Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 132829, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844278

RESUMO

The development of a long-acting injectable drug delivery systems (DDS) of active pharmaceutical ingredients (API) holds great promise in addressing the challenges of treatment adherence, predominantly in HIV/AIDS. Polymers are inevitable carriers for the preparation of DDS, which are typically composed of polylactide (PLA), carbohydrates such as chitosan or cellulose derivatives. In this study, the tenofovir alafenamide (TAF) laden PLA-stereocomplex-chitosan nanoparticles (Sc-PLA-chitosan NPs) were developed through the spray-dried technique. These NPs had a mean particle size of 91 ± 8 nm and were incorporated into oleogels consisting of sesame oil and ethyl-cellulose. To enhance the syringeability of highly viscous oleogels, the commercially available aluminium oxide NPs were added with a size of 78 nm. The proposed DDS exhibits prolonged sustained release for up to 12 days in phosphate buffer pH 7.4. Noteworthy, the oleogels with Sc-PLA-chitosan NPs displayed extended tissue permeation properties indicating their potential long-acting in-vivo drug release. Collectively, this study recommends that the development of Sc-PLA-chitosan NPs-loaded oleogels represents a certainly adaptable long-acting injectables system for the delivery of APIs in the context of HIV/AIDS. This system is expected to contribute to improved and effective treatment adherence among patients infected with HIV and provide requisite therapeutic outcomes.


Assuntos
Óxido de Alumínio , Fármacos Anti-HIV , Quitosana , Nanopartículas , Compostos Orgânicos , Poliésteres , Quitosana/química , Nanopartículas/química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/administração & dosagem , Poliésteres/química , Compostos Orgânicos/química , Óxido de Alumínio/química , Liberação Controlada de Fármacos , Infecções por HIV/tratamento farmacológico , Humanos , Portadores de Fármacos/química , Tamanho da Partícula , Sistemas de Liberação de Medicamentos
2.
J Orthop Traumatol ; 25(1): 12, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430413

RESUMO

BACKGROUND: Alumina particles from the grit blasting of Ti-alloy stems are suspected to contribute to aseptic loosening. An alumina-reduced stem surface was hypothesized to improve osseointegration and show comparable short-term outcomes to those of a standard stem. METHODS: In this prospective, double-blind, randomized trial, 26 standard (STD) and 27 experimental new technology (NT) stems were implanted. The latter were additionally treated by acid etching and ice blasting to remove alumina particles from the grit-blasting process. Follow-up occurred at 12 and 24 months. Bone mineral density (BMD) around the stem was measured by a dual-energy x-ray absorptiometry device (DEXA). Radiographs were reviewed for alterations. Clinical scoring comprised the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the Harris Hip Score (HHS). Survival rates were calculated up to 50 months. RESULTS: Lower mean BMD and more severe cortical hypertrophies were found in the NT group. At 12 months, radiolucent lines were observed mostly in the metaphyseal zone for both groups, with a progression tendency in the NT group at 24 months. At 12 months, pain scores and the WOMAC total and physical activity scores were significantly lower in the NT group, without any differences thereafter. The number of NT stem revisions amounted to 6 (24%) and 11 (41%) at 24 and 50 months, respectively. CONCLUSION: In the NT group, unexpected catastrophic failure rates of 41% caused by early aseptic loosening were noted within 50 months. Compared with the STD stems, NT stems lead to poor clinical and radiographic results. LEVEL OF EVIDENCE: II. TRIAL REGISTRATION: NCT05053048.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Absorciometria de Fóton , Óxido de Alumínio , Artroplastia de Quadril/métodos , Seguimentos , Estudos Prospectivos , Desenho de Prótese , Falha de Prótese , Resultado do Tratamento , Método Duplo-Cego
3.
J Environ Sci (China) ; 140: 113-122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331493

RESUMO

Carbon dioxide capture and reduction (CCR) process emerges as an efficient catalytic strategy for CO2 capture and conversion to valuable chemicals. K-promoted Cu/Al2O3 catalysts exhibited promising CO2 capture efficiency and highly selective conversion to syngas (CO + H2). The dynamic nature of the Cu-K system at reaction conditions complicates the identification of the catalytically active phase and surface sites. The present work aims at more precise understanding of the roles of the potassium and copper and the contribution of the metal oxide support. While γ-Al2O3 guarantees high dispersion and destabilisation of the potassium phase, potassium and copper act synergistically to remove CO2 from diluted streams and promote fast regeneration of the active phase for CO2 capture releasing CO while passing H2. A temperature of 350℃ is found necessary to activate H2 dissociation and generate the active sites for CO2 capture. The effects of synthesis parameters on the CCR activity are also described by combination of ex-situ characterisation of the materials and catalytic testing.


Assuntos
Cobre , Potássio , Cobre/toxicidade , Cobre/química , Dióxido de Carbono/química , Óxidos , Catálise
4.
Cureus ; 16(1): e52279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38357054

RESUMO

INTRODUCTION:  Clerodendrum phlomidis plays a significant role in many indigenous medical systems, and it can be mostly found in Southeast Asia. The objective of the study was to synthesize and characterize the biosynthesized aluminum oxide nanoparticles (AlO-NPs) using C. phlomidis and analyze their antibacterial (bactericidal), antioxidant, and anti-inflammatory activities. METHODS: The extract was prepared by the autoclave-assisted method, and the AlO-NPs were synthesized by the green synthesis method. The biosynthesized AlO-NPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray (EDX) analysis. The antibacterial property was assessed by the Kirby-Bauer well diffusion method, and the antioxidant activity was checked by DPPH (2,2-diphenyl-1-picrylhydrazyl) activity compared with the control L-ascorbic acid. Anti-inflammatory activity was evaluated by an albumin denaturation assay, and diclofenac was used as a control. IBM SPSS Statistics for Windows, Version 21.0 was used for the statistical analysis.  Results: An absorption peak at a wavelength of 380 nm was detected by UV-Vis spectroscopy analysis. It proves that AlO-NPs have been successfully produced by the green synthesis method. The results of the FT-IR study demonstrated the existence of numerous chemicals and functional groups in the 500-3500 cm-1 range. AlO-NPs from the plant extract were subjected to FE-SEM analysis, which revealed an aggregated or spherically cluster-like structure. The sample's elemental makeup, which revealed that it included 38% aluminum and 28% oxygen, was identified with the help of the EDX, and this verified the high purity of the AlO-NPs. The results of the antibacterial activity of AlO-NPs revealed that there was a zone of inhibition for Enterococcus faecalis; however, there was no zone of inhibition for Streptococcus mutans. The synthesized AlO-NPs exhibit strong antioxidative (DPPH activity) and anti-inflammatory (albumin denaturation assay) action. In this work, the in vitro antioxidant activity of C. phlomidis was assessed using the standard, L-ascorbic acid, as a measure of DPPH activity. At a maximum concentration of 500 µg/ml, the obtained results showed the incredible antioxidant properties of the investigated AlO-NPs synthesized from the plant extracts and demonstrated 90% inhibition. AlO-NPs that were biosynthesized showed effective anti-inflammatory activity at a higher concentration of 100 µg/ml and demonstrated 89% inhibition in contrast to the drug diclofenac sodium. CONCLUSION: According to the study's findings, AlO-NPs made using a greener synthesis approach have the potential to be used in a variety of industries and are also an affordable and sustainable way to effectively act as anti-inflammatory and antioxidant agents.

5.
Small ; 20(2): e2305317, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670223

RESUMO

Stimuli-responsive ion nanochannels have attracted considerable attention in various fields because of their remote controllability of ionic transportation. For photoresponsive ion nanochannels, however, achieving precise regulation of ion conductivity is still challenging, primarily due to the difficulty of programmable structural changes in confined environments. Moreover, the relationship between noncontact photo-stimulation in nanoscale and light-induced ion conductivity has not been well understood. In this work, a versatile design for fabricating guard cell-inspired photoswitchable ion channels is presented by infiltrating azobenzene-cross-linked polymer (AAZO-PDAC) into nanoporous anodic aluminum oxide (AAO) membranes. The azobenzene-cross-linked polymer is formed by azobenzene chromophore (AAZO)-cross-linked poly(diallyldimethylammonium chloride) (PDAC) with electrostatic interactions. Under UV irradiation, the trans-AAZO isomerizes to the cis-AAZO, causing the volume compression of the polymer network, whereas, in darkness, the cis-AAZO reverts to the trans-AAZO, leading to the recovery of the structure. Consequently, the resultant nanopore sizes can be manipulated by the photomechanical effect of the AAZO-PDAC polymers. By adding ionic liquids, the ion conductivity of the light-driven ion nanochannels can be controlled with good repeatability and fast responses (within seconds) in multiple cycles. The ion channels have promising potential in the applications of biomimetic materials, sensors, and biomedical sciences.

6.
J Colloid Interface Sci ; 659: 71-81, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38157728

RESUMO

Inspired by the waste-to-wealth concept, we have recovered the gamma phase aluminium oxide nanoparticles (γ-Al2O3 NPs) from waste aluminium (Al) foils and fabricated a composite with Dracaena trifasciata biomass-derived activated carbon matrix (DT-AC) using supercritical carbon-di-oxide (SC-CO2) pathway. The prepared samples are characterized altogether by various micro- and spectroscopic analyses. Based on the results, the recovered γ-Al2O3 NPs are well impregnated in the DT-AC surface by the action of the microbubble effect from the SC-CO2. The higher D-band and ID/IG value of 1.07 in the Al2O3/DT-AC nanocomposite indicate increased defects and the amorphous nature of the carbon materials. The effect of scan rate (ν) demonstrated greater linearity in ν1/2 vs peak current in the electrochemical detection study of the mutagenic pollutant 4-(methylamino) phenol hemi sulfate, showing a quasi-reversible electron transfer process undergoing diffusion-controlled kinetics. Furthermore, the limit of detection is determined to be 3.2 nM L-1 with an extensive linear range, spanning from 0.05 to 618.25 µM/L. The incredible sensitivity of 2.117 µA µM-1 cm-2, along with excellent selectivity, repeatability, and stability, is observed. Further, the respectable recovery percentage of 98.61 % in the environmental water sample is perceived. The observed outcomes suggest that the prepared Al2O3/DT-AC composite performs as an excellent electrocatalyst material, and the processing techniques used are thought to be sustainable in nature.

7.
Int Arch Occup Environ Health ; 97(2): 133-144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110550

RESUMO

OBJECTIVE: There is an occupational health concern about welders' inhalation of toxic aluminium fumes. We investigated whether serum aluminium level (SAL) and demographic variables can significantly predict physical health parameters, cognition, and quality of life (QoL) among welders. METHODS: The cross-sectional study involved 100 age- and location-matched men (50 welders and 50 non-welders). SAL obtained using a graphite furnace atomic absorption spectrometer, and data collected using blood pressure and body mass index (BMI) apparatuses, biodata form, pain rating scale, General Practitioner Assessment of Cognition, WHOQoL-BREF, and Nordic musculoskeletal symptoms (MSS) questionnaire were analysed using independent samples t test, chi-square, Pearson's correlation, and hierarchical linear regression. RESULTS: Welders had significantly higher SAL (mean difference [MD] = 1.77 µg/L, p < 0.001), lower QoL (MD = 3.92, p = 0.039), and higher prevalence of MSS on the neck (χ2 = 10.187, p = 0.001), shoulder (χ2 = 9.007, p = 0.003), upper back (χ2 = 6.832, p = 0.009), and knee (χ2 = 12.190, p < 0.001) than non-welders. There was a significant bivariate association between SAL, systolic blood pressure (ß = 0.313, p = 0.002), and BMI (ß = 0.279, p = 0.005), but not pain intensity, cognition, or QoL. SAL remained a significant predictor of systolic blood pressure after adjustment for physical health and QoL parameters (ß = 0.191, p = 0.044). The association between SAL and social QoL became significant after adjustment for physical health and other QoL domains (ß = - 0.210, p = 0.032) and demographic variables (ß = - 0.233, p = 0.046). CONCLUSION: Welders had significantly higher SAL, musculoskeletal symptoms, blood pressure, and lower QoL than non-welders. SAL was associated with adverse physical health parameters and social-related QoL, not cognition. We recommend routine aluminium bioavailability and physical health checks among welders.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Masculino , Humanos , Qualidade de Vida , Alumínio/análise , Estudos Transversais , Cognição , Ocupações , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/análise
8.
Heliyon ; 9(11): e22529, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074862

RESUMO

Radiation shielding incorporates material between the radioactive source and environment to decrease exposure to hazardous radiation. It remains to be seen whether the addition of nanoparticles effectively increases the protection of tellurite glass system from further degradation under irradiation conditions. This study revealed the gamma radiation effects on tellurite glass. The tellurite glass samples were irradiated with 50 kGy and 100 kGy gamma ray, and subsequently analysed using X-ray diffractometer (XRD), atomic force microscopy (AFM), and ultraviolet-visible spectroscopy (UV-Vis). Gamma radiation increased the creation of non-bridging oxygen (NBO) and caused colour change on TZNETi and TZNETiAl glasses. Consequently, the addition of aluminium oxides (Al2O3) was found to lower the density of glass systems. The glass samples surface roughness increased, while the optical transmission spectra decreased after 50 kGy of gamma ray irradiation. Nevertheless, the glass system maintained its transparency even after irradiation. The mass attenuation coefficient (MAC) values represented the shielding effectiveness demonstrated by the investigated glass with the addition of Al2O3. The physical, structural, optical, and radiation shielding properties showed that 69.1TeO2-20ZnO-9Na2O-1Er2O3-0.3TiO2-0.6Al2O3 (TZNETiAl) sample exhibited strong shielding properties amongst the fabricated tellurite samples.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38057674

RESUMO

Energy consumption and management have emerged as crucial production functions because of the high cost of energy. Since the total consumption of fossil fuels like diesel has increased proportionally to the expansion in demand for power generation, industry, and transportation services, researchers have long been interested in constructing a more energy-efficient engine. With its improved efficiency, reduced fuel consumption, and fewer emissions, the application of nano-coating technology to engine components has become more popular in recent years. This study involved the application of a thermal barrier coating (TBC) using zirconia on the test engine piston. The aim of this research is to examine the impact of aluminium oxide nano-additives in rapeseed biodiesel blends on the performance of a diesel engine with a thermal barrier-coated piston. The four test fuels were prepared using 20% and 40% blends of rapeseed biodiesel with and without the addition of aluminium oxide at 25 ppm and 50 ppm. The full factorial design methodology was employed to examine the influential factors, specifically the rapeseed blend ratio and aluminium oxide concentration, in order to enhance performance and reduce emissions. The blends of RSB20AO25 and RSB20AO50 showed significant results on energy consumption and emissions. The RSB20AO50 blend performed with a 5.4% increase in brake thermal efficiency and a 6.5% reduction in fuel consumption compared with standard diesel. Similarly, blends of RSB20AO25 and RSB20AO50 show 6% and 11% reductions in carbon monoxide and 5.2% and 9.5% reductions in hydrocarbon emissions.

10.
Micromachines (Basel) ; 14(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38004860

RESUMO

Platinum-based thin films are widely used to create microelectronic devices operating at temperatures above 500 °C. One of the most effective ways to increase the high-temperature stability of platinum-based films involves incorporating refractory metal oxides (e.g., ZrO2, HfO2). In such structures, refractory oxide is located along the metal grain boundaries and hinders the mobility of Pt atoms. However, the effect of annealing conditions on the morphology and functional properties of such multiphase systems is rarely studied. Here, we show that the two-step annealing of 250-nm-thick Pt-Rh/Zr multilayer films instead of the widely used isothermal annealing leads to a more uniform film morphology without voids and hillocks. The composition and morphology of as-deposited and annealed films were investigated using X-ray diffraction and scanning electron microscopy, combined with energy-dispersive X-ray spectroscopy. At the first annealing step at 450 °C, zirconium oxidation was observed. The second high-temperature annealing at 800-1000 °C resulted in the recrystallization of the Pt-Rh alloy. In comparison to the one-step annealing of Pt-Rh and Pt-Rh/Zr films, after two-step annealing, the metal phase in the Pt-Rh/Zr films has a smaller grain size and a less pronounced texture in the <111> direction, manifesting enhanced high-temperature stability. After two-step annealing at 450/900 °C, the Pt-Rh/Zr thin film possessed a grain size of 60 ± 27 nm and a resistivity of 17 × 10-6 Ω·m. The proposed annealing protocol can be used to create thin-film MEMS devices for operation at elevated temperatures, e.g., microheater-based gas sensors.

11.
Turk J Chem ; 47(1): 126-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720854

RESUMO

The electrochemical oxidation of aripiprazole was explored at a carbon paste electrode modified with aluminium oxide nanoparticles by cyclic voltammetry and square-wave anodic adsorptive stripping voltammetry. Experimental parameters such as carbon paste composition, scan rate, buffer pH, accumulation time, and accumulation potential were optimized in order to obtain high analytical performance. The incorporation of aluminium oxide nanoparticles into the carbon paste matrix enhanced the effective surface area of the carbon paste electrode and improved the sensitivity. On the aluminium oxide nanoparticles modified carbon paste electrode, aripiprazole exhibited an irreversible anodic peak at +1.17 V in pH 1.8 BR buffer solution. Under optimum conditions, the peak current exhibited a linear dependence with aripiprazole concentration between 0.03 and 8.0 µM with a detection limit of 0.006 µM. The analytical applicability of the voltammetric method was evaluated by quantification of ARP in human serum samples and pharmaceutical formulations.

12.
Arh Hig Rada Toksikol ; 74(2): 120-126, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357881

RESUMO

Occupational and environmental toxicology specialists find catecholamine fluctuations in brain tissue relevant for research of neurotoxicity, such as that induced by manganese or zinc, pesticides, industrial solvents, plastic, air pollution, or irradiation. Considering that catecholamine tissue concentrations are generally very low, their extraction requires a reliable and optimal method that will achieve maximum recovery and minimise other interferences. This study aimed to evaluate whether the aluminium (III) oxide (Al2O3, alumina) based cartridges designed for catecholamine isolation from plasma could be used for solid-phase extraction (SPE) of catecholamine from the brain tissue. To do that, we homogenised Wistar rat brain tissue with perchloric acid and compared three extraction techniques: SPE, the routine filtration through a 0.22 µm membrane filter, and their combination. In the extracts, we compared relative chromatographic catecholamine mobility measured with high performance liquid chromatography with electrochemical detection. Chromatographic patterns for norepinephrine and epinephrine were similar regardless of the extraction technique, which indicates that the alumina cartridge is good enough to isolate them from brain tissue. However, the dopamine pattern was unsatisfactory, and further experiments are needed to identify the issue and optimise the protocol.


Assuntos
Óxido de Alumínio , Catecolaminas , Ratos , Animais , Ratos Wistar , Epinefrina , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos
13.
Heliyon ; 9(4): e15552, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37151688

RESUMO

With the aim of exploring the possibility of achieving a low-cost thermal spray coating to prevent wear, erosion and corrosion. In the current study, flyash-Al2O3 and flyash-SiC composite coatings were effectively created using the air plasma spray process on substrates of Al6061 alloy. NiCr material is used as the bond coat to improve the bond strength between the coat and the substrate. Taguchi's DoE method is applied to for spray process parameters optimization. In addition, the developed coating is subjected to microstructure analysis and long-term immersion corrosion testing (1 year) in an aqueous environment to assess corrosion properties. The results revealed that the over a certain test period, the developed flyash-SiC coating has greater corrosion resistance than the uncoated and flyash-Al2O3 coated Al6061. It is noticed that the corrosion resistance of the flyash-Al2O3 coating shifts to a negative value with respect to the uncoated substrate. The uncoated sample is extensively pitted and locally corroded, as shown by the SEM image of the corroded surface. Flyash-corroded Al2O3's surface exhibits extensive degradation in the form of peeling, breaking, and cracking of the splats. With flyash-SiC composite coating a very minor corrosion splat deterioration is seen.

14.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903765

RESUMO

Diamond nanostructures are mostly produced from bulk diamond (single- or polycrystalline) by using time-consuming and/or costly subtractive manufacturing methods. In this study, we report the bottom-up synthesis of ordered diamond nanopillar arrays by using porous anodic aluminium oxide (AAO). Commercial ultrathin AAO membranes were adopted as the growth template in a straightforward, three-step fabrication process involving chemical vapor deposition (CVD) and the transfer and removal of the alumina foils. Two types of AAO membranes with distinct nominal pore size were employed and transferred onto the nucleation side of CVD diamond sheets. Subsequently, diamond nanopillars were grown directly on these sheets. After removal of the AAO template by chemical etching, ordered arrays of submicron and nanoscale diamond pillars with ~325 nm and ~85 nm diameters were successfully released.

15.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615599

RESUMO

In this article, we describe the antimicrobial properties of pristine anodised aluminium oxide matrices-the material many consider biologically inert. During a typical anodisation process, chromium and chlorine compounds are used for electropolishing and the removal of the first-step aluminium oxide. Matrices without the use of those harmful compounds were also fabricated and tested for comparison. The antibacterial tests were conducted on four strains of Escherichia coli: K12, R2, R3 and R4. The properties of the matrices were also compared to the three types of antibiotics: ciprofloxacin, bleomycin and cloxacillin using the Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. Moreover, DNA was isolated from the analysed bacteria which was additionally digested with formamidopyrimidine-DNA glycosylase (Fpg) protein from the group of repair glycosases. These enzymes are markers of modified oxidised bases in nucleic acids produced during oxidative stress in cells. Preliminary cellular studies, MIC and MBC tests and digestion with Fpg protein after modification of bacterial DNA suggest that these compounds may have greater potential as antibacterial agents than the aforementioned antibiotics. The described composites are highly specific for the analysed model Escherichia coli strains and may be used in the future as new substitutes for commonly used antibiotics in clinical and nosocomial infections in the progressing pandemic era. The results show much stronger antibacterial properties of the functionalised membranes on the action of bacterial membranes in comparison to the antibiotics in the Fpg digestion experiment. This is most likely due to the strong induction of oxidative stress in the cell through the breakdown of the analysed bacterial DNA.


Assuntos
Reparo do DNA , Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Alumínio/farmacologia , DNA Bacteriano , Óxidos , DNA-Formamidopirimidina Glicosilase/genética , DNA-Formamidopirimidina Glicosilase/metabolismo , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Óxido de Alumínio
16.
Heliyon ; 9(1): e12576, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699268

RESUMO

Metallic nanowires (NWs) and their different compounds display incredible prospects for their use in various applications including media storage, sensor and solar cell devices along with the biological drug delivery systems. In this research work, the metallic NWs like nickel nanowires (Ni-NWs) are synthesized successfully by employing electrodeposition process. Anodic aluminum oxide (AAO) templates are employed as a platform with copper metal coating which acts as an active cathode. The synthesized Ni-NWs are examined through various characterization techniques including X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) to study the crystal structure, surface morphology and magnetic properties, respectively. The XRD analysis shows the development of various diffraction planes like Ni (111), Ni (200), Ni (220) which confirms the formation of polycrystalline nickel NWs. The SEM analysis reveals that the range of diameter and length of nickel NWs are found to be ∼160 to 200 and ∼4 to 11 micron respectively showing high aspect ratio (ranged from ∼200 to 300). The ferromagnetic behavior of Ni-NWs is confirmed by the hysteresis loop carried out for parallel and perpendicular configurations having Hc = 100 and 206 Oe, respectively. The obtained results suggest that the synthesized Ni- NWs may be used for high-density media storage devices.

17.
Nanomaterials (Basel) ; 12(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558259

RESUMO

The anodizing of aluminium under oscillating conditions is a versatile and reproducible method for the preparation of one-dimensional photonic crystals (PhCs). Many anodizing parameters have been optimised to improve the optical properties of anodic aluminium oxide (AAO) PhCs. However, the influence of the crystallographic orientation of an Al substrate on the characteristics of AAO PhCs has not been considered yet. Here, the effect of Al substrate crystallography on the properties of AAO PhCs is investigated. It is experimentally demonstrated that the cyclic anodizing of coarse-grained aluminium foils produces a mosaic of photonic crystals. The crystallographic orientation of Al grains affects the electrochemical oxidation rate of Al, the growth rate of AAO, and the wavelength position of the photonic band gap.

18.
Nanotechnology ; 33(49)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36049458

RESUMO

The self-ordered anodic aluminium oxide (AAO) structure consists of micron-scale domains-defect-free areas with a hexagonal arrangement of pores. A substantial increase in domain size is possible solely by pre-patterning the aluminium surface in the form of a defect-free hexagonal array of concaves, which guide the pore growth during subsequent anodization. Among the numerous pre-patterning techniques, direct etching by focused gallium ion beam (Ga FIB) allows the preparation of AAO with a custom-made geometry through precise control of the irradiation positions, beam energy, and ion dosage. The main drawback of the FIB approach includes gallium contamination of the aluminium surface. Here, we propose a multi-step anodizing procedure to prevent gallium incorporation into the aluminium substrate. The suggested approach successfully covers a wide range of AAO interpore distances from 100 to 500 nm. In particular, anodization of FIB pre-patterned aluminium in 0.1 M phosphoric acid at 195 V to prepare AAO with the interpore distance of about 500 nm was demonstrated for the first time. The quantification of the degree of pore ordering reveals the fraction of pores in hexagonal coordination above 96% and the in-plane mosaicity below 3° over an area of about 1000µm2. Large-scale defect-free AAO structures are promising for creating photonic crystals and hyperbolic metamaterials with distinct functional properties.

19.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955460

RESUMO

In this article, we describe the antimicrobial properties of a new composite based on anodic aluminium oxide (AAO) membranes containing propyl-copper-phosphonate units arranged at a predetermined density inside the AAO channels. The samples were prepared with four concentrations of copper ions and tested as antimicrobial drug on four different strains of Escherichia coli (K12, R2, R3 and R4). For comparison, the same strains were tested with three types of antibiotics using the minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. Moreover, DNA was isolated from the analysed bacteria which was additionally digested with formamidopyrimidine-DNA glycosylase (Fpg) protein from the group of repair glycosases. These enzymes are markers of modified oxidised bases in nucleic acids produced during oxidative stress in cells. Preliminary cellular studies, MIC and MBC tests and digestion with Fpg protein after modification of bacterial DNA suggest that these compounds may have greater potential as antibacterial agents than antibiotics such as ciprofloxacin, bleomycin and cloxacillin. The described composites are highly specific for the analysed model Escherichia coli strains and may be used in the future as new substitutes for commonly used antibiotics in clinical and nosocomial infections in the progressing pandemic era. The results show much stronger antibacterial properties of the functionalised membranes on the action of bacterial membranes in comparison to the antibiotics in the Fpg digestion experiment. This is most likely due to the strong induction of oxidative stress in the cell through the breakdown of the analysed bacterial DNA. We have also observed that the intermolecular distances between the functional units play an important role for the antimicrobial properties of the used material. Hence, we utilised the idea of the 2D solvent to tailor them.


Assuntos
Cobre , Proteínas de Escherichia coli , Óxido de Alumínio , Antibacterianos/farmacologia , Bactérias , Cobre/farmacologia , DNA Bacteriano , DNA-Formamidopirimidina Glicosilase , Escherichia coli/genética
20.
Polymers (Basel) ; 14(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35683875

RESUMO

The influence of various types of nanoparticle fillers with the same diameter of 20 nm were separately incorporated into a single component impregnating resin based on a polyesterimide (PEI) matrix and its subsequent changes in complex relative permittivity were studied. In this paper, nanoparticles of Al2O3 and ZnO were dispersed into PEI (with 0.5 and 1 wt.%) to prepare nanocomposite polymer. Dielectric frequency spectroscopy was used to measure the dependence of the real and imaginary parts of complex relative permittivity within the frequency range of 1 mHz to 1 MHz at a temperature range from +20 °C to +120 °C. The presence of weight concentration of nanoparticles in the PEI resin has an impact on the segmental dynamics of the polymer chain and changed the charge distribution in the given system. The changes detected in the 1H NMR spectra confirm that dispersed nanoparticles in PEI lead to the formation of loose structures, which results in higher polymer chain mobility. A shift of the local relaxation peaks, corresponding to the α-relaxation process, and higher mobility of the polymer chains in the spectra of imaginary permittivity of the investigated nanocomposites was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA