Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 586.886
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39144408

RESUMO

Objectives: We aimed to conduct a systematic review and meta-analysis to assess the value of image-enhanced endoscopy including blue laser imaging (BLI), linked color imaging, narrow-band imaging (NBI), and texture and color enhancement imaging to detect and diagnose gastric cancer (GC) compared to that of white-light imaging (WLI). Methods: Studies meeting the inclusion criteria were identified through PubMed, Cochrane Library, and Japan Medical Abstracts Society databases searches. The pooled risk ratio for dichotomous variables was calculated using the random-effects model to assess the GC detection between WLI and image-enhanced endoscopy. A random-effects model was used to calculate the overall diagnostic performance of WLI and magnifying image-enhanced endoscopy for GC. Results: Sixteen studies met the inclusion criteria. The detection rate of GC was significantly improved in linked color imaging compared with that in WLI (risk ratio, 2.20; 95% confidence interval [CI], 1.39-3.25; p < 0.01) with mild heterogeneity. Magnifying endoscopy with NBI (ME-NBI) obtained a pooled sensitivity, specificity, and area under the summary receiver operating curve of 0.84 (95 % CI, 0.80-0.88), 0.96 (95 % CI, 0.94-0.97), and 0.92, respectively. Similarly, ME-BLI showed a pooled sensitivity, specificity, and area under the curve of 0.81 (95 % CI, 0.77-0.85), 0.85 (95 % CI, 0.82-0.88), and 0.95, respectively. The diagnostic efficacy of ME-NBI/BLI for GC was evidently high compared to that of WLI, However, significant heterogeneity among the NBI studies still existed. Conclusions: Our meta-analysis showed a high detection rate for linked color imaging and a high diagnostic performance of ME-NBI/BLI for GC compared to that with WLI.

2.
Biomaterials ; 312: 122733, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39106819

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates unique characteristics in anticancer therapies as it selectively induces apoptosis in cancer cells. However, most cancer cells are TRAIL-resistant. Odanacatib (ODN), a cathepsin K inhibitor, is considered a novel sensitizer for cancer treatment. Combination therapy between TRAIL and sensitizers is considered a potent platform that improves TRAIL-based anticancer therapies beyond TRAIL monotherapy. Herein, we developed ODN loaded poly(lactic-co-glycolic) nanoparticles conjugated to GST-TRAIL (TRAIL-ODN-PLGA-NPs) to target and treat TRAIL-resistant cancer. TRAIL-ODN-PLGA-NPs demonstrated a significant increase in cellular uptake via death receptors (DR5 and DR4) on surface of cancer cells. TRAIL-ODN-PLGA-NPs exposure destroyed more TRAIL-resistant cells compared to a single treatment with free drugs. The released ODN decreased the Raptor protein, thereby increasing damage to mitochondria by elevating reactive oxygen species (ROS) generation. Additionally, Bim protein stabilization improved TRAIL-resistant cell sensitization to TRAIL-induced apoptosis. The in vivo biodistribution study revealed that TRAIL-ODN-PLGA-NPs demonstrated high location and retention in tumor sites via the intravenous route. Furthermore, TRAIL-ODN-PLGA-NPs significantly inhibited xenograft tumor models of TRAIL-resistant Caki-1 and TRAIL-sensitive MDA-MB-231 cells.The inhibition was associated with apoptosis activation, Raptor protein stabilizing Bim protein downregulation, Bax accumulation, and mitochondrial ROS generation elevation. Additionally, TRAIL-ODN-PLGA-NPs affected the tumor microenvironment by increasing tumor necrosis factor-α and reducing interleukin-6. In conclusion, we evealed that our formulation demonstrated synergistic effects against TRAIL compared with the combination of free drug in vitro and in vivo models. Therefore, TRAIL-ODN-PLGA-NPs may be a novel candidate for TRAIL-induced apoptosis in cancer treatment.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Resistencia a Medicamentos Antineoplásicos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ligante Indutor de Apoptose Relacionado a TNF , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
3.
Gene ; 932: 148880, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181273

RESUMO

It has been discovered that Trichorhinophalangeal Syndrome-1 (TRPS1), a novel member of the GATA transcription factor family, participates in both normal physiological processes and the development of numerous diseases. Recently, TRPS1 has been identified as a new biomarker to aid in cancer diagnosis and is very common in breast cancer (BC), especially in triple-negative breast cancer (TNBC). In this review, we discussed the structure and function of TRPS1 in various normal cells, focused on its role in tumorigenesis and tumor development, and summarize the research status of TRPS1 in the occurrence and development of BC. We also analyzed the potential use of TRPS1 in guiding clinically personalized precision treatment and the development of targeted drugs.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteínas de Ligação a DNA , Proteínas Repressoras , Fatores de Transcrição , Humanos , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Carcinogênese/metabolismo , Animais
4.
Gene ; 932: 148896, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39209183

RESUMO

Pescadillo ribosomal biogenesis factor 1 (PES1), a nucleolar protein initially identified in zebrafish, plays an important role in embryonic development and ribosomal biogenesis. Notably, PES1 has been found to be overexpressed in a number of cancer types, where it contributes to tumorigenesis and cancer progression by promoting cell proliferation, suppressing cellular senescence, modulating the tumor microenvironment (TME) and promoting drug resistance in cancer cells. Moreover, recent emerging evidence suggests that PES1 expression is significantly elevated in the livers of Type 2 diabetes mellitus (T2DM) and obese patients, indicating its involvement in the pathogenesis of metabolic diseases through lipid metabolism regulation. In this review, we present the structural characteristics and biological functions of PES1, as well as complexes in which PES1 participates. Furthermore, we comprehensively summarize the multifaceted role of PES1 in various diseases and the latest insights into its underlying molecular mechanisms. Finally, we discuss the potential clinical translational perspectives of targeting PES1, highlighting its promising as a therapeutic intervention and treatment target.


Assuntos
Neoplasias , Proteínas de Ligação a RNA , Humanos , Animais , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microambiente Tumoral , Metabolismo dos Lipídeos , Terapia de Alvo Molecular/métodos , Obesidade/metabolismo , Obesidade/genética
5.
Gene ; 932: 148900, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39209180

RESUMO

Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide because of its high morbidity and the absence of effective therapies. Even though paclitaxel is a powerful anticancer chemotherapy drug, recent studies have indicated its ineffectiveness against GC cells. Long non-coding RNA (lncRNA) PVT1 has a high expression in GC cells and increases the progression of tumors via inducing drug resistance. In the present study, the effects of the siRNA-mediated lncRNA PVT1 gene silencing along with paclitaxel treatment on the rate of apoptosis, growth, and migration of AGS GC cells were investigated. AGS cells were cultured and then transfected with siRNA PVT1 using electroporation. The MTT test was used to examine the effect of treatments on the viability of cultured cells. Furthermore, the flow cytometry method was used to evaluate the impact of treatments on the cell cycle process and apoptosis induction in GC cells. Finally, the mRNA expression of target genes was assessed using the qRT-PCR method. The results showed that lncRNA PVT1 gene suppression, along with paclitaxel treatment, reduces the viability of cancer cells and significantly increases the apoptosis rate of cancer cells and the number of cells arrested in the G2/M phase compared to the control group. Based on the results of qRT-PCR, combined treatment significantly decreased the expression of MMP3, MMP9, MDR1, MRP1, Bcl-2, k-Ras, and c-Myc genes and increased the expression of the Bax gene compared to the control group. The results of our study showed that lncRNA PVT1 gene targeting, together with paclitaxel treatment, induces apoptosis, inhibits growth, alleviates drug resistance, and reduces the migratory capability of GC cells. Therefore, there is a need for further investigations to evaluate the feasibility and effectiveness of this approach in vivo in animal models.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , Paclitaxel , RNA Longo não Codificante , Neoplasias Gástricas , RNA Longo não Codificante/genética , Paclitaxel/farmacologia , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , RNA Interferente Pequeno/genética
6.
Biomaterials ; 312: 122719, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39088912

RESUMO

Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.


Assuntos
Sobrevivência Celular , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Fenótipo , Microambiente Tumoral , Humanos , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura/métodos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Células da Medula Óssea/citologia , Masculino , Diferenciação Celular/efeitos dos fármacos , Feminino
7.
Biomaterials ; 312: 122722, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39096841

RESUMO

Ferroptosis, a recently identified form of cell death, holds promise for cancer therapy, but concerns persist regarding its uncontrolled actions and potential side effects. Here, we present a semiconducting polymer nanoprodrug (SPNpro) featuring an innovative ferroptosis prodrug (DHU-CBA7) to induce sono-activatable ferroptosis for tumor-specific therapy. DHU-CBA7 prodrug incorporate methylene blue, ferrocene and urea bond, which can selectively and specifically respond to singlet oxygen (1O2) to turn on ferroptosis action via rapidly cleaving the urea bonds. DHU-CBA7 prodrug and a semiconducting polymer are self-assembled with an amphiphilic polymer to construct SPNpro. Ultrasound irradiation of SPNpro leads to the production of 1O2 via sonodynamic therapy (SDT) of the semiconducting polymer, and the generated 1O2 activated DHU-CBA7 prodrug to achieve sono-activatable ferroptosis. Consequently, SPNpro combine SDT with the controlled ferroptosis to effectively cure 4T1 tumors covered by 2-cm tissue with a tumor inhibition efficacy as high as 100 %, and also completely restrain tumor metastases. This study introduces a novel sono-activatable prodrug strategy for regulating ferroptosis, allowing for precise cancer therapy.


Assuntos
Ferroptose , Camundongos Endogâmicos BALB C , Polímeros , Pró-Fármacos , Semicondutores , Ferroptose/efeitos dos fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Animais , Polímeros/química , Feminino , Linhagem Celular Tumoral , Camundongos , Terapia por Ultrassom/métodos , Nanopartículas/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Oxigênio Singlete/metabolismo
8.
J Ethnopharmacol ; 336: 118754, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39208999

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tubeimoside-I (TBM) promotes various cancer cell death by increasing the reactive oxygen species (ROS) production. However, the specific molecular mechanisms of TBM and its impact on oxaliplatin-mediated anti-CRC activity are not yet fully understood. AIM OF THE STUDY: To elucidate the therapeutic effect and underlying molecular mechanism of TBM on oxaliplatin-mediated anti-CRC activity. MATERIALS AND METHODS: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, wound healing assays and flow cytometry were conducted to investigate the changes in cell phenotypes and ROS generation. Real-time quantitative PCR (qRT-PCR) and western blotting were performed to detect the expressions of related mRNA and proteins. Finally, mouse xenograft models demonstrated that synergistic anti-tumor effects of combined treatment with TBM and oxaliplatin. RESULTS: The synergistic enhancement of the anti-tumor effects of oxaliplatin in colon cancer cells by TBM involved in the regulation of ROS-mediated endoplasmic reticulum (ER) stress, C-jun-amino-terminal kinase (JNK), and p38 MAPK signaling pathways. Mechanistically, TBM increased ROS generation in colon cancer cells by inhibiting heat shock protein 60 (HSPD1) expression. Knocking down HSPD1 increased TBM-induced antitumor activity and ROS generation in colon cancer cells. The mouse xenograft tumor models further validated that the combination therapy exhibited stronger anti-tumor effects than monotherapy alone. CONCLUSIONS: Combined therapy with TBM and oxaliplatin might be an effective therapeutic strategy for some CRC patients.


Assuntos
Neoplasias Colorretais , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático , Oxaliplatina , Espécies Reativas de Oxigênio , Saponinas , Triterpenos , Animais , Humanos , Masculino , Camundongos , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxaliplatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124966, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39153346

RESUMO

This study investigates the application of visible-short wavelength near-infrared hyperspectral imaging (Vis-SWNIR HSI) in the wavelength range of 400-950 nm and advanced chemometric techniques for diagnosing breast cancer (BC). The research involved 56 ex-vivo samples encompassing both cancerous and non-cancerous breast tissue from females. First, HSI images were analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) to exploit pure spatial and spectral profiles of active components. Then, the MCR-ALS resolved spatial profiles were arranged in a new data matrix for exploration and discrimination between benign and cancerous tissue samples using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The PLS-DA classification accuracy of 82.1 % showed the potential of HSI and chemometrics for non-invasive detection of BC. Additionally, the resolved spectral profiles by MCR-ALS can be used to track the changes in the breast tissue during cancer and treatment. It is concluded that the proposed strategy in this work can effectively differentiate between cancerous and non-cancerous breast tissue and pave the way for further studies and potential clinical implementation of this innovative approach, offering a promising avenue for improving early detection and treatment outcomes in BC patients.


Assuntos
Neoplasias da Mama , Imageamento Hiperespectral , Análise de Componente Principal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Análise dos Mínimos Quadrados , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Imageamento Hiperespectral/métodos , Análise Multivariada , Análise Discriminante
10.
Biomaterials ; 312: 122750, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39126779

RESUMO

Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.


Assuntos
Nanopartículas , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos dos fármacos , Receptor 7 Toll-Like/agonistas , Feminino , Nanopartículas/química , Camundongos , Receptor 8 Toll-Like/agonistas , Imunomodulação/efeitos dos fármacos , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Camundongos Endogâmicos BALB C , Micelas , Humanos
11.
Biomaterials ; 313: 122766, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39180916

RESUMO

The immune resistance of tumor microenvironment (TME) causes immune checkpoint blockade therapy inefficient to hepatocellular carcinoma (HCC). Emerging strategies of using chemotherapy regimens to reverse the immune resistance provide the promise for promoting the efficiency of immune checkpoint inhibitors. The induction of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) in tumor cells evokes the adaptive immunity and remodels the immunosuppressive TME. In this study, we report that mitoxantrone (MIT, a chemotherapeutic drug) activates the cGAS-STING signaling pathway of HCC cells. We provide an approach to augment the efficacy of MIT using a signal transducer and activator of transcription 3 (STAT3) inhibitor called napabucasin (NAP). We prepare an aminoethyl anisamide (AEAA)-targeted polyethylene glycol (PEG)-modified poly (lactic-co-glycolic acid) (PLGA)-based nanocarrier for co-delivery of MIT and NAP. The resultant co-nanoformulation can elicit the cGAS-STING-based immune responses to reshape the immunoresistant TME in the mice orthotopically grafted with HCC. Consequently, the resultant co-nanoformulation can promote anti-PD-1 antibody for suppressing HCC development, generating long-term survival, and inhibiting tumor recurrence. This study reveals the potential of MIT to activate the cGAS-STING signaling pathway, and confirms the feasibility of nano co-delivery for MIT and NAP on achieving HCC chemo-immunotherapy.


Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Proteínas de Membrana , Mitoxantrona , Nucleotidiltransferases , Fator de Transcrição STAT3 , Mitoxantrona/farmacologia , Mitoxantrona/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Humanos , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Fator de Transcrição STAT3/metabolismo , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Benzofuranos , Naftoquinonas
12.
Biomaterials ; 313: 122763, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39180917

RESUMO

Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs. By taking advantage of the photothermal effects of CuET@PHF, tumor hypoxia is overcome via tumor mechanics normalization, thereby leading to enhanced cuproptosis and immunogenic cell death in 4T1 CSCs. As a result, the integration of CuET@PHF and mild photothermal therapy not only significantly suppresses tumor growth but also effectively inhibits tumor recurrence and distant metastasis by eliminating CSCs and augmenting antitumor immune responses. This study presents the first evidence of cuproptosis in CSCs, reveals that disrupting hypoxia augments cuproptosis cancer therapy, and establishes a paradigm for potent cancer therapy by simultaneously eliminating CSCs and boosting antitumor immunity.


Assuntos
Cobre , Nanomedicina , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Feminino , Nanomedicina/métodos , Cobre/química , Cobre/farmacologia , Linhagem Celular Tumoral , Camundongos , Nanopartículas/química , Camundongos Endogâmicos BALB C , Terapia Fototérmica/métodos , Humanos , Polímeros/química , Indóis/farmacologia
13.
Biomaterials ; 313: 122778, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39213978

RESUMO

Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.


Assuntos
Clorofilídeos , Indóis , Platina , Polímeros , Porfirinas , Neoplasias da Glândula Tireoide , Microambiente Tumoral , Terapia por Ultrassom , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Indóis/química , Terapia por Ultrassom/métodos , Porfirinas/química , Porfirinas/farmacologia , Polímeros/química , Animais , Platina/química , Platina/uso terapêutico , Platina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Apoptose/efeitos dos fármacos , Nanopartículas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Quinolinas/farmacologia , Quinolinas/química , Camundongos Nus , Portadores de Fármacos/química
14.
Biomaterials ; 313: 122796, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39226654

RESUMO

Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.


Assuntos
Neoplasias da Mama , Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas , Humanos , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Senescência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Engenharia Genética/métodos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Nanopartículas/química , Anticorpos de Cadeia Única/química , Evasão Tumoral/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Apoptose/efeitos dos fármacos , Biomimética/métodos , Antígenos B7
15.
Biomaterials ; 313: 122801, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39236630

RESUMO

Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.


Assuntos
Imunoterapia , Lipossomos , Neoplasias , Lipossomos/química , Humanos , Imunoterapia/métodos , Animais , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem
16.
J Environ Sci (China) ; 147: 294-309, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003048

RESUMO

Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.


Assuntos
Disruptores Endócrinos , Células-Tronco , Disruptores Endócrinos/toxicidade , Humanos , Células-Tronco/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Exposição Ambiental
17.
Biomaterials ; 313: 122814, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39243672

RESUMO

Radiotherapy as a mainstay of in-depth cervical cancer (CC) treatment suffers from its radioresistance. Radiodynamic therapy (RDT) effectively reverses radio-resistance by generating reactive oxygen species (ROS) with deep tissue penetration. However, the photosensitizers stimulated by X-ray have high toxicity and energy attenuation. Therefore, X-ray responsive diselenide-bridged mesoporous silica nanoparticles (DMSNs) are designed, loading X-ray-activated photosensitizer acridine orange (AO) for spot blasting RDT like Trojan-horse against radio-resistance cervical cancer (R-CC). DMSNs can encapsulate a large amount of AO, in the tumor microenvironment (TME), which has a high concentration of hydrogen peroxide, X-ray radiation triggers the cleavage of diselenide bonds, leading to the degradation of DMSNs and the consequent release of AO directly at the tumor site. On the one hand, it solves the problems of rapid drug clearance, adverse distribution, and side effects caused by simple AO treatment. On the other hand, it fully utilizes the advantages of highly penetrating X-ray responsive RDT to enhance radiotherapy sensitivity. This approach results in ROS-induced mitochondria damage, inhibition of DNA damage repair, cell cycle arrest and promotion of cancer cell apoptosis in R-CC. The X-ray responsive DMSNs@AO hold considerable potential in overcoming obstacles for advanced RDT in the treatment of R-CC.


Assuntos
Nanopartículas , Dióxido de Silício , Humanos , Animais , Raios X , Nanopartículas/química , Feminino , Dióxido de Silício/química , Camundongos , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Tolerância a Radiação/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Camundongos Nus , Células HeLa , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral
18.
Biomaterials ; 313: 122805, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39250865

RESUMO

Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.


Assuntos
Cobre , Nanoestruturas , Neoplasias , Cobre/química , Humanos , Animais , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Morte Celular/efeitos dos fármacos
19.
Noncoding RNA Res ; 10: 55-62, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39296642

RESUMO

In recent years, it has been discovered that the expression of long non-coding RNAs is highly deregulated in several types of cancer and contributes to its progression and development. Recently, it has been described that in tumors of the digestive system, such as colorectal cancer, pancreatic cancer, and gastric cancer, DNA damage-activated lncRNA (NORAD) was frequently up-regulated. The purpose of this review is to elucidate the functions of NORAD in tumors of the digestive system, emphasizing its involvement in important cellular processes such as invasion, metastasis, proliferation, and apoptosis. NORAD acts as a ceRNA (competitive endogenous RNA) that sponges microRNAs and regulates the expression of target genes involved in tumorigenesis. Thus, the mechanisms underlying the effects of NORAD are complex and involve multiple signaling pathways. This review consolidates current knowledge on the role of NORAD in digestive cancers and highlights the need for further research to explore its potential as a therapeutic target. Understanding the intricate functions of NORAD could elucidate the way for innovative approaches to cancer treatment.

20.
Noncoding RNA Res ; 10: 1-15, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39296640

RESUMO

Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA