Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.030
Filtrar
1.
Heliyon ; 10(13): e34094, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071619

RESUMO

Multiple myeloma (MM) is a Ubiquitin Proteasome System (UPS)-dysfunction disease. We previously reported that high PRAME transcript levels associated with unfavorable progression free survival (PFS) in patients with no bortezomib therapy, and bortezomib-containing regimen significantly improved PFS in patients with high PRAME transcript levels, which indicated that PRAME expression was prognostic for MM patients, and was related to proteasome inhibitor treatment. However, molecular mechanisms underlying the above clinical performance remain unclear. In the present study, MM cell models with PRAME knockdown and overexpression were established, and PRAME was identified to play the role of promoting proliferation in MM cells. P-Akt signaling was found to be activated as PRAME overexpressed. As a substrate recognizing subunit (SRS) of the E3 ubiquitin ligase, PRAME targets substrate proteins and mediates their degradation. CTMP and p21 were found to be the novel targets of PRAME in the Cul2-dependent substrate recognition process. PRAME interacted with and mediated ubiquitination and degradation of CTMP and p21, which led to accumulation of p-Akt and CCND3 proteins, and thus promoted cell proliferation and increased bortezomib sensitivity in MM cells.

2.
Respir Res ; 25(1): 287, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39061007

RESUMO

BACKGROUND: Asthma's complexity, marked by airway inflammation and remodeling, is influenced by hypoxic conditions. This study focuses on the role of Hypoxia-Inducible Factor-1 Alpha (HIF-1α) and P53 ubiquitination in asthma exacerbation. METHODS: High-throughput sequencing and bioinformatics were used to identify genes associated with asthma progression, with an emphasis on GO and KEGG pathway analyses. An asthma mouse model was developed, and airway smooth muscle cells (ASMCs) were isolated to create an in vitro hypoxia model. Cell viability, proliferation, migration, and apoptosis were assessed, along with ELISA and Hematoxylin and Eosin (H&E) staining. RESULTS: A notable increase in HIF-1α was observed in both in vivo and in vitro asthma models. HIF-1α upregulation enhanced ASMCs' viability, proliferation, and migration, while reducing apoptosis, primarily via the promotion of P53 ubiquitination through MDM2. In vivo studies showed increased inflammatory cell infiltration and airway structural changes, which were mitigated by the inhibitor IDF-11,774. CONCLUSION: The study highlights the critical role of the HIF-1α-MDM2-P53 axis in asthma, suggesting its potential as a target for therapeutic interventions. The findings indicate that modulating this pathway could offer new avenues for treating the complex respiratory disorder of asthma.


Assuntos
Asma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Miócitos de Músculo Liso , Proteína Supressora de Tumor p53 , Asma/metabolismo , Asma/patologia , Asma/genética , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Cultivadas , Camundongos Endogâmicos BALB C , Apoptose/fisiologia , Proliferação de Células/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Hipóxia/metabolismo , Hipóxia/patologia , Modelos Animais de Doenças , Hipóxia Celular/fisiologia , Feminino , Humanos , Movimento Celular/fisiologia , Ubiquitinação
3.
Biomolecules ; 14(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39062505

RESUMO

The ubiquitin-proteasome system (UPS) maintains intracellular protein homeostasis and cellular function by regulating various biological processes. Ubiquitination, a common post-translational modification, plays a crucial role in the regulation of protein degradation, signal transduction, and other physiological and pathological processes, and is involved in the pathogenesis of various cancers, including osteosarcoma. Osteosarcoma, the most common primary malignant bone tumor, is characterized by high metastatic potential and poor prognosis. It is a refractory bone disease, and the main treatment modalities are surgery combined with chemotherapy. Increasing evidence suggests a close association between UPS abnormalities and the progression of osteosarcoma. Due to the complexity and pleiotropy of the ubiquitination system, each step in the ubiquitination process can be targeted by drugs. In recent years, research and development of inhibitors targeting the ubiquitin system have increased gradually, showing great potential for clinical application. This article reviews the role of the ubiquitination system in the development and treatment of osteosarcoma, as well as research progress, with the hope of improving the therapeutic effects and prognosis of osteosarcoma patients by targeting effective molecules in the ubiquitination system.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Ubiquitinação , Osteossarcoma/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/genética , Humanos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Transdução de Sinais
4.
Genes (Basel) ; 15(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39062659

RESUMO

The objective of this research was to create a prognostic model focused on genes related to ubiquitination (UbRGs) for evaluating their clinical significance in head and neck squamous cell carcinoma (HNSCC) patients. The transcriptome expression data of UbRGs were obtained from The Cancer Genome Atlas (TCGA) database, and weighted gene co-expression network analysis (WGCNA) was used to identify specific UbRGs within survival-related hub modules. A multi-gene signature was formulated using LASSO Cox regression analysis. Furthermore, various analyses, including time-related receiver operating characteristics (ROCs), Kaplan-Meier, Cox regression, nomogram prediction, gene set enrichment, co-expression, immune, tumor mutation burden (TMB), and drug sensitivity, were conducted. Ultimately, a prognostic signature consisting of 11 gene pairs for HNSCC was established. The Kaplan-Meier curves indicated significantly improved overall survival (OS) in the low-risk group compared to the high-risk group (p < 0.001), suggesting its potential as an independent and dependable prognostic factor. Additionally, a nomogram with AUC values of 0.744, 0.852, and 0.861 at 1-, 3-, and 5-year intervals was developed. Infiltration of M2 macrophages was higher in the high-risk group, and the TMB was notably elevated compared to the low-risk group. Several chemotherapy drugs targeting UbRGs were recommended for low-risk and high-risk patients, respectively. The prognostic signature derived from UbRGs can effectively predict prognosis and provide new personalized therapeutic targets for HNSCC.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Nomogramas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ubiquitinação , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Biomarcadores Tumorais/genética , Ubiquitinação/genética , Transcriptoma , Estimativa de Kaplan-Meier , Feminino , Masculino
5.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062881

RESUMO

Ubiquitination, a post-translational modification, refers to the covalent attachment of ubiquitin molecules to substrates. This modification plays a critical role in diverse cellular processes such as protein degradation. The specificity of ubiquitination for substrates is regulated by E3 ubiquitin ligases. Dysregulation of ubiquitination has been associated with numerous diseases, including cancers. In our study, we first investigated the protein expression patterns of E3 ligases across 12 cancer types. Our findings indicated that E3 ligases tend to be up-regulated and exhibit reduced tissue specificity in tumors. Moreover, the correlation of protein expression between E3 ligases and substrates demonstrated significant changes in cancers, suggesting that E3-substrate specificity alters in tumors compared to normal tissues. By integrating transcriptome, proteome, and ubiquitylome data, we further characterized the E3-substrate regulatory patterns in lung squamous cell carcinoma. Our analysis revealed that the upregulation of the SKP2 E3 ligase leads to excessive degradation of BRCA2, potentially promoting tumor cell proliferation and metastasis. Furthermore, the upregulation of E3 ubiquitin-protein ligase TRIM33 was identified as a biomarker associated with a favorable prognosis by inhibiting the cell cycle. This work exemplifies how leveraging multi-omics data to analyze E3 ligases across various cancers can unveil prognosis biomarkers and facilitate the identification of potential drug targets for cancer therapy.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteômica/métodos , Transcriptoma , Proteoma/metabolismo , Prognóstico , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Multiômica
6.
Biology (Basel) ; 13(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39056701

RESUMO

Wild-type (wt) p53 and mutant forms (mutp53) play a key but opposite role in carcinogenesis. wtP53 acts as an oncosuppressor, preventing oncogenic transformation, while mutp53, which loses this property, may instead favor this process. This suggests that a better understanding of the mechanisms activating wtp53 while inhibiting mutp53 may help to design more effective anti-cancer treatments. In this review, we examine possible PTMs with which both wt- and mutp53 can be decorated and discuss how their manipulation could represent a possible strategy to control the stability and function of these proteins, focusing in particular on mutp53. The impact of ubiquitination, phosphorylation, acetylation, and methylation of p53, in the context of several solid and hematologic cancers, will be discussed. Finally, we will describe some of the recent studies reporting that wt- and mutp53 may influence the expression and activity of enzymes responsible for epigenetic changes such as acetylation, methylation, and microRNA regulation and the possible consequences of such changes.

7.
Biomed Pharmacother ; 178: 117210, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059348

RESUMO

The ubiquitin-proteasome system (UPS) is a basic regulatory mechanism in cells that is essential for maintaining cell homeostasis, stimulating signal transduction, and determining cell fate. These biological processes require coordinated signaling cascades across members of the UPS to achieve substrate ubiquitination and deubiquitination. The role of the UPS in fibrotic diseases has attracted widespread attention, and the aberrant expression of UPS members affects the fibrosis process. In this review, we provide an overview of the UPS and its relevance for fibrotic diseases. Moreover, for the first time, we explore in detail how the UPS promotes or inhibits renal fibrosis by regulating biological processes such as signaling pathways, inflammation, oxidative stress, and the cell cycle, emphasizing the status and role of the UPS in renal fibrosis. Further research on this system may reveal new strategies for preventing renal fibrosis.

8.
Biomed Pharmacother ; 177: 117004, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955084

RESUMO

ß2 adrenergic receptor (ß2AR) is a G-protein-coupled receptor involved in cardiac protection. In chronic heart failure (CHF), persistent sympathetic nervous system activation occurs, resulting in prolonged ß2AR activation and subsequent receptor desensitization and downregulation. Notoginsenoside R1 (NGR1) has the functions of enhancing myocardial energy metabolism and mitigating myocardial fibrosis. The mechanisms of NGR1 against ischemic heart failure are unclear. A left anterior descending (LAD) artery ligation procedure was performed on C57BL/6 J mice for four weeks. From the 4th week onwards, they were treated with various doses (3, 10, 30 mg/kg/day) of NGR1. Subsequently, the impacts of NGR1 on ischemic heart failure were evaluated by assessing cardiac function, morphological changes in cardiac tissue, and the expression of atrial natriuretic peptide (ANP) and beta-myosin heavy chain (ß-MHC). H9c2 cells were protected by NGR1 when exposed to OGD/R conditions. H9c2 cells were likewise protected from OGD/R damage by NGR1. Furthermore, NGR1 increased ß2AR levels and decreased ß2AR ubiquitination. Mechanistic studies revealed that NGR1 enhanced MDM2 protein stability and increased the expression of MDM2 and ß-arrestin2 while inhibiting their interaction. Additionally, under conditions produced by OGD/R, the protective benefits of NGR1 on H9c2 cells were attenuated upon administration of the MDM2 inhibitor SP141. According to these findings, NGR1 impedes the interplay between ß-arrestin2 and MDM2, thereby preventing the ubiquitination and degradation of ß2AR to improve CHF.


Assuntos
Ginsenosídeos , Insuficiência Cardíaca , Camundongos Endogâmicos C57BL , Isquemia Miocárdica , Proteínas Proto-Oncogênicas c-mdm2 , Receptores Adrenérgicos beta 2 , Ubiquitinação , beta-Arrestina 2 , Animais , Ginsenosídeos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Ubiquitinação/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Masculino , Camundongos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/tratamento farmacológico , beta-Arrestina 2/metabolismo , Linhagem Celular , Ratos , Modelos Animais de Doenças
9.
Subcell Biochem ; 104: 485-501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963497

RESUMO

Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.


Assuntos
Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/química , Humanos , Multimerização Proteica , Animais , Mutação , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Distrofia Muscular do Cíngulo dos Membros
11.
Biomed Pharmacother ; 177: 117126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996706

RESUMO

BACKGROUND: Rhabdomyosarcoma (RMS) is one of the most common soft tissue sarcomas in children and adolescents, in which PAX3-FOXO1 fusion gene positive patients have very poor prognosis. PAX3-FOXO1 has been identified as an independent prognostic predictor in RMS, with no currently available targeted therapeutic intervention. The novel tyrosine kinase inhibitor anlotinib exhibits a wide range of anticancer effects in multiple types of cancers; however, there have been no relevant studies regarding its application in RMS. MATERIALS AND METHODS: We investigated the effects of PAX3-FOXO1 on the therapeutic efficacy of anlotinib using the CCK-8 assay, flow cytometry, invasion assay, wound healing assay, western blotting, quantitative polymerase chain reaction(qPCR), and xenograft experiments. RNA-seq and co-immunoprecipitation assays were conducted to determine the specific mechanism by which anlotinib regulates PAX3-FOXO1 expression. RESULTS: Anlotinib effectively inhibited RMS cell proliferation and promoted apoptosis and G2/M phase arrest while impeding tumor growth in vivo. Downregulation of PAX3-FOXO1 enhances the antitumor effects of anlotinib. Anlotinib upregulates protein kinase NEK2 and increases the degradation of PAX3-FOXO1 via the ubiquitin-proteasome pathway, leading to a reduction in PAX3-FOXO1 protein levels. CONCLUSION: Anlotinib effectively inhibited the malignant progression of RMS and promoted degradation of the fusion protein PAX3-FOXO1. Anlotinib could be a targeted therapeutic approach to treat PAX3-FOXO1 fusion-positive RMS.


Assuntos
Apoptose , Proliferação de Células , Indóis , Quinases Relacionadas a NIMA , Proteínas de Fusão Oncogênica , Quinolinas , Rabdomiossarcoma , Regulação para Cima , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Animais , Linhagem Celular Tumoral , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Regulação para Cima/efeitos dos fármacos , Quinolinas/farmacologia , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/genética , Apoptose/efeitos dos fármacos , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição Box Pareados
12.
Protein Pept Lett ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956921

RESUMO

Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages. Over the last few decades, TRIM26 has been documented to engage in numerous physiological and pathological processes as a controller, demonstrating a diverse array of biological roles. Despite the growing research interest in TRIM26, there has been limited attention given to examining the protein's structure and function in existing reviews. This review begins with a concise overview of the composition and positioning of TRIM26 and then proceeds to examine its roles in immune response, viral invasion, and inflammatory processes. Simultaneously, we demonstrate the contribution of TRIM26 to the progression of various diseases, encompassing numerous malignancies and neurologic conditions. Finally, we have investigated the potential areas for future research on TRIM26.

13.
J Leukoc Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952265

RESUMO

Aryl hydrocarbon receptor (AhR) is a key transcription factor that modulates the differentiation of T helper 17 (Th17) cells. How AhR is regulated at the post-translational level in Th17 cells remains largely unclear. Here we identify USP21 as a newly defined deubiquitinase of AhR. We demonstrate that USP21 interacts with and stabilizes AhR by removing the K48-linked polyubiquitin chains from AhR. Interestingly, USP21 inhibits the transcriptional activity of AhR in a deubiquitinating-dependent manner. USP21 deubiquitinates AhR at the K432 residue, and the maintenance of ubiquitination on this site is required for the intact transcriptional activity of AhR. Moreover, the deficiency of USP21 promotes the differentiation of Th17 cells both in vitro and in vivo. Consistently, adoptive transfer of USP21 deficient naïve CD4+ T cells elicits more severe colitis in Rag1-/- recipients. Therefore, our study reveals a novel mechanism in which USP21 deubiquitinates AhR and negatively regulates the differentiation of Th17 cells.

14.
Heliyon ; 10(11): e32676, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961977

RESUMO

Siah E3 ubiquitin protein ligase 1 (SIAH1) has been reported to participate in the development of several human cancers, including gastric cancer. However, the effect and mechanism of SIAH1 on the migration and invasion of gastric cancer cells need be further explored. Here, we first analyzed the clinical value of SIAH1 in gastric cancer, and found that SIAH1 was up-regulated in gastric cancer and associated with a poor prognosis. In addition, silencing of SIAH1 significantly inhibited the migration and invasion of gastric cancer cells through inhibiting the expression of matrix metalloproteinase-9 (MMP9), while overexpression of SIAH1 had the opposite effect. Molecularly, we provided the evidence that reversion-inducing cysteine-rich protein with Kazal motifs (RECK) was a potential substrate of SIAH1. We determined that SIAH1 could destabilize RECK through promoting its ubiquitination and degradation via proteasome pathway. We also found RECK was involved in SIAH1-regulated gastric cancer cell migration and invasion. In conclusion, SIAH1 is up-regulated in gastric cancer, which promotes the migration and invasion of gastric cancer cells through regulating RECK-MMP9 pathway.

15.
Chem Biol Interact ; 399: 111130, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960301

RESUMO

Triptolide (TP) is a major bioactive compound derived from Tripterygium wilfordii Hook. F. (TwHF) known for its medicinal properties, but it also exhibits potential toxic effects. It has been demonstrated to induce severe male reproductive toxicity, yet the precise mechanism behind this remains unclear, which limits its broad clinical application. This study aimed to investigate the mechanisms underlying testicular damage and spermatogenesis dysfunction induced by TP in mice, using both mouse models and the spermatocyte-derived cell line GC-2spd. In the present study, it was found that TP displayed significant testicular microstructure damaged and spermatogenesis defects including lower concentration and abnormal morphology by promoting ROS formation, MDA production and restraining GSH level, glutathione peroxidase 4 (GPX4) expression in vivo. Furthermore, Ferrostatin-1 (FER-1), a ferroptosis inhibitor, was found to significantly reduce the accumulation of lipid peroxidation, alleviate testicular microstructural damage, and enhance spermatogenic function in mice. Besides, notably decreased cell viability, collapsed mitochondrial membrane potential, and elevated DNA damage were observed in vitro. The above-mentioned phenomenon could be reversed by pre-treatment of FER-1, indicating that ferroptosis participated in the TP-mediated spermatogenesis dysfunction. Mechanistically, TP could enhance GPX4 ubiquitin degradation via triggering K63-linked polyubiquitination of GPX4, thereby stimulating ferroptosis in spermatocytes. Functionally, GPX4 deletion intensified ferroptosis and exacerbated DNA damage in GC-2 cells, while GPX4 overexpression mitigated ferroptosis induced by TP. Overall, these findings for the first time indicated a vital role of ferroptosis in TP induced-testicular injury and spermatogenic dysfunction through promoting GPX4 K63-linked polyubiquitination, which hopefully offers a potential therapeutic avenue for TP-related male reproductive damage. In addition, this study also provides a theoretical foundation for the improved clinical application of TP or TwHF in the future.

16.
Future Med Chem ; : 1-17, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949857

RESUMO

PD-L1 is overexpressed on the surface of tumor cells and binds to PD-1, resulting in tumor immune escape. Therapeutic strategies to target the PD-1/PD-L1 pathway involve blocking the binding. Immune checkpoint inhibitors have limited efficacy against tumors because PD-L1 is also present in the cytoplasm. PD-L1 of post-translational modifications (PTMs) have uncovered numerous mechanisms contributing to carcinogenesis and have identified potential therapeutic targets. Therefore, small molecule inhibitors can block crucial carcinogenic signaling pathways, making them a potential therapeutic option. To better develop small molecule inhibitors, we have summarized the PTMs of PD-L1. This review discusses the regulatory mechanisms of small molecule inhibitors in carcinogenesis and explore their potential applications, proposing a novel approach for tumor immunotherapy based on PD-L1 PTM.


[Box: see text].

17.
Artigo em Inglês | MEDLINE | ID: mdl-39037545

RESUMO

Membrane-associated RING-CH (MARCH) E3 ubiquitin ligases, a family of RING-type E3 ubiquitin ligases, have garnered increased attention for their indispensable roles in immune regulation, inflammation, mitochondrial dynamics, and lipid metabolism. The MARCH E3 ligase family consists of eleven distinct members, and the dysregulation of many of these members has been documented in several human malignancies. Over the past two decades, extensive research has revealed that MARCH E3 ligases play pivotal roles in cancer progression by ubiquitinating key oncogenes and tumor suppressors and orchestrating various signaling pathways. Some MARCH E3s act as oncogenes, while others act as tumor suppressors, and the majority of MARCH E3s play both oncogenic and tumor suppressive roles in a context-dependent manner. Notably, there is special emphasis on the sole mitochondrial MARCH E3 ligase MARCH5, which regulates mitochondrial homeostasis within cancer cells. In this review, we delve into the diverse functions of MARCH E3 ligases across different cancer types, shedding light on the underlying molecular mechanisms mediating their effects, their regulatory effects on cancer and their potential as therapeutic targets.

18.
Front Mol Biosci ; 11: 1422034, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044841

RESUMO

Upon infection of host cells the Legionella pneumophila bacterium releases a multitude of effector enzymes into the host's cytoplasm that manipulate cellular host pathways, including the host-ubiquitination pathways. The effectors belonging to the SidE-family are involved in non-canonical phosphoribosyl serine ubiquitination (PR-ubiquitination) of host substrate proteins. This results in the recruitment of ER-remodeling proteins and the formation of a Legionella-containing vacuole which is crucial in the onset of legionnaires disease. PR-ubiquitination is a dynamic process reversed by other Legionella effectors called Dups. During PR-Ubiquitin phosphodiester hydrolysis Dups form a covalent intermediate with the phosphoribosyl ubiquitylated protein using its active site His67 residue. We envisioned that covalent probes to target Legionella effectors could be of value to study these effectors and contribute to deciphering the complex biology of Legionella infection. Hence we effectively installed a photo-activatable pyridinium warhead on the 5'-OH of triazole-linked ribosylated ubiquitin allowing crosslinking of the probe to the catalytic histidine residues in Legionella SidE or Dup enzymes. In vitro tests on recombinantly expressed DupA and SdeAPDE revealed that the probe was able to capture the enzymes covalently upon photo-activation.

19.
J Transl Med ; 22(1): 671, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033101

RESUMO

BACKGROUND: The molecular mechanisms underlying nonalcoholic fatty liver disease (NAFLD) remain to be fully elucidated. Ubiquitin specific protease 13 (USP13) is a critical participant in inflammation-related signaling pathways, which are linked to NAFLD. Herein, the roles of USP13 in NAFLD and the underlying mechanisms were investigated. METHODS: L02 cells and mouse primary hepatocytes were subjected to free fatty acid (FFA) to establish an in vitro model reflective of NAFLD. To prepare in vivo model of NAFLD, mice fed a high-fat diet (HFD) for 16 weeks and leptin-deficient (ob/ob) mice were used. USP13 overexpression and knockout (KO) strategies were employed to study the function of USP13 in NAFLD in mice. RESULTS: The expression of USP13 was markedly decreased in both in vitro and in vivo models of NAFLD. USP13 overexpression evidently inhibited lipid accumulation and inflammation in FFA-treated L02 cells in vitro. Consistently, the in vivo experiments showed that USP13 overexpression ameliorated hepatic steatosis and metabolic disorders in HFD-fed mice, while its deficiency led to contrary outcomes. Additionally, inflammation was similarly attenuated by USP13 overexpression and aggravated by its deficiency in HFD-fed mice. Notably, overexpressing of USP13 also markedly alleviated hepatic steatosis and inflammation in ob/ob mice. Mechanistically, USP13 bound to transforming growth factor ß-activated kinase 1 (TAK1) and inhibited K63 ubiquitination and phosphorylation of TAK1, thereby dampening downstream inflammatory pathways and promoting insulin signaling pathways. Inhibition of TAK1 activation reversed the exacerbation of NAFLD caused by USP13 deficiency in mice. CONCLUSIONS: Our findings indicate the protective role of USP13 in NAFLD progression through its interaction with TAK1 and inhibition the ubiquitination and phosphorylation of TAK1. Targeting the USP13-TAK1 axis emerges as a promising therapeutic strategy for NAFLD treatment.


Assuntos
Dieta Hiperlipídica , MAP Quinase Quinase Quinases , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Proteases Específicas de Ubiquitina , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , MAP Quinase Quinase Quinases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Humanos , Masculino , Ativação Enzimática , Inflamação/patologia , Camundongos Knockout , Camundongos , Hepatócitos/metabolismo , Linhagem Celular , Ubiquitinação
20.
Life Sci ; : 122912, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004272

RESUMO

DNA damage causes genomic instability. To maintain genome integrity, cells have evolved DNA damage response, which is involved in replication fork disassembly and DNA replication termination. However, the mechanism underlying the regulation of replication fork disassembly and its connection with DNA damage repair remain elusive. The CMG-MCM7 subunit ubiquitination functions on the eukaryotic replication fork disassembly at replication termination. Until now, only ubiquitin ligases CUL2LRR1 have been reported catalyzing MCM7 ubiquitination in human cells. This study discovered that in human cells, the ubiquitin ligase RNF8 catalyzes K63-linked multi-ubiquitination of MCM7 at K145 both in vivo and in vitro. The multi-ubiquitination of MCM7 is dynamically regulated during the cell cycle, primarily presenting on chromatin during the late S phase. Additionally, MCM7 polyubiquitylation is promoted by RNF168 and BRCA1 during DNA replication termination. Upon DNA damage, the RNF8-mediated polyubiquitination of MCM7 decreased significantly during the late S phase. This study highlights the novel role of RNF8-catalyzed polyubiquitination of MCM7 in the regulation of replication fork disassembly in human cells and linking it to DNA damage response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA