Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Antimicrob Agents Chemother ; : e0081724, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133024

RESUMO

Escherichia coli ST131 is a multidrug-resistant lineage associated with the global spread of extended-spectrum ß-lactamase-producing organisms. Particularly, ST131 clade C1 is the most predominant clade in Japan, harboring blaCTX-M-14 at a high frequency. However, the process of resistance gene acquisition and spread remains unclear. Here, we performed whole-genome sequencing of 19 E. coli strains belonging to 12 STs and 12 fimH types collected between 1997 and 2016. Additionally, we analyzed the full-length genome sequences of 96 ST131-H30 clade C0 and C1 strains, including those obtained from this study and those registered in public databases, to understand how ST131 clade C1 acquired and spread blaCTX-M-14. We detected conjugative IncFII plasmids and IncB/O/K/Z plasmids carrying blaCTX-M-14 in diverse genetic lineages of E. coli strains from the 1990s to the 2010s, suggesting that these plasmids played an important role in the spread of blaCTX-M-14. Molecular phylogenetic and molecular clock analyses of the 96 ST131-H30 clade C0 and C1 strains identified 8 subclades. Strains harboring blaCTX-M-14 were clustered in subclades 4 and 5, and it was inferred that clade C1 acquired blaCTX-M-14 around 1993. All 34 strains belonging to subclade 5 possessed blaCTX-M-14 with ISEcp1 upstream at the same chromosomal position, indicating their common ancestor acquired blaCTX-M-14 in a single ISEcp1-mediated transposition event during the early formation of the subclade around 1999. Therefore, both the horizontal transfer of plasmids carrying blaCTX-M-14 to diverse genetic lineages and chromosomal integration in the predominant genetic lineage have contributed to the spread of blaCTX-M-14.

2.
Methods Mol Biol ; 2819: 225-240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028509

RESUMO

Bacterial nucleoid-associated proteins are important factors in regulation of transcription, in nucleoid structuring, and in homeostasis of DNA supercoiling. Vice versa, transcription influences DNA supercoiling and can affect DNA binding of nucleoid-associated proteins (NAPs) such as H-NS in Escherichia coli. Here we describe genetic tools to study the interplay between transcription and nucleoid-associated proteins in E. coli. These methods include construction of genomic and plasmidic transcriptional and translational lacZ reporter gene fusions to study regulation of promoters; insertion of promoter cassettes to drive transcription into a locus of interest in the genome, for example, an H-NS-bound locus; and construction of isogenic hns and stpA mutants and precautions in doing so.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli , Transcrição Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Genes Reporter , Plasmídeos/genética , DNA Bacteriano/genética
3.
Methods Mol Biol ; 2819: 241-260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028510

RESUMO

Bacillus subtilis is one of the best-studied bacteria and serves as a Gram-positive model system to address fundamental biological processes. Depending on conditions, a B. subtilis cell can initiate one out of various distinct differentiation processes to cope with changing environmental conditions. One of these differentiation processes is natural competence that allows cells to adsorb exogenous DNA and subsequently incorporate it into its chromosome by homologous recombination. Due to competence development, the genome of B. subtilis can be easily manipulated, and this has contributed to B. subtilis being a model system. In this chapter, we describe some of the most common genetic tools that can be used in combination with natural competence to tailor the genome of B. subtilis.


Assuntos
Bacillus subtilis , Engenharia Genética , Recombinação Homóloga , Bacillus subtilis/genética , Engenharia Genética/métodos , Genoma Bacteriano
4.
Biotechnol Biofuels Bioprod ; 17(1): 81, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886802

RESUMO

BACKGROUND: Non-conventional yeasts hold significant potential as biorefinery cell factories for microbial bioproduction. Currently, gene editing systems used for these yeasts rely on antibiotic and auxotrophic selection mechanisms. However, the drawbacks of antibiotics, including high costs, environmental concerns, and the dissemination of resistance genes, make them unsuitable for large-scale industrial fermentation. For auxotrophic selection system, the engineered strains harboring auxotrophic marker genes are typically supplemented with complex nutrient-rich components instead of precisely defined synthetic media in large-scale industrial fermentations, thus lack selection pressure to ensure the stability of heterologous metabolic pathways. Therefore, it is a critical to explore alternative selection systems that can be adapted for large-scale industrial fermentation. RESULTS: Here, a novel glucose-dependent selection system was developed in a high pullulan-producing non-conventional strain A. melanogenum P16. The system comprised a glucose-deficient chassis cell Δpfk obtained through the knockout of the phosphofructokinase gene (PFK) and a series of chromosomal integration plasmids carrying a selection marker PFK controlled by different strength promoters. Utilizing the green fluorescent protein gene (GFP) as a reporter gene, this system achieved a 100% positive rate of transformation, and the chromosomal integration numbers of GFP showed an inverse relationship with promoter strength, with a customizable copy number ranging from 2 to 54. More importantly, the chromosomal integration numbers of target genes remained stable during successive inoculation and fermentation process, facilitated simply by using glucose as a cost-effective and environmental-friendly selectable molecule to maintain a constant and rigorous screening pressure. Moreover, this glucose-dependent selection system exhibited no significant effect on cell growth and product synthesis, and the glucose-deficient related selectable marker PFK has universal application potential in non-conventional yeasts. CONCLUSION: Here, we have developed a novel glucose-dependent selection system to achieve customizable and stable multilocus chromosomal integration of target genes. Therefore, this study presents a promising new tool for genetic manipulation and strain enhancement in non-conventional yeasts, particularly tailored for industrial fermentation applications.

5.
Microb Cell Fact ; 23(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172868

RESUMO

BACKGROUND AND AIM: Reprogramming microorganisms to enhance the production of metabolites is a part of contemporary synthetic biology, which relies on the availability of genetic tools to successfully manipulate the bacteria. Methylorubrum extorquens AM1 is a platform microorganism used to convert C1 compounds into various value-added products. However, the repertoire of available plasmids to conveniently and quickly fine-tune the expression of multiple genes in this strain is extremely limited compared with other model microorganisms such as Escherichia coli. Thus, this study aimed to integrate existing technologies, such as transposon-mediated chromosomal integration and cre-lox-mediated recombination, to achieve the diversified expression of target genes through multiple chromosomal insertions in M. extorquens AM1. RESULTS: A single plasmid toolkit, pSL-TP-cre-km, containing a miniHimar1 transposon and an inducible cre-lox71/lox66 system, was constructed and characterized for its multiple chromosomal integration capacity. A co-transcribed mcr-egfp cassette [for the production of 3-hydroxypropionic acid (3-HP) and a reporting green fluorescent protein] was added to construct pTP-cre-mcr-egfp for evaluating its utility in mediating the expression of heterologous genes, resulting in the production of 3-HP with a titer of 34.7-55.2 mg/L by two chromosomal integration copies. Furthermore, in association with the expression of plasmid-based mcr, 3-HP production increased to 65.5-92.4 mg/L. CONCLUSIONS: This study used a multi-round chromosomal integration system based on cre-lox71/lox66 and a transposon to construct a single constructed vector. A heterologous mcr gene was introduced through this vector, and high expression of 3-hydroxypropionic acid was achieved in M. extorquens. This study provided an efficient genetic tool for manipulating M. extorquens, which not only help increase the expression of heterologous genes in M. extorquens but also provide a reference for strains lacking genetic manipulation vectors.


Assuntos
Vetores Genéticos , Integrases , Integrases/genética , Plasmídeos/genética , Ácido Láctico
6.
Microbiol Spectr ; 12(2): e0310922, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189293

RESUMO

Developing a vaccine against Clostridioides difficile is a key strategy to protect the elderly. Two candidate vaccines using a traditional approach of intramuscular (IM) delivery of recombinant antigens targeting C. difficile toxins A (TcdA) and B (TcdB) failed to meet their primary endpoints in large phase 3 trials. To elicit a mucosal response against C. difficile, we repurposed an attenuated strain of Salmonella Typhimurium (YS1646) to deliver the receptor binding domains (rbd) of TcdA and TcdB to the gut-associated lymphoid tissues, to elicit a mucosal response against C. difficile. In this study, YS1646 candidates with either rbdA or rbdB expression cassettes integrated into the bacterial chromosome at the attTn7 site were generated and used in a short-course multimodal vaccination strategy that combined oral delivery of the YS1646 candidate(s) on days 0, 2, and 4 and IM delivery of recombinant antigen(s) on day 0. Five weeks after vaccination, mice had high serum IgG titers and increased intestinal antigen-specific IgA titers. Multimodal vaccination increased the IgG avidity compared to the IM-only control. In the mesenteric lymph nodes, we observed increased IL-5 secretion and increased IgA+ plasma cells. Oral vaccination skewed the IgG response toward IgG2c dominance (vs IgG1 dominance in the IM-only group). Both oral alone and multimodal vaccination against TcdA protected mice from lethal C. difficile challenge (100% survival vs 30% in controls). Given the established safety profile of YS1646, we hope to move this vaccine candidate forward into a phase I clinical trial.IMPORTANCEClostridioides difficile remains a major public health threat, and new approaches are needed to develop an effective vaccine. To date, the industry has focused on intramuscular vaccination targeting the C. difficile toxins. Multiple disappointing results in phase III trials have largely confirmed that this may not be the best strategy. As C. difficile is a pathogen that remains in the intestine, we believe that targeting mucosal immune responses in the gut will be a more successful strategy. We have repurposed a highly attenuated Salmonella Typhimurium (YS1646), originally pursued as a cancer therapeutic, as a vaccine vector. Using a multimodal vaccination strategy (both recombinant protein delivered intramuscularly and YS1646 expressing antigen delivered orally), we elicited both systemic and local immune responses. Oral vaccination alone completely protected mice from lethal challenge. Given the established safety profile of YS1646, we hope to move these vaccine candidates forward into a phase I clinical trial.


Assuntos
Toxinas Bacterianas , Compostos de Boro , Clostridioides difficile , Humanos , Animais , Camundongos , Idoso , Toxinas Bacterianas/genética , Salmonella typhimurium/genética , Clostridioides difficile/genética , Vacinas Bacterianas , Vacinas Sintéticas , Vacinação , Imunoglobulina G , Imunoglobulina A
7.
Int J Mol Sci ; 24(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37834425

RESUMO

Transposons are nature's gene delivery vehicles that can be harnessed for experimental and therapeutic purposes. The Sleeping Beauty (SB) transposon shows efficient transposition and long-term transgene expression in human cells, and is currently under clinical development for gene therapy. SB transposition occurs into the human genome in a random manner, which carries a risk of potential genotoxic effects associated with transposon integration. Here, we evaluated an experimental strategy to manipulate SB's target site distribution by preferentially compartmentalizing the SB transposase to the nucleolus, which contains repetitive ribosomal RNA (rRNA) genes. We generated a fusion protein composed of the nucleolar protein nucleophosmin (B23) and the SB100X transposase, which was found to retain almost full transposition activity as compared to unfused transposase and to be predominantly localized to nucleoli in transfected human cells. Analysis of transposon integration sites generated by B23-SB100X revealed a significant enrichment into the p-arms of chromosomes containing nucleolus organizing regions (NORs), with preferential integration into the p13 and p11.2 cytobands directly neighboring the NORs. This bias in the integration pattern was accompanied by an enrichment of insertions into nucleolus-associated chromatin domains (NADs) at the periphery of nucleolar DNA and into lamina-associated domains (LADs). Finally, sub-nuclear targeting of the transposase resulted in preferential integration into chromosomal domains associated with the Upstream Binding Transcription Factor (UBTF) that plays a critical role in the transcription of 47S rDNA gene repeats of the NORs by RNA Pol I. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering.


Assuntos
Elementos de DNA Transponíveis , Transposases , Humanos , Transposases/metabolismo , Elementos de DNA Transponíveis/genética , Mutagênese Insercional , Técnicas de Transferência de Genes , Transgenes
9.
Diagn Microbiol Infect Dis ; 107(2): 116029, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37527599

RESUMO

Interpretation of human herpesvirus type 6 (HHV6) detection in the cerebrospinal fluid (CSF) of children can be complex; the virus can cause acute infection, reactivation, or can be inherited chromosomally integrated (iciHHV6). Our objectives were to determine the prevalence of HHV6 including iciHHV6 in CSF and compare the clinical and laboratory characteristics with and without iciHHV6 in our patient population. Overall, the prevalence of HHV6 and iciHHV6 was 2.4% and 0.85%, respectively. Children with iciHHV6 were significantly younger and less likely to present with fever. Septic infants (≤60 days) accounted for 65.2% (15/23) of the iciHHV6 patients. Patients with iciHHV6 had higher viral loads in CSF and whole blood. Twenty-one (91.3%) patients with iciHHV6 and 12 (33.3%) without ici-HHV6 were determined to have an incidental detection of HHV6 not associated with presenting symptoms. Molecular detection of HHV6 in CSF is not always associated with HHV6 infection and may represent iciHHV6 particularly in infants evaluated for sepsis.


Assuntos
Herpesvirus Humano 6 , Infecções por Roseolovirus , Lactente , Criança , Humanos , Herpesvirus Humano 6/genética , Infecções por Roseolovirus/diagnóstico , Infecções por Roseolovirus/complicações , Carga Viral
10.
J Infect ; 87(3): 199-209, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37369264

RESUMO

OBJECTIVE: Whole genome sequencing (WGS) of extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-E. coli) in developing countries is lacking. Here we describe the population structure and molecular characteristics of ESBL-E. coli faecal isolates in rural Southern Niger. METHODS: Stools of 383 healthy participants were collected among which 92.4% were ESBL-Enterobacterales carriers. A subset of 90 ESBL-E. coli containing stools (109 ESBL-E. coli isolates) were further analysed by WGS, using short- and long-reads. RESULTS: Most isolates belonged to the commensalism-adapted phylogroup A (83.5%), with high clonal diversity. The blaCTX-M-15 gene was the major ESBL determinant (98.1%), chromosome-integrated in approximately 50% of cases, in multiple integration sites. When plasmid-borne, blaCTX-M-15 was found in IncF (57.4%) and IncY plasmids (26.2%). Closely related plasmids were found in different genetic backgrounds. Genomic environment analysis of blaCTX-M-15 in closely related strains argued for mobilisation between plasmids or from plasmid to chromosome. CONCLUSIONS: Massive prevalence of community faecal carriage of CTX-M-15-producing E. coli was observed in a rural region of Niger due to the spread of highly diverse A phylogroup commensalism-adapted clones, with frequent chromosomal integration of blaCTX-M-15. Plasmid spread was also observed. These data suggest a risk of sustainable implementation of ESBL in community faecal carriage.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Níger/epidemiologia , Antibacterianos , beta-Lactamases/genética , Plasmídeos/genética
11.
mSystems ; 8(3): e0127522, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272726

RESUMO

Epidemiological surveys have shown that carbapenem resistance is mainly transmitted across species by carbapenemase genes located on conjugative plasmids. As chromosomal integration of carbapenemase genes has rarely been identified, only a few studies have investigated their advantages to the carbapenem-resistant bacterial community. Here, we confirmed the increased stability of blaIMP-6 on a chromosome-integrated plasmid in an Escherichia coli isolate compared with that on original plasmids in the absence of antibiotic pressure. Although plasmids carrying carbapenemase genes are supposedly lost in successive generations, we found that the complete plasmid backbone was retained in bacterial cells even after the occasional loss of their antibiotic-resistance cassettes. This backbone structure has been observed worldwide to carry various antimicrobial resistance genes. Although the chromosomally integrated plasmid carrying blaIMP-6 could not be transmitted by conjugation, we found that meropenem treatment for 1 wk allowed the plasmid to be released from the chromosome and spread among E. coli strains that were susceptible to meropenem. The copy number of blaIMP-6 on the plasmid was amplified eight times, resulting in enhanced resistance. Although the carbapenemase producers that carry chromosomal carbapenemase genes comprised of small subpopulations, they functioned as stable, long-term reservoirs of carbapenem resistance that could be disseminated via plasmids with amplified resistance upon meropenem stimulation. Although plasmids occasionally lose their resistance cassettes as a scaffold for the acquisition of another resistance gene, chromosomal integration may contribute to the effective sharing of carbapenem resistance within a population, complicating the development of a strategy to avoid the dissemination of antimicrobial resistance. IMPORTANCE Although carbapenem antibiotics are the last resort for combating multidrug-resistant organisms, global dissemination of carbapenem-resistant Enterobacteriaceae (CRE) threatens public health. Carbapenemases, which are enzymes responsible for carbapenem resistance, are mainly encoded by genes on plasmids that can be transmitted across bacterial species. Owing to the rarity of chromosomally encoded carbapenemase genes, studies investigating their properties in bacterial communities are lacking. In our study, we revealed the stability of carbapenemase genes on chromosomes compared with those on plasmids, which can be lost through the loss of antimicrobial resistance cassettes despite robust retention of plasmid backbones. Following exposure to meropenem, the carbapenemase gene integrated into the chromosome was released as a plasmid, restarting the dissemination of enhanced carbapenem resistance through amplified copy numbers of carbapenemase genes. Chromosomally encoded carbapenemase genes may function as a reservoir of resistance genes within the bacterial community and challenge infection control against CRE dissemination.


Assuntos
Carbapenêmicos , Escherichia coli , Carbapenêmicos/farmacologia , Escherichia coli/genética , Meropeném/farmacologia , Antibacterianos/farmacologia , Plasmídeos/genética
12.
Biotechnol Bioeng ; 120(7): 1762-1772, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186287

RESUMO

Cytochromes P450 are useful biocatalysts in synthetic chemistry and important bio-bricks in synthetic biology. Almost all bacterial P450s require separate redox partners for their activity, which are often expressed in recombinant Escherichia coli using multiple plasmids. However, the application of CRISPR/Cas recombineering facilitated chromosomal integration of heterologous genes which enables more stable and tunable expression of multi-component P450 systems for whole-cell biotransformations. Herein, we compared three E. coli strains W3110, JM109, and BL21(DE3) harboring three heterologous genes encoding a P450 and two redox partners either on plasmids or after chromosomal integration in two genomic loci. Both loci proved to be reliable and comparable for the model regio- and stereoselective two-step oxidation of (S)-ketamine. Furthermore, the CRISPR/Cas-assisted integration of the T7 RNA polymerase gene enabled an easy extension of T7 expression strains. Higher titers of soluble active P450 were achieved in E. coli harboring a single chromosomal copy of the P450 gene compared to E. coli carrying a medium copy pET plasmid. In addition, improved expression of both redox partners after chromosomal integration resulted in up to 80% higher (S)-ketamine conversion and more than fourfold increase in total turnover numbers.


Assuntos
Escherichia coli , Ketamina , Escherichia coli/genética , Escherichia coli/metabolismo , Ketamina/metabolismo , Plasmídeos/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
13.
Biotechnol Biofuels Bioprod ; 16(1): 57, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005680

RESUMO

Engineering sustainable bioprocesses that convert abundant waste into fuels is pivotal for efficient production of renewable energy. We previously engineered an Escherichia coli strain for optimized bioethanol production from lactose-rich wastewater like concentrated whey permeate (CWP), a dairy effluent obtained from whey valorization processes. Although attractive fermentation performances were reached, significant improvements are required to eliminate recombinant plasmids, antibiotic resistances and inducible promoters, and increase ethanol tolerance. Here, we report a new strain with chromosomally integrated ethanologenic pathway under the control of a constitutive promoter, without recombinant plasmids and resistance genes. The strain showed extreme stability in 1-month subculturing, with CWP fermentation performances similar to the ethanologenic plasmid-bearing strain. We then investigated conditions enabling efficient ethanol production and sugar consumption by changing inoculum size and CWP concentration, revealing toxicity- and nutritional-related bottlenecks. The joint increase of ethanol tolerance, via adaptive evolution, and supplementation of small ammonium sulphate amounts (0.05% w/v) enabled a fermentation boost with 6.6% v/v ethanol titer, 1.2 g/L/h rate, 82.5% yield, and cell viability increased by three orders of magnitude. Our strain has attractive features for industrial settings and represents a relevant improvement in the existing ethanol production biotechnologies.

14.
Microbiol Spectr ; 11(3): e0403322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37042789

RESUMO

Pseudomonas aeruginosa ST308 clone has been reported to carry carbapenemase genes such as blaIMP and blaVIM but has been rarely associated with blaNDM-1. A total of 199 P. aeruginosa ST308 clinical and environmental isolates obtained between April 2019 and November 2020 from a tertiary-care hospital in Singapore were characterized using whole-genome sequencing. In addition, 71 blaNDM-1-positive ST308 whole-genome sequences from two other local tertiary-care hospitals in Singapore and 83 global blaNDM-1-negative ST308 whole-genome sequences in public databases were included to assess phylogenetic relationships and perform genome analyses. Phylogenetic analysis and divergent time estimation revealed that blaNDM-1-positive P. aeruginosa ST308 was introduced into Singapore in 2005 (95 % highest posterior density: 2001 to 2008). Core genome, resistome, and analyses of all local blaNDM-1-positive ST308 isolates showed chromosomal integration of multiple antibiotic resistance genes (ARGs) [aac(3)-Id, aac(6')-Il, aadA6, aadA11, dfrB5, msr(E), floR, sul2, and qnrVC1], which was absent in global blaNDM-1-negative ST308 sequences. Most ARGs and virulence genes were conserved across isolates originating from the three different local hospitals. Close genetic relatedness of the blaNDM-1-positive ST308 clinical and environmental isolates suggests cocirculation between the hospital environment and human hosts with the hospital environment as a potential reservoir. Core genome single nucleotide polymorphism analyses revealed possible clonal transmission of blaNDM-1-positive ST308 isolates between the three hospitals over 7 years. Bloodstream isolates accounted for six of 95 (6.3%) clinical isolates. This study reports the introduction of a pathogenic blaNDM-1-positive P. aeruginosa ST308 more than a decade ago in Singapore and warrants surveillance for wider dissemination. IMPORTANCE P. aeruginosa is a Gram-negative opportunistic pathogen ubiquitously found in the environment and a major cause of nosocomial infections. While the P. aeruginosa ST308 clone has been known to bear blaIMP and blaVIM among global isolates, reports of blaNDM-1-positive P. aeruginosa ST308 are rare. The local blaNDM-1-positive P. aeruginosa ST308 isolates detected in this study appear to be unique to this region, with evidence of chromosomal acquisition of multiple ARGs compared to global blaNDM-1-negative P. aeruginosa ST308 isolates. Surveillance in Singapore and beyond for dissemination is essential to determine whether existing measures are sufficient to control the spread of this ST308 clone.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Singapura/epidemiologia , Filogenia , Infecções por Pseudomonas/epidemiologia , Antibacterianos/farmacologia , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
15.
Microorganisms ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985122

RESUMO

Inherited chromosomally integrated human herpesvirus 6 (iciHHV-6) is a condition in which the complete HHV-6 genome is integrated into the chromosomes of the host germ cell and is vertically transmitted. The aims of this study were to identify iciHHV-6 prevalence in hospitalized patients and clinical features in individuals carrying this integration. HHV-6 PCR on hair follicles was used to confirm iciHHV-6 status when the blood viral load was more than 5 Log10 copies/mL. From January 2012 to June 2022, HHV-6 DNAemia was investigated in 2019 patients. In particular, 49 had a viral load higher than 6 Log10 copies/mL and HHV-6 DNA in hair follicles was positive. A viral load between 5.0 and 5.9 Log10 copies/mL was observed in 10 patients: 6 infants with acute HHV-6 infection and 4 patients with leukopenia and HHV-6 integration. Therefore, the iciHHV-6 prevalence in our population was 2.6% (53/2019). Adult patients with integration presented hematological (24%), autoimmune (11%), autoimmune neurological (19%), not-autoimmune neurological (22%), and other diseases (19%), whereas 5% had no clinically relevant disease. Although in our study population a high percentage of iciHHV-6 adult hospitalized patients presented a specific pathology, it is still unknown whether the integration is responsible for, or contributes to, the disease development.

16.
Sheng Wu Gong Cheng Xue Bao ; 39(3): 842-857, 2023 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-36994558

RESUMO

The modern bio-fermentation industry requires design and creation of efficient microbial cell factories for directed conversion of raw materials to target products. The main criteria for assessing the performance of microbial cell factories are their product synthesis capacity and stability. Due to the deficiencies of plasmids in gene expression such as instability and being easy to lose, integration of genes into chromosome is often a better choice for stable expression in microbial hosts. To this end, chromosomal gene integration technology has received much attention and has developed rapidly. In this review, we summarize the recent research progresses of chromosomal integration of large DNA fragments in microorganisms, illustrate the principles and features of various technologies, highlight the opportunity brought by the CRISPR-associated transposon systems, and prospect future research direction of this technology.


Assuntos
Cromossomos , DNA , Plasmídeos , Clonagem Molecular , Fermentação
17.
Genes (Basel) ; 14(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833448

RESUMO

Human herpes virus 6A (HHV-6A) is able to integrate into the telomeric and subtelomeric regions of human chromosomes representing chromosomally integrated HHV-6A (ciHHV-6A). The integration starts from the right direct repeat (DRR) region. It has been shown experimentally that perfect telomeric repeats (pTMR) in the DRR region are required for the integration, while the absence of the imperfect telomeric repeats (impTMR) only slightly reduces the frequency of HHV-6 integration cases. The aim of this study was to determine whether telomeric repeats within DRR may define the chromosome into which the HHV-6A integrates. We analysed 66 HHV-6A genomes obtained from public databases. Insertion and deletion patterns of DRR regions were examined. We also compared TMR within the herpes virus DRR and human chromosome sequences retrieved from the Telomere-to-Telomere consortium. Our results show that telomeric repeats in DRR in circulating and ciHHV-6A have an affinity for all human chromosomes studied and thus do not define a chromosome for integration.


Assuntos
Herpesvirus Humano 6 , Humanos , Herpesvirus Humano 6/genética , Telômero , Cromossomos Humanos , Sequências Repetitivas de Ácido Nucleico
18.
J Agric Food Chem ; 71(5): 2464-2471, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36700831

RESUMO

l-Fucose is a natural deoxy hexose found in a variety of organisms. It possesses many physiological effects and has potential applications in pharmaceutical, cosmetic, and food industries. Microbial synthesis via metabolic engineering attracts increasing attention for efficient production of important chemicals. Previously, we reported the construction of a metabolically engineered Escherichia coli strain with high 2'-fucosyllactose productivity. Herein, we further introduced Bifidobacterium bifidum α-l-fucosidase via both plasmid expression and genomic integration and blocked the l-fucose assimilation pathway by deleting fucI, fucK, and rhaA. The highest l-fucose titers reached 6.31 and 51.05 g/L in shake-flask and fed-batch cultivation, respectively. l-Fucose synthesis was little affected by lactose added, and there was almost no 2'-fucosyllactose residue throughout the cultivation processes. The l-fucose productivity reached 0.76 g/L/h, indicating significant potential for large-scale industrial applications.


Assuntos
Escherichia coli , Trissacarídeos , Escherichia coli/genética , Trissacarídeos/metabolismo , Fucose/metabolismo , Engenharia Metabólica , Fermentação
19.
Chinese Journal of Biotechnology ; (12): 842-857, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970409

RESUMO

The modern bio-fermentation industry requires design and creation of efficient microbial cell factories for directed conversion of raw materials to target products. The main criteria for assessing the performance of microbial cell factories are their product synthesis capacity and stability. Due to the deficiencies of plasmids in gene expression such as instability and being easy to lose, integration of genes into chromosome is often a better choice for stable expression in microbial hosts. To this end, chromosomal gene integration technology has received much attention and has developed rapidly. In this review, we summarize the recent research progresses of chromosomal integration of large DNA fragments in microorganisms, illustrate the principles and features of various technologies, highlight the opportunity brought by the CRISPR-associated transposon systems, and prospect future research direction of this technology.


Assuntos
Cromossomos , Plasmídeos , DNA , Clonagem Molecular , Fermentação
20.
Front Bioeng Biotechnol ; 10: 953034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091434

RESUMO

Exogenous glucocorticoids increase the risk for osteoporosis, but the role of endogenous glucocorticoids remains elusive. Here, we describe the generation and validation of a loss- and a gain-of-function model of the cortisol producing enzyme 11ß-HSD1 (HSD11B1) to modulate the endogenous glucocorticoid conversion in SCP-1 cells - a model for human mesenchymal stem cells capable of adipogenic and osteogenic differentiation. CRISPR-Cas9 was successfully used to generate a cell line carrying a single base duplication and a 5 bp deletion in exon 5, leading to missense amino acid sequences after codon 146. These inactivating genomic alterations were validated by deep sequencing and by cloning with subsequent capillary sequencing. 11ß-HSD1 protein levels were reduced by 70% in the knockout cells and cortisol production was not detectable. Targeted chromosomal integration was used to stably overexpress HSD11B1. Compared to wildtype cells, HSD11B1 overexpression resulted in a 7.9-fold increase in HSD11B1 mRNA expression, a 5-fold increase in 11ß-HSD1 protein expression and 3.3-fold increase in extracellular cortisol levels under adipogenic differentiation. The generated cells were used to address the effects of 11ß-HSD1 expression on adipogenic and osteogenic differentiation. Compared to the wildtype, HSD11B1 overexpression led to a 3.7-fold increase in mRNA expression of lipoprotein lipase (LPL) and 2.5-fold increase in lipid production under adipogenic differentiation. Under osteogenic differentiation, HSD11B1 knockout led to enhanced alkaline phosphatase (ALP) activity and mRNA expression, and HSD11B1 overexpression resulted in a 4.6-fold and 11.7-fold increase in mRNA expression of Dickkopf-related protein 1 (DKK1) and LPL, respectively. Here we describe a HSD11B1 loss- and gain-of-function model in SCP-1 cells at genetic, molecular and functional levels. We used these models to study the effects of endogenous cortisol production on mesenchymal stem cell differentiation and demonstrate an 11ß-HSD1 dependent switch from osteogenic to adipogenic differentiation. These results might help to better understand the role of endogenous cortisol production in osteoporosis on a molecular and cellular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA