Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589.863
Filtrar
1.
Methods Mol Biol ; 2834: 249-273, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39312169

RESUMO

Adverse outcome pathways (AOPs) describe toxicological processes from a dynamic perspective by linking a molecular initiating event to a specific adverse outcome via a series of key events and key event relationships. In the field of computational toxicology, AOPs can potentially facilitate the design and development of in silico prediction models for hazard identification. Various AOPs have been introduced for several types of hepatotoxicity, such as steatosis, cholestasis, fibrosis, and liver cancer. This chapter provides an overview of AOPs on hepatotoxicity, including their development, assessment, and applications in toxicology.


Assuntos
Rotas de Resultados Adversos , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Animais , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Simulação por Computador , Biologia Computacional/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39315120

RESUMO

We report a case of a man who was diagnosed with superficial hypopharyngeal cancer and recurrence of renal cell carcinoma in the duodenum, liver, and gluteus medius muscle simultaneously. He underwent endoscopic submucosal dissection for hypopharyngeal cancer in parallel with systemic immunotherapy for recurrent renal cell carcinoma, resulting in completely overcoming both malignancies. Endoscopic submucosal dissection is less invasive and can be performed in a shorter duration for treating superficial hypopharyngeal cancer compared with other treatment options, such as radiation therapy, chemotherapy, and surgery. Additionally, endoscopic submucosal carcinoma is adequately effective in controlling local lesions and has a satisfactorily good prognosis.

3.
Noncoding RNA Res ; 10: 91-97, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39315340

RESUMO

Introduction: The relationship between obstructive sleep apnea (OSA) and cancer has been recognized for some time now. However, little is known about the mechanisms by which sleep apnea promotes tumorigenesis and the impact of OSA on survival after cancer diagnosis. In the last few years, research has focused on the exploration of different biomarkers to understand the mechanisms underlying this relationship and miRNAs, non-coding single strands of about 22 nucleotides that post-transcriptionally regulate gene expression, have emerged as possible actors of this process.The aim of the study was to evaluate the impact of OSA on survival of metastatic colorectal cancer (mCRC) patients based on the expression of specific miRNAs. Methods: The expression of 6 miRNAs, respectively miR-21, miR-23b, miR-26a, miR-27b, miR-145 and miR-210, was analyzed by qRT-PCR in patients' sera. Response to first-line therapy, Kaplan-Meier curves of overall and progression-free survival were used to evaluate survival in mCRC patients with and without OSA stratified for the expression of miRNAs. Results: The expression of miR-21, miR-23b, miR-26a and miR-210 was significantly upregulated in mCRCs with OSA compared to no OSA. In mCRC patients with OSA and increasing expression of miR-21, miR-23b, miR-26a and miR-210 risk of progression after first-line therapy was higher and both overall and progression-free survival were significantly worst. Conversely, as miR-27b and miR-145 expression increased, the life expectancy of patients diagnosed with OSA and mCRC improved markedly. Conclusions: This study highlights the relevance of specific miRNAs on OSA in mCRCs and their significance as non-invasive biomarkers in predicting the prognosis in patients with mCRC and OSA.

4.
Noncoding RNA Res ; 10: 98-115, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39351450

RESUMO

The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.

5.
Biomaterials ; 313: 122778, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39213978

RESUMO

Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.


Assuntos
Clorofilídeos , Indóis , Platina , Polímeros , Porfirinas , Neoplasias da Glândula Tireoide , Microambiente Tumoral , Terapia por Ultrassom , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Indóis/química , Terapia por Ultrassom/métodos , Porfirinas/química , Porfirinas/farmacologia , Polímeros/química , Animais , Platina/química , Platina/uso terapêutico , Platina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Apoptose/efeitos dos fármacos , Nanopartículas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Quinolinas/farmacologia , Quinolinas/química , Camundongos Nus , Portadores de Fármacos/química
6.
Biomaterials ; 313: 122796, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39226654

RESUMO

Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.


Assuntos
Neoplasias da Mama , Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas , Humanos , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Senescência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Engenharia Genética/métodos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Nanopartículas/química , Anticorpos de Cadeia Única/química , Evasão Tumoral/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Apoptose/efeitos dos fármacos , Biomimética/métodos , Antígenos B7
7.
Biomaterials ; 313: 122801, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39236630

RESUMO

Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.


Assuntos
Imunoterapia , Lipossomos , Neoplasias , Lipossomos/química , Humanos , Imunoterapia/métodos , Animais , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem
8.
Biomaterials ; 313: 122814, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39243672

RESUMO

Radiotherapy as a mainstay of in-depth cervical cancer (CC) treatment suffers from its radioresistance. Radiodynamic therapy (RDT) effectively reverses radio-resistance by generating reactive oxygen species (ROS) with deep tissue penetration. However, the photosensitizers stimulated by X-ray have high toxicity and energy attenuation. Therefore, X-ray responsive diselenide-bridged mesoporous silica nanoparticles (DMSNs) are designed, loading X-ray-activated photosensitizer acridine orange (AO) for spot blasting RDT like Trojan-horse against radio-resistance cervical cancer (R-CC). DMSNs can encapsulate a large amount of AO, in the tumor microenvironment (TME), which has a high concentration of hydrogen peroxide, X-ray radiation triggers the cleavage of diselenide bonds, leading to the degradation of DMSNs and the consequent release of AO directly at the tumor site. On the one hand, it solves the problems of rapid drug clearance, adverse distribution, and side effects caused by simple AO treatment. On the other hand, it fully utilizes the advantages of highly penetrating X-ray responsive RDT to enhance radiotherapy sensitivity. This approach results in ROS-induced mitochondria damage, inhibition of DNA damage repair, cell cycle arrest and promotion of cancer cell apoptosis in R-CC. The X-ray responsive DMSNs@AO hold considerable potential in overcoming obstacles for advanced RDT in the treatment of R-CC.


Assuntos
Nanopartículas , Dióxido de Silício , Humanos , Animais , Raios X , Nanopartículas/química , Feminino , Dióxido de Silício/química , Camundongos , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Tolerância a Radiação/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Camundongos Nus , Células HeLa , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral
9.
Biomaterials ; 313: 122805, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39250865

RESUMO

Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.


Assuntos
Cobre , Nanoestruturas , Neoplasias , Cobre/química , Humanos , Animais , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Morte Celular/efeitos dos fármacos
10.
J Clin Exp Hepatol ; 15(1): 102406, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39346785

RESUMO

The epidemiology of HCC is changing all over the world and the incidence of HCC is expected to continue increasing over the next 30 years. The changes are in the predisposing factors. Hepatitis B and hepatitis C as predisposing etiologies are decreasing while NAFLD/MAFLD is increasing. The increase in MAFLD is so great that despite the decrease in hepatitis B and C, the overall incidence of HCC is increasing. HCC in persons below the age of 20 years has distinct characteristics different from that of HCC in adults. The changing etiology of hepatocellular carcinoma has implications for the early detection, prevention, the stage of HCC at time of detection and in the treatment of HCC. The extent of these changes and their significance are discussed.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39323619

RESUMO

Objectives: The multi-hole self-expandable metal stent (MHSEMS) is a novel SEMS with multiple small side holes on the covering membrane to prevent stent migration while minimizing tumor ingrowth. This study aimed to evaluate the clinical outcomes of MHSEMS in comparison with conventional covered SEMS (c-CMS). Methods: Consecutive patients with unresectable pancreatic cancer who underwent initial SEMS placement (MHSEMS or c-CMS) for malignant distal biliary obstruction were analyzed. Technical success, clinical success, causes of recurrent biliary obstruction (RBO), non-RBO adverse events, time to RBO (TRBO), and endoscopic reintervention were compared between groups. Results: A total of 65 patients were included (MHSEMS: 27, c-CMS: 38). The technical success, clinical success, and non-RBO adverse event rates were similar between groups. Although stent migration was less frequently observed in the MHSEMS group (0% vs. 17.6%, p = 0.032), overall RBO rates were similar between groups (53.8% vs. 55.9%, p > 0.99). The most common cause of RBO within 14 days in the MHSEMS group was non-occlusion cholangitis. Median TRBO was significantly shorter in the MHSEMS group (101 vs. 227 days, p = 0.030) and MHSEMS was an independent predictor for shorter TRBO in multivariate analysis (hazard ratio, 2.27; 95% confidence interval, 1.06-4.86; p = 0.034). Outcomes after endoscopic interventio were not significantly different between groups. Stent removal was successful in all attempted cases in both groups. Conclusions: MHSEMS was associated with a significantly shorter TRBO compared to c-CMS. Further modifications of the present MHSEMS may be needed.

12.
Bioact Mater ; 43: 67-81, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39328776

RESUMO

Current cancer immunotherapies exhibit low response rates attributed to suppressive tumor immune microenvironments (TIMEs). To address these unfavorable TIMEs, supplementation with tumor-associated antigens and stimulation of immune cells at target sites are indispensable for eliciting anti-tumoral immune responses. Previous research has explored the induction of immunotherapy through multiple injections and implants; however, these approaches lack consideration for patient convenience and the implementation of finely tunable immune response control systems to mitigate the side effects of over-inflammatory responses, such as cytokine storms. In this context, we describe a patient-centric nano-gel-nano system capable of sustained generation of tumor-associated antigens and release of adjuvants. This is achieved through the specific delivery of drugs to cancer cells and antigens/adjuvants to immune cells over the long term, maintaining proper concentrations within the tumor site with a single injection. This system demonstrates local immunity against tumors with a single injection, enhances the therapeutic efficacy of immune checkpoint blockades, and induces systemic and memory T cell responses, thus minimizing systemic side effects.

13.
Methods Mol Biol ; 2855: 195-207, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39354310

RESUMO

Short- and medium-chain fatty acids (SMCFA) are monocarboxylic acids with a carbon chain length of 1-12 carbon atoms. They are mainly produced in humans by the gut microbiota, play crucial metabolic roles, are vital for intestinal health, and have multifaceted impact on immune and neurological functions. Accurate detection and quantification of SMCFA in different human biofluids is achieved using 3-nitro phenylhydrazine (3-NPH) derivatization of the free fatty acids followed by reverse phase liquid chromatography (RPLC) separation and detection by tandem mass spectrometry (MS/MS). Here, we describe the simultaneous measurement of 14 SMCFA and lactate in detail. All 3-NPH-SMCFA-hydrazones are separated in less than 5 min with an 8-min total run time (injection-to-injection). Linear dynamic range over 0.1-500 µM is achieved for most SCFAs, while it is 0.05-100 µM for MCFAs. Validation of the procedure depicts good linearity (R2 > 0.98) and repeatability (CV ≤ 20%). The lower limit of detection (LLOD) is 10-30 nM. The lower limit of quantification (LLOQ) is 50-100 nM for most analytes, while it is 0.5 µM for acetate. In conclusion, the method offers several benefits compared to alternative methods regarding throughput, selectivity, sensitivity, and robustness.


Assuntos
Cromatografia de Fase Reversa , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Humanos , Cromatografia de Fase Reversa/métodos , Ácidos Graxos Voláteis/análise , Ensaios de Triagem em Larga Escala/métodos , Limite de Detecção , Ácidos Graxos/análise , Ácidos Graxos/química , Reprodutibilidade dos Testes
14.
Biomaterials ; 312: 122750, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39126779

RESUMO

Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.


Assuntos
Nanopartículas , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos dos fármacos , Receptor 7 Toll-Like/agonistas , Feminino , Nanopartículas/química , Camundongos , Receptor 8 Toll-Like/agonistas , Imunomodulação/efeitos dos fármacos , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Camundongos Endogâmicos BALB C , Micelas , Humanos
15.
Biomaterials ; 313: 122766, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39180916

RESUMO

The immune resistance of tumor microenvironment (TME) causes immune checkpoint blockade therapy inefficient to hepatocellular carcinoma (HCC). Emerging strategies of using chemotherapy regimens to reverse the immune resistance provide the promise for promoting the efficiency of immune checkpoint inhibitors. The induction of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) in tumor cells evokes the adaptive immunity and remodels the immunosuppressive TME. In this study, we report that mitoxantrone (MIT, a chemotherapeutic drug) activates the cGAS-STING signaling pathway of HCC cells. We provide an approach to augment the efficacy of MIT using a signal transducer and activator of transcription 3 (STAT3) inhibitor called napabucasin (NAP). We prepare an aminoethyl anisamide (AEAA)-targeted polyethylene glycol (PEG)-modified poly (lactic-co-glycolic acid) (PLGA)-based nanocarrier for co-delivery of MIT and NAP. The resultant co-nanoformulation can elicit the cGAS-STING-based immune responses to reshape the immunoresistant TME in the mice orthotopically grafted with HCC. Consequently, the resultant co-nanoformulation can promote anti-PD-1 antibody for suppressing HCC development, generating long-term survival, and inhibiting tumor recurrence. This study reveals the potential of MIT to activate the cGAS-STING signaling pathway, and confirms the feasibility of nano co-delivery for MIT and NAP on achieving HCC chemo-immunotherapy.


Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Proteínas de Membrana , Mitoxantrona , Nucleotidiltransferases , Fator de Transcrição STAT3 , Mitoxantrona/farmacologia , Mitoxantrona/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Humanos , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Fator de Transcrição STAT3/metabolismo , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Benzofuranos , Naftoquinonas
16.
Biomaterials ; 313: 122763, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39180917

RESUMO

Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs. By taking advantage of the photothermal effects of CuET@PHF, tumor hypoxia is overcome via tumor mechanics normalization, thereby leading to enhanced cuproptosis and immunogenic cell death in 4T1 CSCs. As a result, the integration of CuET@PHF and mild photothermal therapy not only significantly suppresses tumor growth but also effectively inhibits tumor recurrence and distant metastasis by eliminating CSCs and augmenting antitumor immune responses. This study presents the first evidence of cuproptosis in CSCs, reveals that disrupting hypoxia augments cuproptosis cancer therapy, and establishes a paradigm for potent cancer therapy by simultaneously eliminating CSCs and boosting antitumor immunity.


Assuntos
Cobre , Nanomedicina , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Feminino , Nanomedicina/métodos , Cobre/química , Cobre/farmacologia , Linhagem Celular Tumoral , Camundongos , Nanopartículas/química , Camundongos Endogâmicos BALB C , Terapia Fototérmica/métodos , Humanos , Polímeros/química , Indóis/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-39290566

RESUMO

Objective: Swift and forced COAG with an electrosurgical knife are commonly used for intraoperative hemostasis in colorectal endoscopic submucosal dissection (ESD). If bleeding cannot be stopped using an electrosurgical knife, cauterization is attempted using hemostatic forceps. Since April 2022, our hospital has started using Spray COAG for intraoperative hemostasis for colorectal ESD. This study aimed to provide evidence of the efficacy of Spray COAG for intraoperative hemostasis. Methods: Colorectal ESD was performed for 320 lesions at our hospital. Of these, 307 were included; 145 and 162 lesions were operated before and after the introduction of Spray COAG, respectively. Spray COAG was used after the change. The primary endpoint was the change in the frequency of use of hemostatic forceps after the introduction of Spray COAG; the secondary endpoint was the change in the prevalence of postoperative complications after the introduction of Spray COAG. It should be noted that the Spray COAG mode was employed solely for hemostasis and not for dissection, while the Swift COAG mode was utilized for dissection in the After Spray COAG group. Statistical analysis was conducted using IPTW analysis. Results: The frequency of use of hemostatic forceps was significantly decreased after the introduction of Spray COAG (odds ratio = 0.12, 95% confidence interval [95%CI]: 0.06-0.23, p < 0.001). The prevalence of post-ESD electrocoagulation syndrome significantly decreased (odds ratio = 0.43, 95%CI: 0.22-0.88, p = 0.02). No significant differences were observed between the intraoperative and postoperative perforations or rate of postoperative bleeding. Conclusion: Spray COAG reduced the frequency of hemostatic forceps use in colorectal ESD.

18.
J Ethnopharmacol ; 336: 118754, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39208999

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tubeimoside-I (TBM) promotes various cancer cell death by increasing the reactive oxygen species (ROS) production. However, the specific molecular mechanisms of TBM and its impact on oxaliplatin-mediated anti-CRC activity are not yet fully understood. AIM OF THE STUDY: To elucidate the therapeutic effect and underlying molecular mechanism of TBM on oxaliplatin-mediated anti-CRC activity. MATERIALS AND METHODS: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, wound healing assays and flow cytometry were conducted to investigate the changes in cell phenotypes and ROS generation. Real-time quantitative PCR (qRT-PCR) and western blotting were performed to detect the expressions of related mRNA and proteins. Finally, mouse xenograft models demonstrated that synergistic anti-tumor effects of combined treatment with TBM and oxaliplatin. RESULTS: The synergistic enhancement of the anti-tumor effects of oxaliplatin in colon cancer cells by TBM involved in the regulation of ROS-mediated endoplasmic reticulum (ER) stress, C-jun-amino-terminal kinase (JNK), and p38 MAPK signaling pathways. Mechanistically, TBM increased ROS generation in colon cancer cells by inhibiting heat shock protein 60 (HSPD1) expression. Knocking down HSPD1 increased TBM-induced antitumor activity and ROS generation in colon cancer cells. The mouse xenograft tumor models further validated that the combination therapy exhibited stronger anti-tumor effects than monotherapy alone. CONCLUSIONS: Combined therapy with TBM and oxaliplatin might be an effective therapeutic strategy for some CRC patients.


Assuntos
Neoplasias Colorretais , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático , Oxaliplatina , Espécies Reativas de Oxigênio , Saponinas , Triterpenos , Animais , Humanos , Masculino , Camundongos , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxaliplatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Gene ; 932: 148880, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181273

RESUMO

It has been discovered that Trichorhinophalangeal Syndrome-1 (TRPS1), a novel member of the GATA transcription factor family, participates in both normal physiological processes and the development of numerous diseases. Recently, TRPS1 has been identified as a new biomarker to aid in cancer diagnosis and is very common in breast cancer (BC), especially in triple-negative breast cancer (TNBC). In this review, we discussed the structure and function of TRPS1 in various normal cells, focused on its role in tumorigenesis and tumor development, and summarize the research status of TRPS1 in the occurrence and development of BC. We also analyzed the potential use of TRPS1 in guiding clinically personalized precision treatment and the development of targeted drugs.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteínas de Ligação a DNA , Proteínas Repressoras , Fatores de Transcrição , Humanos , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Carcinogênese/metabolismo , Animais
20.
Gene ; 932: 148896, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39209183

RESUMO

Pescadillo ribosomal biogenesis factor 1 (PES1), a nucleolar protein initially identified in zebrafish, plays an important role in embryonic development and ribosomal biogenesis. Notably, PES1 has been found to be overexpressed in a number of cancer types, where it contributes to tumorigenesis and cancer progression by promoting cell proliferation, suppressing cellular senescence, modulating the tumor microenvironment (TME) and promoting drug resistance in cancer cells. Moreover, recent emerging evidence suggests that PES1 expression is significantly elevated in the livers of Type 2 diabetes mellitus (T2DM) and obese patients, indicating its involvement in the pathogenesis of metabolic diseases through lipid metabolism regulation. In this review, we present the structural characteristics and biological functions of PES1, as well as complexes in which PES1 participates. Furthermore, we comprehensively summarize the multifaceted role of PES1 in various diseases and the latest insights into its underlying molecular mechanisms. Finally, we discuss the potential clinical translational perspectives of targeting PES1, highlighting its promising as a therapeutic intervention and treatment target.


Assuntos
Neoplasias , Proteínas de Ligação a RNA , Humanos , Animais , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microambiente Tumoral , Metabolismo dos Lipídeos , Terapia de Alvo Molecular/métodos , Obesidade/metabolismo , Obesidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA