Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2408510, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155823

RESUMO

Constructing dual catalytic sites with charge density differences is an efficient way to promote urea electrosynthesis from parallel NO 3 - ${\mathrm{NO}}_3^ - $ and CO2 reduction yet still challenging in static system. Herein, a dynamic system is constructed by precisely controlling the asymmetric charge density distribution in an Au-doped coplanar Cu7 clusters-based 3D framework catalyst (Au@cpCu7CF). In Au@cpCu7CF, the redistributed charge between Au and Cu atoms changed periodically with the application of pulse potentials switching between -0.2 and -0.6 V and greatly facilitated the electrosynthesis of urea. Compared with the static condition of pristine cpCu7CF (FEurea = 5.10%), the FEurea of Au@cpCu7CF under pulsed potentials is up to 55.53%. Theoretical calculations demonstrated that the high potential of -0.6 V improved the adsorption of *HNO2 and *NH2 on Au atoms and inhibited the reaction pathways of by-products. While at the low potential of -0.2 V, the charge distribution between Au and Cu atomic sites facilitated the thermodynamic C-N coupling step. This work demonstrated the important role of asymmetric charge distribution under dynamic regulation for urea electrosynthesis, providing a new inspiration for precise control of electrocatalysis.

2.
IUCrJ ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39146197

RESUMO

This study examines various methods for modelling the electron density and, thus, the electrostatic potential of an organometallic complex for use in crystal structure refinement against 3D electron diffraction (ED) data. It focuses on modelling the scattering factors of iron(III), considering the electron density distribution specific for coordination with organic linkers. We refined the structural model of the metal-organic complex, iron(III) acetylacetonate (FeAcAc), using both the independent atom model (IAM) and the transferable aspherical atom model (TAAM). TAAM refinement initially employed multipolar parameters from the MATTS databank for acetylacetonate, while iron was modelled with a spherical and neutral approach (TAAM ligand). Later, custom-made TAAM scattering factors for Fe-O coordination were derived from DFT calculations [TAAM-ligand-Fe(III)]. Our findings show that, in this compound, the TAAM scattering factor corresponding to Fe3+ has a lower scattering amplitude than the Fe3+ charged scattering factor described by IAM. When using scattering factors corresponding to the oxidation state of iron, IAM inaccurately represents electrostatic potential maps and overestimates the scattering potential of the iron. In addition, TAAM significantly improved the fitting of the model to the data, shown by improved R1 values, goodness-of-fit (GooF) and reduced noise in the Fourier difference map (based on the residual distribution analysis). For 3D ED, R1 values improved from 19.36% (IAM) to 17.44% (TAAM-ligand) and 17.49% (TAAM-ligand-Fe3+), and for single-crystal X-ray diffraction (SCXRD) from 3.82 to 2.03% and 1.98%, respectively. For 3D ED, the most significant R1 reductions occurred in the low-resolution region (8.65-2.00 Å), dropping from 20.19% (IAM) to 14.67% and 14.89% for TAAM-ligand and TAAM-ligand-Fe(III), respectively, with less improvement in high-resolution ranges (2.00-0.85 Å). This indicates that the major enhancements are due to better scattering modelling in low-resolution zones. Furthermore, when using TAAM instead of IAM, there was a noticeable improvement in the shape of the thermal ellipsoids, which more closely resembled those of an SCXRD-refined model. This study demonstrates the applicability of more sophisticated scattering factors to improve the refinement of metal-organic complexes against 3D ED data, suggesting the need for more accurate modelling methods and highlighting the potential of TAAM in examining the charge distribution of large molecular structures using 3D ED.

3.
Small ; 20(35): e2311635, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703033

RESUMO

Most properties of solid materials are defined by their internal electric field and charge density distributions which so far are difficult to measure with high spatial resolution. Especially for 2D materials, the atomic electric fields influence the optoelectronic properties. In this study, the atomic-scale electric field and charge density distribution of WSe2 bi- and trilayers are revealed using an emerging microscopy technique, differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). For pristine material, a higher positive charge density located at the selenium atomic columns compared to the tungsten atomic columns is obtained and tentatively explained by a coherent scattering effect. Furthermore, the change in the electric field distribution induced by a missing selenium atomic column is investigated. A characteristic electric field distribution in the vicinity of the defect with locally reduced magnitudes compared to the pristine lattice is observed. This effect is accompanied by a considerable inward relaxation of the surrounding lattice, which according to first principles DFT calculation is fully compatible with a missing column of Se atoms. This shows that DPC imaging, as an electric field sensitive technique, provides additional and remarkable information to the otherwise only structural analysis obtained with conventional STEM imaging.

4.
Heliyon ; 10(5): e26463, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455584

RESUMO

(1-x)(Na0.5Bi0.5)TiO3-xCaTiO3 Lead-free piezoelectric systems, positioned near the morphotropic phase boundary, were synthesized for varying compositions (x = 0.0, 0.05, 0.10, 0.15, and 0.20) using the solid-state reaction route. This study delves into the comprehensive investigation of the compositional effects on phase, structure, and electrical characteristics. Specifically, a morphotropic phase boundary (MPB) involving rhombohedral (R3c) and orthorhombic (Pnma) structures was seen in a (1-x)NBT-xCT crystal structure close to the composition of x = 0.10. Information on the pure phase formation and grain size of the intended composite system has been obtained using Rietveld refinement of the X-ray diffraction (XRD) diagram as well as scanning electron microscopy (SEM). The impact of the CT phase on the NBT lattice was investigated through an analysis of the charge density distribution. Using Williamson-Hall plots from XRD data, the average particle diameter was estimated to be between 131.87 nm and 136.54 nm. The relative permittivity increases with the addition of Ca2+, according to dielectric measurements. All ceramics exhibit a diffuse phase transition near (Tm) with a diffusivity range of 1.5-1.8, and a downward shift in depolarization temperature (Td). At the morphotropic phase boundary (MPB), excellent dielectric properties were observed at x = 0.10, which are attributed to the presence of both rhombohedral and orthorhombic structures as well as an appropriate particle size. The conduction process at different temperatures is thermally activated, as determined by the frequency-dependent ac conductivity.

5.
Acta Crystallogr C Struct Chem ; 80(Pt 4): 115-122, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502537

RESUMO

Acridines are a class of bioactive agents which exhibit high biological stability and the ability to intercalate with DNA; they have a wide range of applications. Pyridine derivatives have a wide range of biological activities. To enhance the properties of acridine and 2-amino-3-methylpyridine as the active pharmaceutical ingredient (API), 4-nitrobenzoic acid was chosen as a coformer. In the present study, a mixture of acridine and 4-nitrobenzoic acid forms the salt acridinium 4-nitrobenzoate, C13H10N+·C7H4NO4- (I), whereas a mixture of 2-amino-3-methylpyridine and 4-nitrobenzoic acid forms the salt 2-amino-3-methylpyridinium 4-nitrobenzoate, C6H9N2+·C7H4NO4- (II). In both salts, protonation takes place at the ring N atom. The crystal structure of both salts is predominantly governed by hydrogen-bond interactions. In salt I, C-H...O and N-H...O interactions form an infinite chain in the crystal, whereas in salt II, intermolecular N-H...O interactions form an eight-membered R22(8) ring motif. A theoretical charge-density analysis reveals the charge-density distribution of the inter- and intramolecular interactions of both salts. An in-silico ADME analysis predicts the druglikeness properties of both salts and the results confirm that both salts are potential drug candidates with good bioavailability scores and there is no violation of the Lipinski rules, which supports the druglikeness properties of both salts. However, although both salts exhibit drug-like properties, salt I has higher gastrointestinal absorption than salt II and hence it may be considered a potential drug candidate.


Assuntos
Aminopiridinas , Nitrobenzoatos , Picolinas , Sais , Cristalografia por Raios X , Sais/química , Ligação de Hidrogênio , Nitrobenzoatos/química , Modelos Teóricos , Acridinas
6.
ACS Nano ; 16(4): 6404-6413, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35426299

RESUMO

Electrical tuning of second-order nonlinearity in optical materials is attractive to strengthen and expand the functionalities of nonlinear optical technologies, though its implementation remains elusive. Here, we report the electrically tunable second-order nonlinearity in atomically thin ReS2 flakes benefiting from their distorted 1T crystal structure and interlayer charge transfer. Enabled by the efficient electrostatic control of the few-atomic-layer ReS2, we show that second harmonic generation (SHG) can be induced in odd-number-layered ReS2 flakes which are centrosymmetric and thus without intrinsic SHG. Moreover, the SHG can be precisely modulated by the electric field, reversibly switching from almost zero to an amplitude more than 1 order of magnitude stronger than that of the monolayer MoS2. For the even-number-layered ReS2 flakes with the intrinsic SHG, the external electric field could be leveraged to enhance the SHG. We further perform the first-principles calculations which suggest that the modification of in-plane second-order hyperpolarizability by the redistributed interlayer-transferring charges in the distorted 1T crystal structure underlies the electrically tunable SHG in ReS2. With its active SHG tunability while using the facile electrostatic control, our work may further expand the nonlinear optoelectronic functions of two-dimensional materials for developing electrically controllable nonlinear optoelectronic devices.

7.
Angew Chem Int Ed Engl ; 60(5): 2569-2573, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33151006

RESUMO

So far, several publications have discussed the bonding concepts in polyhalides on a theoretical basis. In particular, the trichlorine monoanion is of great interest because its structure should be symmetrical and show two equidistant Cl-Cl bonds. However, apart from matrix-isolation studies, only asymmetric trichlorine anions have been reported so far. Herein, the trichlorine monoanions in 2-chloroethyltrimethylammonium trichloride [NMe3 EtCl][Cl3 ], 1, tetramethylammonium trichloride [NMe4 ][Cl3 ], 2, and tetrapropylammonium trichloride [NnPr4 ][Cl3 ], 3, are analysed. High-resolution X-ray structures and experimental charge density analyses supported by periodic quantum-chemical calculations provide insight into the influence of the crystalline environment on the structure of these [Cl3 ]- anions as well as into the progress of the bond formation between a dichlorine molecule and a Cl- anion.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 4): 572-580, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831276

RESUMO

The experimental charge-density distribution in [Gd(H2O)9](CF3SO3)3 has been analysed and compared with the theoretical density functional theory calculations. Although the Gd-OH2 bonds are mainly ionic, a covalent contribution is detectable when inspecting both the topological parameters of these bonds and the natural bond orbital results. This contribution originates from small electron transfer from the lone pairs of oxygen atoms to empty 5d and 6s spin orbitals of Gd3+.

9.
Curr Comput Aided Drug Des ; 16(1): 31-44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30345924

RESUMO

INTRODUCTION: Carboxyalkyl flavonoids derivatives are considered as effective inhibitors in reducing post-prandial hyperglycaemia. METHODS: Combined with Density Functional Theory (DFT) and the theory of Atoms in Molecules (AIM), molecular docking and charge density analysis are carried out to understand the molecular flexibility, charge density distribution and the electrostatic properties of these carboxyalkyl derivatives. RESULTS: Results show that the electron density of the chemical bond C14-O17 on B ring of molecule II increases while O17-H18 decreases at the active site, suggesting the existence of weak noncovalent interactions, most prominent of which are H-bonding and electrostatic interaction. When hydroxyl groups are introduced, the highest positive electrostatic potentials are distributed near the B ring hydroxyl hydrogen atom and the carboxyl hydrogen atom on the A ring. It was reported that quercetin has a considerably inhibitory activity to S. cerevisiae α-glucosidase, from the binding affinities, it is suggested that the position and number of hydroxyl groups on the B and C rings are also pivotal to the hypoglycemic activity when the long carboxyalkyl group is introduced into the A ring. CONCLUSION: It is concluded that the presence of three well-defined zones in the structure, both hydrophobicity alkyl, hydrophilicity carboxyl and hydroxyl groups are necessary.


Assuntos
Flavonoides/química , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/química , alfa-Glucosidases/efeitos dos fármacos , Flavonoides/síntese química , Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/enzimologia , Eletricidade Estática
10.
J Biomol Struct Dyn ; 38(1): 219-235, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31038398

RESUMO

The resistance to the endocrine therapy of breast cancer leads to the emergence of new class of drugs that downregulates the estrogen receptor action known as selective estrogen receptor downregulators (SERDs). The first approved SERD is fluvestrant; after this, there are several downregulators evolved and are in clinical trials, in which the brilanestrant (BRI) molecule shows nM range of binding affinity and efficacy. In the present study, to understand the binding nature of BRI molecule in the active site of ERα, the molecular docking analysis has been performed. Further, the QM/MM calculations were performed for the BRI-ERα complex to analyze the charge density distribution of intermolecular interactions. The molecular dynamics (MD) simulation was employed to understand the stability and binding mechanism of BRI molecule through root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF) and binding free energy calculations. From the MD simulation trajectory analysis, the alterations of Helix12 conformation and the key residue (Lys529), which is responsible for the ERα downregulation, have been identified. Further, the interaction between the H3 and H12 regions was identified for the antagonism of BRI molecule. The current study led us to understand the binding mechanism, antagonism and downregulation of BRI molecule, and this knowledge is essential to design novel SERDs for the treatment of endocrine-resistant positive breast cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos/química , Receptor alfa de Estrogênio/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Algoritmos , Antineoplásicos/farmacologia , Sítios de Ligação , Domínio Catalítico , Receptor alfa de Estrogênio/metabolismo , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Ligação Proteica
11.
Polymers (Basel) ; 10(12)2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30961256

RESUMO

The characterization of statistical copolymers of various charge densities remains an important and challenging analytical issue. Indeed, the polyelectrolyte (PE) effective electrophoretic mobility tends to level off above a certain charge density, due to the occurrence of Manning counterion condensation. Surprisingly, we demonstrate in this work that it is possible to get highly resolutive separations of charged PE using free-solution capillary electrophoresis, even above the critical value predicted by the Manning counterion condensation theory. Full separation of nine statistical poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonate) polymers of different charge densities varying between 3% and 100% was obtained by adjusting the ionic strength of the background electrolyte (BGE) in counter electroosmotic mode. Distributions of the chemical charge density could be obtained for the nine PE samples, showing a strong asymmetry of the distribution for the highest-charged PE. This asymmetry can be explained by the different reactivity ratios during the copolymerization. To shed more light on the separation mechanism, effective and apparent selectivities were determined by a systematic study and modeling of the electrophoretic mobility dependence according to the ionic strength. It is demonstrated that the increase in resolution with increasing BGE ionic strength is not only due to a closer matching of the electroosmotic flow magnitude with the PE electrophoretic effective mobility, but also to an increase of the dependence of the PE effective mobility according to the charge density.

12.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 550-564, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28762967

RESUMO

Uridine, a nucleoside formed of a uracil fragment attached to a ribose ring via a ß-N1-glycosidic bond, is one of the four basic components of ribonucleic acid. Here a new anhydrous structure and experimental charge density distribution analysis of a uridine-5'-monophosphate potassium salt, K(UMPH), is reported. The studied case constitutes the very first structure of a 5'-nucleotide potassium salt according to the Cambridge Structural Database. The excellent crystal quality allowed the collection of charge density data at various temperatures, i.e. 10, 100, 200 and 300 K on one single crystal. Crystal structure and charge density data were analysed thoroughly in the context of related literature-reported examples. Detailed analysis of the charge density distribution revealed elevated anharmonic motion of part of the uracil ring moiety relatively weakly interacting with the neighbouring species. The effect was manifested by alternate positive and negative residual density patterns observed for these atoms, which `disappear' at low temperature. It also occurred that the potassium cation, quite uniformly coordinated by seven O atoms from all molecular fragments of the UMPH- anion, including the O atom from the ribofuranose ring, can be treated as spherical in the charge density model which was supported by theoretical calculations. Apart from the predominant electrostatic interactions, four relatively strong hydrogen bond types further support the stability of the crystal structure. This results in a compact and quite uniform structure (in all directions) of the studied crystal, as opposed to similar cases with layered architecture reported in the literature.


Assuntos
Modelos Moleculares , Potássio/química , Uridina Monofosfato/química , Cristalografia por Raios X , Elétrons , Ligação de Hidrogênio , Eletricidade Estática , Temperatura
13.
Microsc Microanal ; 23(3): 472-483, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28399948

RESUMO

High-quality color output from digital photocopiers and laser printers is in strong demand, motivating attempts to achieve fine dot reproducibility and stability. The resolution of a digital photocopier depends on the charge density distribution on the organic photoconductor surface; however, directly measuring the charge density distribution is impossible. In this study, we propose a new electron optical instrument that can rapidly measure the electrostatic latent image on an organic photoconductor surface, which is a dielectric surface, as well as a novel method to quantitatively estimate the charge density distribution on a dielectric surface by combining experimental data obtained from the apparatus via a computer simulation. In the computer simulation, an improved three-dimensional boundary charge density method (BCM) is used for electric field analysis in the vicinity of the dielectric material with a charge density distribution. This method enables us to estimate the profile and quantity of the charge density distribution on a dielectric surface with a resolution of the order of microns. Furthermore, the surface potential on the dielectric surface can be immediately calculated using the obtained charge density. This method enables the relation between the charge pattern on the organic photoconductor surface and toner particle behavior to be studied; an understanding regarding the same may lead to the development of a new generation of higher resolution photocopiers.

14.
J Mol Model ; 23(3): 70, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28197841

RESUMO

Apigenin is an important flavonoids due to its antidiabetic bioactivity. It was reported experimentally that the 7-substituent derivative of apigenin has higher biological activity than 4'- and 5-substituted derivatives while introducing sole carboxyalkyl group -(CH2)7COOH into the parent structure. Molecular docking studies indicated that the other two derivatives have lower binding affinities than the 7-substituent derivative (-7.52 kcal mol-1), which is considered to be a better inhibitor than the parent molecule. Almost all of the carbon atoms and oxygen atoms are coplaner for all three molecules in solution phase, however, all carboxyalkyl groups bend inside into the parent molecules in the active site, and the jagged geometries of the carbon chains are destroyed correspondingly. In addition, most of the electron densities of the chemical bonds for all molecules are decreased, especially the 7-substituent derivative. In contrast, most of the Laplacian values for three molecules are increased in the active site, which suggests that the charge densities at the bond critical point (bcp) are much more depleted than the solution phase. Dipole moments of derivatives are all increased in the active site, suggesting strong intermolecular interactions. After interacting with the S. cerevisiae α-glucosidase, only the 7-substituent derivative has the lowest energy gap ΔE HOMO-LUMO, which indicates the lowest stability and the highest inhibition activity. Graphical abstract Probing the influence of carboxyalkyl groups on the molecular flexibility and the charge density of apigenin derivatives.

15.
J Biomol Struct Dyn ; 35(16): 3627-3647, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27897077

RESUMO

Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.


Assuntos
Acetilcolinesterase/química , Curcumina/química , Motivos de Aminoácidos , Domínio Catalítico , Proteínas Ligadas por GPI/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Teoria Quântica , Proteínas Recombinantes/química , Eletricidade Estática , Termodinâmica
16.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 5): 775-786, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27698320

RESUMO

An experimental charge density distribution of 2-nitroimidazole was determined from high-resolution X-ray diffraction and the Hansen-Coppens multipole model. The 2-nitroimidazole compound was crystallized and a high-angle X-ray diffraction intensity data set has been collected at low temperature (110 K). The structure was solved and further, an aspherical multipole model refinement was performed up to octapole level; the results were used to determine the structure, bond topological and electrostatic properties of the molecule. In the crystal, the molecule exhibits a planar structure and forms weak and strong intermolecular hydrogen-bonding interactions with the neighbouring molecules. The Hirshfeld surface of the molecule was plotted, which explores different types of intermolecular interactions and their strength. The topological analysis of electron density at the bond critical points (b.c.p.) of the molecule was performed, from that the electron density ρbcp(r) and the Laplacian of electron density ∇2ρbcp(r) at the b.c.p.s of the molecule have been determined; these parameters show the charge concentration/depletion of the nitroimidazole bonds in the crystal. The electrostatic parameters like atomic charges and the dipole moment of the molecule were calculated. The electrostatic potential surface of the molecule has been plotted, and it displays a large electronegative region around the nitro group. All the experimental results were compared with the corresponding theoretical calculations performed using CRYSTAL09.

18.
Chem Biol Interact ; 225: 21-31, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25446495

RESUMO

In the present study, a molecular docking analysis has been performed on diketone form of curcumin molecule with acetylcholinesterase (AChE). The calculated lowest docked energy of curcumin molecule in the active site of AChE is -11.21 kcal/mol; this high negative value indicates that the molecule exhibits large binding affinity towards AChE. When the curcumin molecule present in the active site of AChE, subsequently, its conformation has altered significantly and the molecule adopts a U-shape geometry as it is linear in gas phase (before entering into the active site). This conformational transition facilitates curcumin to form strong interaction with Phe330 of acyl-binding pocket and the choline binding site with indole ring of Trp84 and Asp72. The gas phase and the active site analysis of curcumin allows to understand the conformational geometry, nature of molecular flexibility, charge density redistribution and the variation of electrostatic properties of curcumin in the active site. To obtain the gas phase structure, the curcumin molecule was optimized using Hartree-Fock and density functional methods (B3LYP) with the basis set 6-311G(∗∗). A charge density analysis on both gas phase as well as the molecule lifted from the active site was carried out using Bader's theory of atoms in molecules (AIM). The difference in molecular electrostatic potential between the two forms of curcumin displays the difference in charge distribution. The large dipole moment of curcumin (7.54 D) in the active site reflects the charge redistribution as it is much less in the gas phase (4.34 D).


Assuntos
Acetilcolinesterase/química , Curcumina/química , Acetilcolinesterase/metabolismo , Sítios de Ligação/fisiologia , Domínio Catalítico/fisiologia , Curcumina/metabolismo , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Termodinâmica
19.
Artigo em Inglês | MEDLINE | ID: mdl-25274518

RESUMO

The aim of this study was to test the applicability of a Bruker AXS CMOS-type PHOTON 100 detector for the purpose of a fine charge density quality data collection. A complex crystal containing oxalic acid, ammonium oxalate and two water molecules was chosen as a test case. The data was collected up to a resolution of 1.31 Å(-1) with high completeness (89.1%; Rmrg = 0.0274). The multipolar refinement and subsequent quantum theory of atoms in molecules (QTAIM) analysis resulted in a comprehensive description of the charge density distribution in the crystal studied. The residual density maps are flat and almost featureless. It was possible to derive reliable information on intermolecular interactions to model the anharmonic motion of a water molecule, and also to observe the fine details of the charge density distribution, such as polarization on O and H atoms involved in the strongest hydrogen bonds. When compared with our previous statistical study on oxalic acid data collected with the aid of CCD cameras, the complementary metal-oxide semiconductor (CMOS) detector can certainly be classified as a promising alternative in advanced X-ray diffraction studies.


Assuntos
Compostos de Amônio/química , Modelos Moleculares , Oxalatos/química , Ácido Oxálico/química , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Ligação de Hidrogênio , Estrutura Molecular , Fótons , Teoria Quântica , Semicondutores
20.
Artigo em Inglês | MEDLINE | ID: mdl-25080251

RESUMO

The electron-density distribution in sodium bis(4-nitrophenyl)phosphate has been analyzed using the multipole refinement of X-ray diffraction data and of theoretical density-functional theory (DFT) calculations. The ester P-O bonds are particularly long and their topological parameters (density at the bond critical point, Laplacian) are lower than for other P-O bonds. Some disagreement between the experimental and theoretical charges of atoms constituting the nitro groups has been observed and the possible reasons are discussed. Weak polarization effects produced by sodium cations may be observed within the phosphate fragment; they are more manifest in the case of the nitro groups.


Assuntos
Nitrofenóis/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA