed that these unusual liquids were ideal solvents for transdermal delivery of biomolecules, but to date, no histological studies relating the action of DES to changes in the structure of the outer skin barrier have been reported. In the research effort described herein, we presented an in-depth analysis of the changes induced in the skin by choline geranate DES, a compound with proven capabilities of enhancing transdermal permeation without deleterious impacts on the cells. The results obtained showed that a low percentage of DES acted as a transient disruptor of the skin structure, facilitating the passage of bioactive compounds dissolved in it.

15.
Res Vet Sci ; 135: 42-58, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33440244

RESUMO

In the present research work, we propose a new antimicrobial treatment for pyoderma via cutaneous permeation of bacteriophage particles conveyed in a hydroxyethylcellulose (HEC) gel integrating ionic liquid as a permeation enhancer. Ionic liquids are highly viscous fluids constituted exclusively by ions, that are usually hydrolytically stable and promote solubilization of amphipathic molecules such as proteins, hence serving as green solvents and promoting the transdermal permeation of biomolecules. In the research effort entertained herein, the synthesis and use of choline geranate for integrating a HEC gel aiming at the structural and functional stabilization of a cocktail of isolated lytic bacteriophage particles was sought, aiming at transdermal permeation in the antimicrobial treatment of animal pyoderma. The results obtained showed a high ability of the ionic liquid in enhancing transdermal permeation of the bacteriophage particles, with concomitant high potential of the HEC gel formulation in the antimicrobial treatment of animal skin infections.


Assuntos
Celulose/análogos & derivados , Colina/química , Terapia por Fagos/veterinária , Staphylococcus intermedius/virologia , Administração Cutânea , Animais , Bacteriófagos , Linhagem Celular , Sobrevivência Celular , Celulose/química , Cães/microbiologia , Cavalos/microbiologia , Humanos , Líquidos Iônicos/química , Líquidos Iônicos/metabolismo , Testes de Mutagenicidade , Permeabilidade , Pioderma/tratamento farmacológico , Pioderma/veterinária , Pele/metabolismo , Solventes
16.
Future Microbiol ; 15: 881-896, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716215

RESUMO

Aim: A sodium alginate-based biohydrogel was prepared integrating choline oleate deep euthetic solvent as facilitator of transdermal delivery and a cocktail of lytic bacteriophages for Acinetobacter baumannii, aiming at treating soft-tissue infections by the aforementioned pathogen. Materials & methods: Two bacteriophages were isolated from a hospital sewage and a wastewater treatment plant sewage in Sorocaba (Brazil), and characterized via SDS-PAGE electrophoresis, transmission electron microscope and evaluation of lytic spectra of the bacteriophage cocktail. The biohydrogel was prepared and characterized by DSC, FTIR, XRD, DESEM, XRT and transdermal permeation of the bacteriophage cocktail. Results & conclusion: The physico-chemical characterization of the biohydrogel produce indicated adequate structural characteristics and ability to promote/facilitate transdermal delivery of bacteriophage particles, thus showing potential for biopharmaceutical applications.


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/fisiologia , Colina/farmacologia , Ácido Oleico/farmacologia , Vírion , Acinetobacter baumannii/efeitos dos fármacos , Brasil , Dano ao DNA , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Humanos , Hidrogéis/farmacologia , Terapia por Fagos
17.
Eur J Pharm Sci ; 151: 105411, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32505794

RESUMO

This study investigated enhanced bioavailability and sustained delivery of transdermally delivered rifampicin (RIF) in elastic liposomes (ELs). F3, F5, and F7 were optimized formulations comprising of 200, 140 and 80 mg of tween 80, respectively, and PhospholiponⓇ 90 G (300 mg). They were optimized based on in vitro and ex vivo parameters. Using the Franz diffusion cell, an ex vivo study was conducted by utilizing the rat skin for permeation profiles. Also, pharmacokinetic parameters, mechanistic evaluation of penetration, and histopathological investigation were conducted in the rat model for complete dynamic evaluations. Vesicle sizes of suspensions and gels were found to be similar whereas zeta potential of gel attained more negativity due to acidic carbopol. Permeation parameters of gels were significantly (p < 0.05) higher compared to respective ELs due to increased residence time and the composition of the formulations (ethanol, tween 80, d-limonene and lipid). Bioavailability of RIF (F5 gel) was improved by transdermal absorption as evidenced with AUC0→24 of transdermal F5 gel (56.23±2.7 µg.hr/mL) and oral drug suspension (41.71±5.2 µg.hr/mL). A lower value of transdermal Cmax (6.9 ± 0.8 µg/mL) validated sustained delivery for improved tuberculosis management than oral delivery (10.5 ± 1.46.9 ± 0.8 µg/mL). In vivo skin interaction, biopsy and in silico prediction studies corroborated suitable alternative for sustained and prolonged delivery of RIF with high patient compliance to control cutaneous tuberculosis and related infections.


Assuntos
Lipossomos , Rifampina , Administração Cutânea , Animais , Simulação por Computador , Sistemas de Liberação de Medicamentos , Géis , Lipossomos/metabolismo , Ratos , Rifampina/metabolismo , Pele/metabolismo , Absorção Cutânea
18.
Front Pharmacol ; 11: 243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390824

RESUMO

In this research project, synthesis and characterization of ionic liquids and their subsequent utilization as facilitators of transdermal delivery of human insulin was pursued. Choline geranate and choline oleate ionic liquids (and their deep eutectic solvents) were produced and characterized by nuclear magnetic resonance (1H NMR), water content, oxidative stability, cytotoxicity and genotoxicity assays, and ability to promote transdermal protein permeation. The results gathered clearly suggest that all ionic liquids were able to promote/facilitate transdermal permeation of insulin, although to various extents. In particular, choline geranate 1:2 combined with its virtually nil cyto- and geno-toxicity was chosen to be incorporated in a biopolymeric formulation making it a suitable facilitator aiming at transdermal delivery of insulin.

19.
Int J Pharm ; 572: 118738, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31705977

RESUMO

Collagen and hyaluronic acid (HA) are biopolymers that affect the appearance and condition of the skin. Delivery of these compounds into the skin is highly challenging since have a number of disadvantageous properties, such as high molecular weight and hydrophilicity. Here, we evaluated the transdermal penetration of low and high molecular weight collagen and HA from microemulsions. A number of microemulsion formulations, differing in the content of polymers and surfactants (i.e. penetration promoters), were used for the permeation study. In addition, a correlation was made between the composition of these microemulsions and the polymers transport efficiency. The results indicate that, microemulsions enable transdermal permeation of collagen and HA. The concentration of polymers and the solubilization capacity of microemulsions had the greatest influence on the permeation. Surprisingly, the molecular weight of polymers and the content of other components affected the size of microemulsion particles, and thus these parameters had an indirect influence on the permeation process. This study demonstrated therefore the potential therapeutic use of microemulsion with collagen and HA in improving and regenerating the barrier of aged or diseased skin.


Assuntos
Colágeno/química , Ácido Hialurônico/química , Administração Cutânea , Colágeno/administração & dosagem , Liberação Controlada de Fármacos , Emulsões , Ácido Hialurônico/administração & dosagem , Membranas Artificiais , Miristatos/química , Absorção Cutânea , Envelhecimento da Pele , Solubilidade , Tensoativos/química , Água/química
20.
Int J Pharm ; 570: 118633, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31437563

RESUMO

Avobenzone (AVO), oxybenzone (OXY), and octyl methoxycinnamate (OMC), are widely used UV filters. The aim of this study was to investigate the effect of incorporation in mesoporous silica (SBA-15) on their cutaneous deposition and permeation. Stick formulations containing "free" and "incorporated" UV filters (SF1 and SF2, respectively) were prepared and characterized with respect to their physicochemical, thermal, and functional properties. Cutaneous delivery experiments using porcine skin with quantification by UHPLC-MS/MS, demonstrated that skin deposition of AVO and OXY after application of SF2 for 6 and 12 h was significantly lower than that from SF1 at each time-point (Student t-test, p < 0.05): e.g. OXY permeation across the skin was 30-, 12- and 1.5-fold lower after 6, 12 and 24 h, respectively, following application of SF2. Cutaneous biodistribution profiles of AVO and OXY to 800 µm evidenced a significant decrease in the amounts in the viable epidermis and dermis. In contrast, deposition of the more lipophilic OMC was not significantly different (p ˃ 0.05). In vitro photoprotective efficacy results demonstrated that adsorption/entrapment of UV filters enhanced the sun protection factor by 94%. In conclusion, SBA-15, an innovative mesoporous material, increased photoprotection by UV filters while reducing their cutaneous penetration and transdermal permeation.


Assuntos
Derme/metabolismo , Epiderme/metabolismo , Dióxido de Silício/sangue , Absorção Cutânea/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Administração Cutânea , Animais , Benzofenonas/química , Cromatografia Líquida de Alta Pressão/métodos , Cinamatos/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Propiofenonas/química , Dióxido de Silício/química , Fator de Proteção Solar/métodos , Protetores Solares/administração & dosagem , Protetores Solares/química , Suínos , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA