Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.893
Filtrar
1.
Anal Bioanal Chem ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095616

RESUMO

The widespread application of enzymes in industrial chemical synthesis requires efficient process control to maintain high yields and purity. Flow injection analysis-electrospray ionization-mass spectrometry (FIA-ESI-MS) offers a promising solution for real-time monitoring of these enzymatic processes, particularly when handling challenging compounds like sugars and glycans, which are difficult to quickly analyze using liquid chromatography-mass spectrometry due to their physical properties or the requirement for a derivatization step beforehand. This study compares the performance of FIA-MS with traditional hydrophilic interaction liquid chromatography (HILIC)-ultra high-performance liquid chromatography (UHPLC)-mass spectrometry (MS) setups for the monitoring of the enzymatic synthesis of N-acetyllactosamine (LacNAc) using beta-1,4-galactosyltransferase. Our results show that FIA-MS, without prior chromatographic separation or derivatization, can quickly generate accurate mass spectrometric data within minutes, contrasting with the lengthy separations required by LC-MS methods. The rapid data acquisition of FIA-MS enables effective real-time monitoring and adjustment of the enzymatic reactions. Furthermore, by eliminating the derivatization step, this method offers the possibility of being directly coupled to a continuously operated reactor, thus providing a rapid on-line methodology for glycan synthesis as well.

2.
Talanta ; 280: 126689, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39153255

RESUMO

The conceptual expansion, fast development, and general acceptance of flow analysis are consequence of its adherence to the principles of green and white analytical chemistry, and chemical derivatization plays an essential role in this context. Through the flow analysis development, however, some of its potentialities and limitations have been overlooked. This is more evident when the involved modifications in flow rates, timing and/or manifold architecture deteriorate the analytical signals. These aspects have not always been systematically investigated, and are addressed here in relation to flow analyzers with UV-Vis spectrophotometric detection. Novel strategies for solution handling, guidance for dealing with the aforementioned analytical signal deterioration, and an alternative possibility for exploiting differential aspiration are presented. The concept of blank reagent carrier stream is proposed.

3.
Water Res ; 263: 122167, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106623

RESUMO

Ethylmercury (EtHg), similar to methylmercury (MeHg), is highly neurotoxic and bioaccumulative. Although recent studies suggested its occurrence in natural soils and sediments, the common propylation derivatization for EtHg analysis might generate EtHg artifacts, potentially leading to its overestimation in environmental samples. Furthermore, the extensive environmental prevalence of EtHg remains unverified, keeping its importance largely uncertain. This study investigated the formation of EtHg artifacts during propylation derivatization, evaluating artifacts formation and recoveries under different extraction methods with real samples, and confirmed the widespread occurrence of EtHg in Chinese wetlands. EtHg artifacts were obviously present during the propylation derivatization and strongly dependent on the levels of Hg2+ (0.1-10 ng) in the derivatization solution (R² = 0.99), accounting for 1.38-2.14% of Hg2+. CuSO4-HNO3CH2Cl2 extraction (effectively removing Hg2+) combined with propylation derivatization offers excellent recovery (81-86%) and low artifacts (< LOD: 1.98 × 10-4 ng/g) for EtHg measurement in soils/sediments, with results aligning with those from online solid phase extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry (R2 = 0.99). Additionally, we observed the occurrence of EtHg in soil and sediment samples across 14 Chinese wetlands, with concentrations varying from 6.08 to 171 pg/g, similar to MeHg concentrations at some sites. EtHg positively correlates with MeHg, total Hg, and total organic carbon across all samples, indicating a possible biological formation. These findings help better understand and predict the prevalence of EtHg in wetlands and its key role in environmental Hg cycle.

4.
Phytochemistry ; 228: 114229, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127395

RESUMO

Scoparodane C (1), a diterpenoid with a rare 3,4-seco-3-nor-2,11-epoxy-ent-clerodane scaffold, was obtained from the aerial parts of Isodon scoparius, along with isocopariusines A-E (2-6), five ent-clerodanoids featuring a 5/6-fused ring system, and isocopariusines F-H (7-9), three common ent-clerodanoids. The structures of these previously undescribed compounds were established by a combination of spectroscopic analysis, X-ray diffraction, chemical derivatization, and quantum chemical calculation. Remarkably, isocopariusine B (3) showed strong resistance reversal activity against fluconazole-resistant Candida albicans.

5.
Anal Bioanal Chem ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138658

RESUMO

Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.

6.
Food Chem ; 460(Pt 3): 140754, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39121762

RESUMO

The determination of biogenic amines (BAs) in alcoholic beverages is crucial for assessing their health impact, ensuring beverage quality, and guaranteeing safety. Herein, a rapid one-pot derivatization/magnetic solid-phase extraction (OPD/MSPE) method was proposed using 6-aminoquinolinyl-N-hydroxysuccinimide carbamate as the derivatization reagent and magnetic hydroxyl-functionalized multi-walled carbon nanotubes as the extraction material. Integration of derivatization and extraction steps simplifies the sample preparation process, taking only three minutes and eliminating the need for centrifugation by utilizing magnetic sorbent. The resulting desorption solution was directly analyzed by high-performance liquid chromatography-fluorescence detection (HPLC-FLD) without any evaporation or reconstitution steps. The integrated OPD/MSPE-HPLC-FLD method demonstrates excellent linearity (R2 > 0.992), accuracy (relative recoveries: 85.1-109.2%), precision (RSDs≤9.7%) and detection limits (limits of detection: 0.3-2 ng/mL). It has been successfully applied to determine free BAs in various alcoholic beverages, including red wine, Baijiu, Huangjiu, and beer. This method enables rapid, sensitive and precise analysis of BAs in alcoholic beverages.

7.
Mol Divers ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102113

RESUMO

Edaravone, a pyrazalone derivative, is an antioxidant and free radical scavenger used to treat oxidative stress-related diseases. It is a proven drug to mitigate conditions prevailing to oxidative stress by inhibiting lipid peroxidation, reducing inflammation, and thereby preventing endothelial cell death. In recent years, considerable interest has been given by researchers in the derivatization of edaravone by adding varieties of substituents of versatile steric and functional properties to improve its antioxidant and pharmacological activity. This review accounts all the important methods developed for the derivatization of edaravone and the impacts of the structural modifications on the antioxidant activity of the motif.

8.
Se Pu ; 42(8): 792-798, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39086248

RESUMO

Sodium cyclamate in Baijiu is a key item in the China National Food Safety Supervision and Inspection Plan. A simple, economical, sensitive, and reliable method is urgently needed for routine analysis and internal quality control. A method based on high performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed for the determination of sodium cyclamate in Baijiu by o-phthalaldehyde derivatization. First, the sodium cyclamate in the sample solution was converted into amino compounds using the desulfurization reaction under acidic conditions. Next, 400 g/L sodium hydroxide solution was added to the sample solution for neutralization. The amino compounds in the sample solution were then derivatized with o-phthalaldehyde to produce indole-substituted derivatives that are capable of producing fluorescence signals. Separation was carried out on a C18 column (250 mm×4.6 mm, 5 µm) in isocratic elution mode using a mobile phase consisting of acetonitrile and phosphate buffer. Finally, the eluate was monitored using a fluorescence detector, and an external standard method was used for quantification. A good linear relationship was obtained in the range of 0.1-2.0 mg/L, with correlation coefficients greater than 0.999. The average recoveries of sodium cyclamate spiked at levels of 0.1-1.0 mg/kg in Baijiu samples ranged from 90.7% to 100.9%, with relative standard deviations (RSDs) of 3.5%-5.6% (n=6). The limits of detection and quantification were 0.03 and 0.10 mg/kg, respectively. Nine Baijiu samples collected from the market were tested, and the results demonstrated that the contents of sodium cyclamate detected by the developed method were consistent with those obtained using the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method described in GB 5009.97-2016 (the third method). The proposed method is economical, sensitive, specific, and accurate; thus, it provides a basic approach for the determination of sodium cyclamate in Baijiu samples and has great potential for routine analysis in foodstuffs.


Assuntos
Ciclamatos , Fluorometria , Contaminação de Alimentos , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Ciclamatos/análise , Fluorometria/métodos
9.
Anal Chim Acta ; 1320: 343007, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142784

RESUMO

BACKGROUND: Personalized medicine is a rapidly revolving field that offers new opportunities for tailoring disease treatment to individual patients. The main idea behind this approach is to carefully select safe and effective medications and treatment plant based on each patient's unique pharmacokinetic profile. Isoniazid is a first-line anti-tuberculosis drug that has interindividual variability in its metabolic processing, leading to significant differences in plasma concentrations among patients receiving equivalent doses. This variability necessitates the creation of individualized treatment regimens as part of personalized medicine to achieve more effective therapy. RESULTS: In this work, a deep eutectic solvent-based liquid-liquid microextraction approach for the separation and determination of isoniazid in human plasma by high-performance liquid chromatography with UV-Vis detection was developed for the first time. A new natural deep eutectic solvent based on thymol as a hydrogen bond donor and 4-methoxybenzaldehyde as a hydrogen bond acceptor was proposed as the extraction solvent. The developed microextraction procedure assumed two simultaneous processes during the mixing of the sample and extraction solvent: the derivatization of the polar analyte in the presence of 4-methoxybenzaldehyde (component of the natural deep eutectic solvent) with the formation of a hydrophobic Schiff base (1); mass transfer of the Schiff base from the sample phase to the extraction solvent phase (2). Under optimal conditions, the limits of detection and quantification were 20 and 60 µg L-1, respectively. The RSD value was <10 %, the extraction recovery was 95 %. SIGNIFICANCE: In this work, the possibility of isoniazid derivatization in the natural deep eutectic solvent phase with the formation of the Schiff base was presented for the first time. The approach provided the separation and preconcentration of polar isoniazid without the use of expensive derivatization agents and solid-phase extraction cartridges. The formation of the Schiff base was confirmed by mass spectrometry.


Assuntos
Solventes Eutéticos Profundos , Isoniazida , Microextração em Fase Líquida , Isoniazida/sangue , Isoniazida/química , Isoniazida/isolamento & purificação , Humanos , Microextração em Fase Líquida/métodos , Solventes Eutéticos Profundos/química , Cromatografia Líquida de Alta Pressão/métodos , Antituberculosos/sangue , Antituberculosos/isolamento & purificação , Antituberculosos/química
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124814, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39067364

RESUMO

Ammonia nitrogen is one of the most important indicators for evaluating the quality of water bodies. It is very difficult to determine ammonia nitrogen directly by Surface-enhanced Raman spectroscopy (SERS) in practice. In order to realize SERS determination of ammonia nitrogen, in this paper, SERS combined with density functional theory (DFT) was used to investigate why ammonia nitrogen needs to be derivatized to hexamethylenetetramine (HMTA) and why HMTA can be determined using SERS. The molecular electrostatic potential (MEP) results exhibit that there was no adsorption site on the surface of ammonia nitrogen, whereas its derivate HMTA had four available adsorption sites. This provides a basic guarantee for the SERS detection of HMTA. The molecular adsorption state of HMTA on the gold nanoparticles surface was concluded from the binding energies, the bond length, and the Raman activity spectra. Among them, the HMTA-Au4 complex has the lowest bond energy (-586.873 Kcal/mol) and the shortest bond length (2.161 Å), which is the most stable state and its Raman activity spectrum is the closest to the experimental data. Calculations results of frontier molecular orbital (FMO) demonstrate that the energy gap of HMTA and HMTA-Au4 complex are 0.30258 eV and 0.10947 eV, respectively, with a really obvious difference between them, which indicates that the HMAT-Au4 complex possessed higher chemical reactivity. In addition, charge transfer phenomenon on the MEP of HMTA-Au4 complex was deduced due to the change in the symmetry of its charge distribution, which can be explained the mechanism of chemical enhancement in the detection of HMTA by SERS. The selective enhancement at 1048 cm-1 peaks in theoretical spectrum and at 1044 peaks cm-1 in experimental spectrum provided theoretical and practical basis for indirect determination of ammonia nitrogen by SERS. The obtained results will help to better understand the reasons why some components are difficult to be directly determined by SERS, and why these components need to be derivatized. It provides a new method for components that are difficult to detect by SERS.

11.
Food Chem ; 460(Pt 1): 140481, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39067382

RESUMO

Furfurals, including 2-furaldehyde, 5-methylfurfural and 5-hydroxymethylfurfural, widely exist in carbohydrate-rich daily foods, and may have toxic effects on humans. Here, a new headspace extraction-paper spray mass spectrometry (HSPS-MS/MS) method was established for furfural detection, in which the extraction and derivatization of volatiles with pre-loaded derivatization agent on paper tips is combined with paper spray mass spectrometry for detection. By this simple and cheap approach, interference of non-volatile matrix compounds is prevented, and the derivatization agent improves electrospray-type ionization efficiency, thus increasing selectivity and sensitivity. The approach was optimized, by investigating positioning during extraction, extraction duration, derivatization agent, addition of internal standard for quantification and finally validated. For this, the developed method was benchmarked against HPLC-UV and could obtain detections limits of 0.32-0.40 µg mL-1 for 2-furaldehyde, 5-methylfurfural and 5-hydroxymethylfurfural in olive oil. Moreover, fast screening of free furfurals in soy sauce, coffees and teas was demonstrated with the HSPS-MS/MS method.

12.
Anal Chim Acta ; 1318: 342945, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39067924

RESUMO

BACKGROUND: In sharp contrast with analysis of N-glycan that can be prepared by PNGase F, O-glycan analysis remains challenging due to a lack of versatile and simple procedures, especially those mediating cleavage of O-glycans from proteins. Most N-glycans and O-glycans are modified with sialic acids at the non-reducing end and their glycosidic linkages are labile, making it difficult to measure glycans by mass spectrometric analysis. In addition, sialic acid residues present on glycan chains via α2,3-, α2,6-, and α2,8-linkages as structural isomers. RESULTS: In this study, we firstly established a direct and linkage-specific derivatization method for sialylated O-glycans on proteins via linkage-specific lactone-opening aminolysis. In this procedure, labile sialylated glycans were not only stabilized, but also allowed distinguishing between sialyl linkages. Furthermore, we revealed that general reductive ß-elimination was not useful for O-glycan cleavages with undesirable degradations of resulting methyl amides. Using ß-elimination in the presence of pyrazolone (PMP), with low pH despite alkali base concentration, SALSA-derivatized O-glycans could be cleaved with minimal degradations. Cleaved and PMP-labeled O-glycans could be efficiently prepared in an open reaction system at high temperature (evaporative BEP reaction) and detected by simple liquid-phase extraction. Moreover, in the evaporative BEP reaction by changing the alkali solution with LiOH, the lithiated O-glycans could be observed and provided a lot of fragment information reflecting the complex structure of the O-glycans. SIGNIFICANCE: Direct sialic acid linkage-specific derivatization of O-glycans on glycoproteins is simple protocol containing in-solution aminolysis-SALSA and acetonitrile precipitation for removal of excess reagents. Evaporative ß-elimination with pyrazolone makes possible intact O-linked glycan analysis just by liquid-phase extraction. These analytical methods established by the appropriate combination of direct-SALSA and evaporative ß-elimination will facilitate O-glycomic studies in various biological samples.


Assuntos
Polissacarídeos , Ácidos Siálicos , Polissacarídeos/química , Ácidos Siálicos/química
13.
Se Pu ; 42(7): 711-720, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966979

RESUMO

Protein citrullination is an irreversible post-translational modification process regulated by peptidylarginine deiminases (PADs) in the presence of Ca2+. This process is closely related to the occurrence and development of autoimmune diseases, cancers, neurological disorders, cardiovascular and cerebrovascular diseases, and other major diseases. The analysis of protein citrullination by biomass spectrometry confronts great challenges owing to its low abundance, lack of affinity tags, small mass-to-charge ratio change, and susceptibility to isotopic and deamidation interferences. The methods commonly used to study the protein citrullination mainly involve the chemical derivatization of the urea group of the guanine side chain of the peptide to increase the mass-to-charge ratio difference of the citrullinated peptide. Affinity-enriched labels are then introduced to effectively improve the sensitivity and accuracy of protein citrullination by mass spectrometry. 2,3-Butanedione or phenylglyoxal compounds are often used as derivatization reagents to increase the mass-to-charge ratio difference of the citrullinated peptide, and the resulting derivatives have been observed to contain α-dicarbonyl structures. To date, however, no relevant studies on the reactivity of dicarbonyl compounds with citrullinated peptides have been reported. In this study, we determined whether six α-dicarbonyl and two ß-dicarbonyl compounds undergo derivatization reactions with standard citrullinated peptides using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Among the α-dicarbonyl compounds, 2,3-butanedione and glyoxal reacted efficiently with several standard citrullinated peptides, but yielded a series of by-products. Phenylglyoxal, methylglyoxal, 1,2-cyclohexanedione, and 1,10-phenanthroline-5,6-dione also derivated efficiently with standard citrullinated peptides, generating a single derivative. Thus, a new derivatization method that could yield a single derivative was identified. Among the ß-dicarbonyl compounds, 1,3-cyclohexanedione and 2,4-pentanedione successfully reacted with the standard citrullinated peptides, and generated a single derivative. However, their reaction efficiency was very low, indicating that the ß-dicarbonyl compounds are unsuitable for the chemical derivatization of citrullinated peptides. The above results indicate that the α-dicarbonyl structure is necessary for realizing the efficient and specific chemical derivatization of citrullinated peptides. Moreover, the side chains of the α-dicarbonyl structure determine the structure of the derivatives, derivatization efficiency, and generation (or otherwise) of by-products. Therefore, the specific enrichment and precise identification of citrullinated peptides can be achieved by synthesizing α-dicarbonyl structured compounds containing affinity tags. The proposed method enables the identification of citrullinated proteins and their modified sites by MS, thereby providing a better understanding of the distribution of citrullinated proteins in different tissues. The findings will be beneficial for studies on the mechanism of action of citrullinated proteins in a variety of diseases.


Assuntos
Citrulinação , Peptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peptídeos/química
14.
Bioorg Chem ; 150: 107603, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968905

RESUMO

Inhibition of LSD1 was proposed as promising and attractive therapies for treating osteoporosis. Here, we synthesized a series of novel TCP-(MP)-Caffeic acid analogs as potential LSD1 inhibitors to assess their inhibitory effects on osteoclastogenesis by using TRAP-staining assay and try to explore the preliminary SAR. Among them, TCP-MP-CA (11a) demonstrated osteoclastic bone loss both in vitro and in vivo, showing a significant improvement in the in vivo effects compared to the LSD1 inhibitor GSK-LSD1. Additionally, we elucidated a mechanism that 11a and its precursor that 11e directly bind to LSD1/CoREST complex through FAD to inhibit LSD1 demethylation activity and influence its downstream IκB/NF-κB signaling pathway, and thus regulate osteoclastic bone loss. These findings suggested 11a or 11e as potential novel candidates for treating osteoclastic bone loss, and a concept for further development of TCP-(MP)-Caffeic acid analogs for therapeutic use in osteoporosis clinics.


Assuntos
Ácidos Cafeicos , Osteoclastos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/síntese química , Animais , Relação Estrutura-Atividade , Camundongos , Estrutura Molecular , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Osteoporose/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Células RAW 264.7 , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química
15.
Anal Sci ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967710

RESUMO

Sampling and chromatography-mass spectrometry methods were investigated to measure atmospheric amines and aminoamides. Amines and their amide derivatives play significant roles in new particle formation (NPF) in the atmosphere, especially diamines and aminoamides have higher NPF potentials compared to monoamines. For amine sampling, silica gel tube collection and formic acid extraction gave good overall recoveries (>93 ± 8%) for mono-, di-, tri-, tetramines, and aminoamides. Two chromatography methods were subjected to analyze the extracted amines. One involved direct analysis using hydrophilic interaction liquid chromatography with carboxyl or diol group functioned separation column (carboxyl-HILIC or diol-HILIC), and the other utilized derivatization with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) and subsequent reversed-phase chromatography (HPLC). Separated amines were detected by electrospray ionization and tandem mass spectrometry in both cases. DBD-F-HPLC method provided good sensitivity for mono- and all polyamines (limit of detection (LOD) < 4.6 nM, relative standard deviation (RSD) for 100 nM < 9.2%). However, aminoamides could not be detected by DBD-F-HPLC. Carboxyl-HILIC provided good sensitivities for mono- and diamines and aminoamides (LOD < 1.6 nM, RSD < 4.8%). Forest air measurement was performed and data obtained by carboxyl-HILIC and DBD-F-HPLC showed good agreement for 1,3-diaminopropane, 1,4-diaminobutane (putrescine) and 1,5-diaminopentane (cadaverine) (R2 = 0.9215-0.9739, n = 7-14). Carboxyl-HILIC method was the best for the amine analysis, and combination with silica gel tube sampling provides atmospheric monitoring available. The developed method can be used not only to study atmospheric chemistry of diamines and aminoamides but also to analyze flavor/odor of foods, flowers and wastes.

16.
Biomaterials ; 311: 122698, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38968688

RESUMO

Peptides and molecular residues sourced from the fragmentation of the extracellular matrix (ECM) can exacerbate a plethora of cellular functions. We selected a natural ECM-derived complex peptide mixture to functionalize sodium alginate. Three alginate derivatives (sodium alginate conjugated with ECM) SALE-1, SALE-2, and SALE-3 were synthesized using the lowest (10 % w/w), moderate (50 % w/w), and highest (100 % w/w) concentrations of ECM. Thereafter, they were used to fabricate three groups of mat scaffolds EMAT-1 (ECM derivatized alginate thrombin-mat), EMAT-2, and EMAT-3, respectively by the freeze-drying process. To enhance the hemostatic activity, thrombin was loaded onto the scaffolds. Another group, AT, without any derivatized alginate was additionally included in order to comparative analysis. Physical characteristics revealed that the porous mat scaffold showed enhancement in degradation and swelling ability with the increase in ECM content. The higher cell proliferation, migration, and cell viability were noticed in the higher ECM-containing samples EMAT-2 and EMAT-3. In vivo studies using rodent hepatic and rabbit ear models were carried out to ensure the hemostatic ability of the scaffolds. EMAT-2 and EMAT-3 demonstrate excellent liver regeneration ability in rat models. Moreover, the rat cutaneous wound model depicted that EMAT-3 dramatically elevated the skin's healing ability, thereby rendering it an excellent candidate for future clinical application in wound healing.


Assuntos
Alginatos , Matriz Extracelular , Liofilização , Fígado , Pele , Alicerces Teciduais , Cicatrização , Animais , Alginatos/química , Matriz Extracelular/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Coelhos , Cicatrização/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Ratos , Alicerces Teciduais/química , Masculino , Humanos , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Trombina/metabolismo , Sobrevivência Celular/efeitos dos fármacos
17.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999005

RESUMO

BACKGROUND: Lincomycin (LIN) is extensively used for treating diseases in livestock and promoting growth in food animal farming, and it is frequently found in both the environment and in food products. Currently, most of the methods for detecting lincomycin either lack sensitivity and precision or require the use of costly equipment such as mass spectrometers. RESULT: In this study, we developed a reliable high-performance liquid chromatography-ultraviolet detection (HPLC-UVD) method and used it to detect LIN residue in 11 types of matrices (pig liver and muscle; chicken kidney and liver; cow fat, liver and milk; goat muscle, liver and milk; and eggs) for the first time. The tissue homogenates and liquid samples were extracted via liquid-liquid extraction, and subsequently purified and enriched via sorbent and solid phase extraction (SPE). After nitrogen drying, the products were derivatized with p-toluene sulfonyl isocyanic acid (PTSI) (100 µL) for 30 min at room temperature. Finally, the derivatized products were analyzed by HPLC at 227 nm. Under the optimized conditions, the method displayed impressive performance and demonstrated its reliability and practicability, with a limit of detection (LOD) and quantification (LOQ) of LIN in each matrix of 25-40 µg/kg and 40-60 µg/kg, respectively. The recovery ranged from 71.11% to 98.30%. CONCLUSIONS: The results showed that this method had great selectivity, high sensitivity, satisfactory recovery and cost-effectiveness-fulfilling the criteria in drug residue and actual detection requirements-and proved to have broad applicability in the field of detecting LIN in animal-derived foods.


Assuntos
Lincomicina , Cromatografia Líquida de Alta Pressão/métodos , Animais , Lincomicina/análise , Análise de Alimentos/métodos , Leite/química , Suínos , Galinhas , Limite de Detecção , Contaminação de Alimentos/análise , Reprodutibilidade dos Testes , Análise Custo-Benefício , Cabras , Bovinos , Ovos/análise , Resíduos de Drogas/análise
18.
Bioanalysis ; : 1-13, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023344

RESUMO

Aim: Bioanalytical assays to measure rhamnose, erythritol, lactulose and sucralose in human urine and plasma were developed to support an indomethacin challenge study for intestinal permeability assessment in healthy participants. Methods: The multi-sugar assays utilized 5-µl sample matrix and a simple chemical derivatization with acetic anhydride, followed by RPLC-MS/MS detection. Results: Rhamnose and erythritol quantification was established between 1.00-1,000 µg/ml in urine and 250-250,000 ng/ml in plasma. For lactulose and sucralose, dynamic ranges of 0.1-100 µg/ml (urine) and 25-25,000 ng/ml (plasma) were applied for biological measurements. Conclusion: This work helped overcome some of the common analytical challenges associated with the bioanalysis of mono- and disaccharides and achieved improved limits of quantification.


[Box: see text].

19.
Artigo em Inglês | MEDLINE | ID: mdl-39053110

RESUMO

ß-propiolactone (BPL) is an alkylating agent used for inactivation of biological samples such as vaccines. Due to its known carcinogenic properties, complete hydrolysis of BPL is essential, and the detection of trace amounts is crucial. In this study a novel High-Performance Liquid Chromatography-Ultraviolet (HPLC-UV) method was developed. Rhodamine B hydrazide (RBH) was synthesized and utilized as a derivatizing reagent to react with BPL. The reaction was optimized in a weak acidic solution, resulting in a high yield. The separation of the RBH-derivatized BPL was achieved on a C8 column and detected by a UV detector at a wavelength of 560 nm. The method's validation demonstrated a high linearity (r2 > 0.99) over a concentration range of 0.5-50 µg/mL, with detection and quantification limits of 0.17 µg/mL and 0.5 µg/mL, respectively. The average recovery of samples was 85.20 % with a relative standard deviation (RSD) of 1.75 %. This method was successfully applied for BPL residue analysis in inactivated COVID-19 vaccines. This novel derivatization method offers a promising solution for monitoring BPL residues in the vaccine production process for quality control purposes and compliance with regulatory standards.


Assuntos
Vacinas contra COVID-19 , Limite de Detecção , Propiolactona , Rodaminas , Cromatografia Líquida de Alta Pressão/métodos , Propiolactona/química , Rodaminas/química , Reprodutibilidade dos Testes , Vacinas contra COVID-19/química , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/análise , Modelos Lineares , SARS-CoV-2/química , Humanos , Hidrazinas/química , Hidrazinas/análise
20.
Phytochemistry ; 226: 114220, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38997099

RESUMO

Fourteen undescribed nitrogenous merosesquiterpenoids, purpurols A-D (1-4) and puraminones A-J (5-14), along with three known related compounds (15-17) were isolated from the sponge Pseudoceratina purpurea collected in the South China Sea. Their structures and absolute configurations were unambiguously elucidated by a combination of spectroscopic data, X-ray diffraction analysis, electronic circular dichroism calculations, and chemical derivatization. Purpurols A-D (1-4) incorporated nitrogenous heterocycles, compounds 1 and 2 feature an unusual benzothiazole ring, while 3 and 4 feature benzoxazole ring. Puraminones A-J (5-14) represent sesquiterpenoid aminoquinones with different amine and amino acid side chains at C-20. Additionally, twenty unreported sesquiterpenoid aminoquinone analogues were obtained through chemical derivatization. It is worth noting that all compounds are featured with unusual rearranged 4,9-friedodrimane subunit. In the bioassays, purpurols A and B showed weak anti-inflammation in zebrafish, as well as some compounds showed activities against tumor cells, therefore, preliminary structure-cytotoxicity relationships are also discussed.


Assuntos
Poríferos , Sesquiterpenos , Peixe-Zebra , Animais , Poríferos/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Humanos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA