Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Meat Sci ; 216: 109591, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38991481

RESUMO

Penicillium nordicum is the main ochratoxin A (OTA)-producing species on the surface of dry-fermented sausages, such as the "chorizo". New antifungal strategies are being developed using biocontrol agents (BCAs), such as plant extracts and native microorganisms. This work aimed to evaluate the antiochratoxigenic capacity and the causative modes of action of BCAs (rosemary essential oil (REO), acorn shell extract and the yeast Debaryomyces hansenii (Dh)) in a "chorizo"-based medium (Ch-DS). BCAs were inoculated on Ch-DS together with P. nordicum and incubated at 12 °C for 15 days to collect mycelia for OTA analyses and comparative proteomics. Both REO and Dh alone decreased OTA accumulation up to 99% and affected the abundance of P. nordicum proteins linked to cell wall organisation, synthesis of OTA-related metabolites and ergosterol synthesis. It is worth highlighting the increased abundance of an amidase by REO, matching with the decrease in OTA. The use of REO and Dh as BCAs could be an effective strategy to reduce the OTA hazard in the meat industry. Based on their not fully coincident modes of action, their combined application could be of interest in "chorizo" to maximise their potential against ochratoxigenic strains.


Assuntos
Produtos da Carne , Ocratoxinas , Penicillium , Extratos Vegetais , Proteômica , Penicillium/efeitos dos fármacos , Produtos da Carne/microbiologia , Produtos da Carne/análise , Ocratoxinas/análise , Proteômica/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Debaryomyces , Microbiologia de Alimentos , Óleos Voláteis/farmacologia , Cistus/química , Antifúngicos/farmacologia , Proteínas Fúngicas/metabolismo
2.
Int J Food Microbiol ; 422: 110826, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39024730

RESUMO

This study investigated the safety characteristics and potential probiotic properties of Enterococcus faecium by using whole genome analysis, and then explored the effect of this strain on the virulence of Listeria monocytogenes in vitro and during the storage of fermented sausages. Results showed that E. faecium B1 presented enterocin A, B, and P, enterolysin A, and UviB, and the exotoxin related genes and exoenzyme related genes were not detected in the genome of E. faecium B1. However, the adherence genes including acm and scm were present in this strain, which also positively correlated with characteristics related to probiotic potential. In addition, E. faecium could adapt to the condition of fermented sausages, and decrease the survival of L. monocytogenes in vitro and in vivo. The expression of the virulence genes (prfA, hly, inlA, and inlB) and sigB-related genes (prli42, rsbT, rsbU, rsbV, rsbW, and sigB) were all inhibited by E. faecium B1 to different extents during the storage of fermented sausages at 4 °C. Moreover, compared with the E. faecium B1 group, the expression level of entA, entB, and entP genes of E. faecium B1 in the co-culture of fermented sausages was increased during the storage, which may be the inhibition mechanism of E. faecium B1 on L. monocytogenes. These results demonstrated that E. faecium B1 could potentially be used as bio-protection to control L. monocytogenes in meat products.


Assuntos
Enterococcus faecium , Fermentação , Microbiologia de Alimentos , Listeria monocytogenes , Produtos da Carne , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Enterococcus faecium/genética , Enterococcus faecium/patogenicidade , Produtos da Carne/microbiologia , Virulência/genética , Animais , Genoma Bacteriano , Probióticos , Armazenamento de Alimentos , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , Alimentos Fermentados/microbiologia , Camundongos , Suínos
3.
Sci Rep ; 14(1): 11660, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777847

RESUMO

The presence of Salmonella in dry fermented sausages is source of recalls and outbreaks. The genomic diversity of 173 Salmonella isolates from the dry fermented sausage production chains (pig carcasses, pork, and sausages) from France and Spain were investigated through their core phylogenomic relationships and accessory genome profiles. Ten different serovars and thirteen sequence type profiles were identified. The most frequent serovar from sausages was the monophasic variant of S. Typhimurium (1,4,[5],12:i:-, 72%) while S. Derby was in pig carcasses (51%). Phylogenomic clusters found in S. 1,4,[5],12:i:-, S. Derby, S. Rissen and S. Typhimurium serovars identified closely related isolates, with less than 10 alleles and 20 SNPs of difference, displaying Salmonella persistence along the pork production chain. Most of the S. 1,4,[5],12:i:- contained the Salmonella genomic island-4 (SGI-4), Tn21 and IncFIB plasmid. More than half of S. Derby strains contained the SGI-1 and Tn7. S. 1,4,[5],12:i:- genomes carried the most multidrug resistance genes (91% of the strains), whereas extended-spectrum ß-lactamase genes were found in Typhimurium and Derby serovars. Salmonella monitoring and characterization in the pork production chains, specially S. 1,4,[5],12:i:- serovar, is of special importance due to its multidrug resistance capacity and persistence in dry fermented sausages.


Assuntos
Microbiologia de Alimentos , Produtos da Carne , Filogenia , Salmonella , Produtos da Carne/microbiologia , Espanha , França , Animais , Salmonella/genética , Salmonella/isolamento & purificação , Salmonella/classificação , Suínos , Fermentação , Genoma Bacteriano , Sorogrupo , Genômica/métodos , Ilhas Genômicas/genética
4.
J Food Prot ; 87(6): 100286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697485

RESUMO

The effect of fermentation and drying temperatures, caliber, and sodium lactate on Listeria monocytogenes inactivation was studied in salami, produced in a pilot scale, inoculated with 107 CFU/g of Listeria innocua ATCC® 33090 as a surrogate microorganism for L. monocytogenes. Fermentation temperature varied between 24 and 30°C, drying temperature between 14 and 20°C, caliber between 5.1 and 13.2 cm, and sodium lactate initial concentrations in salamis were 0 and 2%. L. innocua counts, pH and water activity were determined in salamis over time. Sodium lactate (2%) decreased pH drop and Listeria inactivation during fermentation. Baranyi & Roberts equation was used to fit the experimental data and to estimate, for each test condition, inactivation rate (k), initial (Y0), and final counts of L. innocua (YEND). Total inactivation was calculated as Y0 minus YEND (Y0-YEND). Then, using a Box Benkhen experimental design, a quadratic model for k and a two-factor interaction model (2FI) for Y0 - YEND were obtained as functions of fermentation temperature, drying temperature, and caliber size. The models predicted that maximum k and Y0 -YEND, -2.62 ± 0.14 log10 CFU/g/day and 4.5 ± 0.1 log10 CFU/g, respectively, would be obtained fermenting at 30°C and drying at 20°C regardless of caliber. Drying at 14°C allowed Listeria growth until a water activity (aw) of 0.92 was reached. Therefore, if initial Listeria contamination is high (3 log10 CFU/g), drying at low temperatures will compromise product safety.


Assuntos
Contagem de Colônia Microbiana , Fermentação , Microbiologia de Alimentos , Listeria monocytogenes , Lactato de Sódio , Temperatura , Lactato de Sódio/farmacologia , Produtos da Carne/microbiologia , Listeria , Concentração de Íons de Hidrogênio , Conservação de Alimentos/métodos , Manipulação de Alimentos/métodos
5.
J Agric Food Chem ; 72(15): 8749-8759, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579123

RESUMO

The precise impact of species and strain diversity on fungal-bacterial interactions and the overall community functioning has remained unclear. First, our study revealed how Debaryomyces hansenii influences diverse bacteria to accumulate key metabolites in a simulated fermented food system. For flavor, D. hansenii promoted the accumulation of branched-chain esters in Staphylococcus xylosus by promoting growth and facilitating the precursor branched-chain acids transformations but hindered the accumulation of Staphylococcus equorum. Furthermore, fungal-bacterial interactions displayed diversity among S. equorum strains. For bioactive compounds, species and strain diversity of lactic acid bacteria (LAB) also influences the production of indole derivatives. Then, we investigated specific metabolic exchanges under reciprocal interaction. Amino acids, rather than vitamins, were identified as the primary drivers of the bacterial growth promotion. Moreover, precursor transformations by D. hansenii played a significant role in branched-chain esters production. Finally, a synthetic community capable of producing high concentrations of branched-chain esters and indole derivatives was successfully constructed. These results provide valuable insights into understanding and designing synthetic communities for fermented sausages.


Assuntos
Produtos da Carne , Simbiose , Ésteres , Fermentação , Ácidos , Produtos da Carne/análise , Indóis
6.
Int J Food Microbiol ; 410: 110489, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38039926

RESUMO

Companilactobacillus alimentarius is a facultatively heterofermentative lactic acid bacterium (LAB) that is a significant constituent within the microbiota of various traditional fermented foods exerting several functions in fermentative or ripening processes. This species has been isolated from Spanish fermented sausages, where its frequency of isolation was comparable to those of Latilactobacillus sakei and Latilactobacillus curvatus. Despite to its presence in several niches, ecological information on this species is still scarce and only few publications report information about its safety features (i.e. antibiotic resistance). Since studies on C. alimentarius concern the analysis of a few individual traits regarding this species, a more extensive work on a larger number of isolates from the same matrix have been performed to allow a clearer interpretation of their phenotypic and technological characteristics. Specifically, 14 strains of C. alimentarius isolated from Mediterranean spontaneously fermented sausages, have been screened for their safety and technological characteristics (such as antibiotic resistance, biogenic amine production, inhibiting potential, growth at different temperatures and NaCl concentrations) and with phenotype microarrays with the aim to elucidate their potential role and contribution to sausage fermentation and ripening. In general, a wide variability was observed in relation to the parameters considered. Several of the tested strains were able to produce histamine, tyramine and putrescine while the antibiotic resistance greatly varied according to the strains, with the exception of vancomycin. In addition, C. alimentarius strains showed a relevant potential to grow in conditions of salt and temperature mimicking those found in fermented foods. In particular, the growth at 10 °C and in the presence of salt can explain the presence of C. alimentarius in sausages and its adaptation to fermented meat environment in which low temperature can be applied during ripening. The differentiation of the phenotypic profile reflected the environmental conditions that influenced the isolation source, including those derived by the raw materials. Given the species frequent association with spontaneous fermentations or the ripening microbiota of various products, despite not being intentionally used as starter cultures, the data presented in this study contribute to a deeper comprehension of their role, both advantageous and detrimental, in numerous significant fermented foods.


Assuntos
Latilactobacillus sakei , Produtos da Carne , Lactobacillus , Fermentação , Aminas Biogênicas , Produtos da Carne/microbiologia
7.
Curr Res Food Sci ; 7: 100615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881335

RESUMO

In this work, two autochthonous LAB strains (Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6), isolated from spontaneously fermented sausages produced in Spain, were tested to produce Spanish fermented sausages (salchichón) in pilot plants, due to their promising technological and anti-listerial activity. These products were compared with a sample obtained with a commercial starter (RAP) and a spontaneously fermented control sample. Physico-chemical parameters, microbial counts, metagenomic analysis, biogenic amines content and organoleptic profile of the obtained samples were studied to assess the performances of the native starters. In fact, traditional and artisanal products obtained through spontaneous fermentations can represent an important biodiversity reservoir of strains to be exploited as new potential starter cultures, to improve the safety, quality and local differentiation of traditional products. The data underlined that ST6 strain resulted in a final lower percentage if compared with the other LAB used as starter cultures. The use of starters reduced the BA concentration observed in the sausages obtained with spontaneous fermentation and the BPF2 and ST6 strains were able to decrease the level of products rancidity. Moreover, a challenge test against L. monocytogenes were performed. The data confirmed the effectiveness in the inhibition of L. monocytogenes by the two bacteriocinogenic strains tested, with respect to RAP and control samples, highlighting their ability to produce bacteriocins in real food systems. This work demonstrated the promising application in meat industry of these autochthonous strains as starter cultures to improve sensory differentiation and recognizability of typical fermented sausages.

8.
Int J Food Microbiol ; 407: 110373, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37696140

RESUMO

Microbial interactions play an important role in regulating the metabolic function of fermented food communities, especially the production of key flavor compounds. However, little is known about specific molecular mechanisms that regulate the production of key flavor compounds through microbial interactions. Here, we designed a synthetic consortium containing Debaryomyces hansenii D1, Staphylococcus xylosus S1, and Pediococcus pentosaceus PP1 to explore the mechanism of the microbial interactions underlying the branched-chain aldehydes production. In this consortium, firstly, D. hansenii secreted amino acids that promoted the growth of P. pentosaceus and S. xylosus. Specifically, D. hansenii D1 secreted alanine, aspartate, glutamate, glutamine, glycine, phenylalanine, serine, and threonine, which were the primary nutrients for bacterial growth. P. pentosaceus PP1 utilized all these eight amino acids through cross-feeding, whereas S. xylosus S1 did not utilize aspartate and serine. Furthermore, D. hansenii D1 promoted the production of branched-chain aldehydes from S. xylosus and P. pentosaceus through cross-feeding of α-keto acids (intermediate metabolites). Thus, the accumulation of 2-methyl-butanal was promoted in all co-culture. Overall, this work revealed the mechanism by which D. hansenii and bacteria cross-feed to produce branched-chain aldehydes in fermented sausages.


Assuntos
Ácido Aspártico , Produtos da Carne , Fermentação , Ácido Aspártico/metabolismo , Produtos da Carne/microbiologia , Aldeídos , Serina/metabolismo
9.
Microorganisms ; 11(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37512918

RESUMO

The role of indigenous fungi in the appropriate development of sensory properties and the safety of dry-fermented sausages has been widely established. Nonetheless, their applications as probiotic agents have not been elucidated in such products yet, despite their promising functional features. Thus, it should be interesting to evaluate the probiotic potential of native Debaryomyces hansenii isolates from dry-fermented sausages and their application in the meat industry, because it is the most frequently isolated yeast species from these foodstuffs and its probiotic effects for animals as well as its possible probiotic activity for human beings have been demonstrated. Within the functional ability of foodborne yeasts, anti-inflammatory, antioxidant, antimicrobial, antigenotoxic, and immunomodulatory properties have been reported. Similarly, the use of dry-fermented sausages as vehicles for probiotic moulds remains a challenge because the survival and development of moulds in the gastrointestinal tract are still unknown. Nevertheless, some moulds have been isolated from faeces possibly from their spores as a form of resistance. Additionally, their beneficial effects on animals and humans, such as the decrease in lipid content and the anti-inflammatory activity, have been reported, although they seem to be more related to their postbiotic capacity due to the generated bioactive compounds with profunctional attributes than to their role as probiotics. Therefore, further studies providing knowledge useful for generating dry-fermented sausages with improved functionality are fully necessary.

10.
Gels ; 9(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37102952

RESUMO

Olive oil bigels structured with monoglycerides, gelatin, and κ-carrageenan were designed for the partial substitution of pork backfat in fermented sausages. Two different bigels were used: bigel B60 consisted of 60% aqueous and 40% lipid phase; and bigel B80 was formulated with 80% aqueous and 20% lipid phase. Three different pork sausage treatments were manufactured: control with 18% pork backfat; treatment SB60 with 9% pork backfat and 9% bigel B60; and treatment SB80 with 9% pork backfat and 9% bigel B80. Microbiological and physicochemical analyses were carried out for all three treatments on 0, 1, 3, 6, and 16 days after sausage preparation. Bigel substitution did not affect water activity or the populations of lactic acid bacteria, total viable counts, Micrococcaceae, and Staphylococcacea during the fermentation and ripening period. Treatments SB60 and SB80 presented higher weight loss during fermentation and higher TBARS values only on day 16 of storage. Consumer sensory evaluation did not identify significant differences among the sausage treatments in color, texture, juiciness, flavor, taste, and overall acceptability. The results show that bigels can be utilized for the formulation of healthier meat products with acceptable microbiological, physicochemical, and organoleptic characteristics.

11.
Front Microbiol ; 14: 1156413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970674

RESUMO

Introduction: Microbial inoculants can reinvent the value and edible security of cultured sausages. Various studies have demonstrated that starter cultures made up of Lactic acid bacteria (LAB) and Staphylococcus xylosus (known as L-S) isolated from traditional fermented foods were used in fermented sausage manufacturing. Methods: This study evaluated the impact of the mixed inoculation cultures on limiting biogenic amines, nitrite depletion, N-nitrosamine reduction, and quality metrics. Inoculation of sausages with the commercial starter culture (SBM-52) was evaluated for comparison. Results and discussion: Results showed that the L-S strains could rapidly decrease the water activity (Aw) and pH of fermented sausages. The ability of the L-S strains to delay lipid oxidation was equivalent to the SBM-52 strains. The non-protein nitrogen (NPN) contents of L-S-inoculated sausages (0.31%) were higher than that of SBM-52-inoculated sausages (0.28%). After the ripening process, the nitrite residues in the L-S sausages were 1.47 mg/kg lower than in the SBM-52 sausages. Compared to the SBM-52 sausages, there was a 4.88 mg/kg reduction in the biogenic amines' concentrations in L-S sausage, especially for histamine and phenylethylamine concentrations. The N-nitrosamine accumulations of the L-S sausages (3.40 ug/kg) were lower than that of the SBM-52 sausages (3.70 ug/kg), and the NDPhA accumulations of the L-S sausages were 0.64 ug/kg lower than that of the SBM-52 sausages. Due to their significant contributions to nitrite depletion, biogenic amine reduction, and N-nitrosamine depletion in fermented sausages, the L-S strains have the potential to serve as an initial inoculant in the process of manufacturing fermented sausages.

12.
Meat Sci ; 200: 109166, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996731

RESUMO

The addition of probiotic bacteria to a meat batter allows the development of functional fermented sausages. The aim of this work was to study the effect of microencapsulated Lactiplantibacillus plantarum BFL (EP) and as free cells (FP) on microbiological, physicochemical, and sensory parameters of fermented sausages during the drying stage and on the product ready for consumption. The microencapsulation of L. plantarum BFL did not improve its viability during the drying stage. In addition, sausages inoculated with L. plantarum BFL (FP and EP) caused lower residual nitrites values, pH values and Escherichia coli counts than the Control (C). However, only the presence of free cells of L. plantarum BFL (FP) caused a decrease in the Enterobacteriaceae and mannitol salt-positive Staphylococcus counts. In the sensory analysis, no significant differences were found in the acceptability of the different sausages. However, the acidity in probiotic sausages (FP and EP) was an attribute that consumers highlighted. The probiotic L. plantarum BFL could adapt and survive at high doses in the matrix of an industrial fermented sausage. Therefore, its use could represent a strategy both for biocontrol of pathogens and for the development of functional meat products.


Assuntos
Microbiologia de Alimentos , Produtos da Carne , Probióticos , Fermentação , Produtos da Carne/análise , Metilcelulose , Probióticos/análise
13.
Food Sci Anim Resour ; 43(1): 1-9, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36789202

RESUMO

The expansion and advancement of the meat product market have increased the demand for fermented sausages. A typical method for manufacturing high-quality fermented sausages is using a starter culture, which improves the taste, aroma, and texture. Currently, the starter culture for manufacturing fermented sausages is mainly composed of microorganisms such as lactic acid bacteria, yeast, and fungi, which generate volatile compounds by the oxidation of fatty acids. In addition, protein decomposition and changes in pH occur during the fermentation period. It can positively change the texture of the fermented sausage. In this review, we discuss the requirements (improving food safety, the safety of starter culture, enzyme activity, and color) of microorganisms used in starter cultures and the generation of flavor compounds (heptanal, octanal, nonanal, hexanal, 2-pentylfuran, 1-penten-3-ol, and 2-pentanone) from lipids. Furthermore, quality improvement (hardness and chewiness) due to texture changes after starter culture application during the manufacturing process are discussed.

14.
Foods ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36832777

RESUMO

Nitrosamines are N-nitroso compounds with carcinogenic, mutagenic and teratogenic properties. These compounds could be found at certain levels in fermented sausages. Fermented sausages are considered to be a suitable environment for nitrosamine formation due to acid formation and reactions such as proteolysis and lipolysis during ripening. However, lactic acid bacteria (spontaneous or starter culture), which constitute the dominant microbiota, contribute significantly to nitrosamine reduction by reducing the amount of residual nitrite through nitrite degradation, and pH decrease has an important effect on the residual nitrite amount as well. These bacteria also play an indirect role in nitrosamine reduction by suppressing the growth of bacteria that form precursors such as biogenic amines. In recent years, research interest has focused on the degradation or metabolization of nitrosamines by lactic acid bacteria. The mechanism by which these effects are seen has not been fully understood yet. In this study, the roles of lactic acid bacteria on nitrosamine formation and their indirect or direct effects on reduction of volatile nitrosamines are discussed.

15.
Foods ; 12(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36832801

RESUMO

Fermentation is one of the most ancient strategies to improve safety and extend shelf-life of the products. Starter cultures are mainly represented by lactic acid bacteria (LAB), which may also be bioprotective agents controlling the fermentation process, the native microbiota and pathogen outgrowth. This work aimed to select new LAB strains from spontaneously fermented sausages produced in different areas of Italy, which can be effective as starter cultures and bioprotective agents in fermented salami. The strains, mainly belonging to the Latilactobacillus sakei species, were characterized for their ability to inhibit major meat pathogens, the presence of antibiotic resistances and amine production. Moreover, technological performances, such as growth and acidification kinetics at increasing NaCl concentrations, were studied. As a result, new autochthonous Lat. sakei strains were obtained, lacking antibiotic resistance, possessing antimicrobial activity against Clostridium sporogenes, Listeria monocytogenes, Salmonella and Escherichia coli and with high growth performance under osmotic pressure. These strains have the potential for future application to improve the safety of fermented meats, even under conditions in which chemical preservatives are reduced or eliminated. Moreover, studies on autochthonous cultures are pivotal for guaranteeing specific characteristics of traditional products that represent an important cultural heritage.

16.
Biology (Basel) ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36671780

RESUMO

BACKGROUND: In this work, the effect of a selected starter culture of Lactilactobacillus sakei 205 on the evolution of volatile compounds throughout the ripening process and on the final sensorial characteristics of traditional dry-cured fermented "salchichón" was evaluated. METHODS: "Salchichón" sausages were prepared, inoculated with L. sakei 205, and ripened for 90 days. Volatile compounds were analyzed throughout the ripening by GC-MS. In the final product, instrumental texture and color were determined. In addition, sensorial analysis was performed by a semi-trained panel. RESULTS: The inoculation of L. sakei 205 does not influence the texture and color parameters of ripened "salchichón". However, an increase in volatile compounds derived from amino acid catabolism and microbial esterification and a decrease in compounds derived from lipid oxidation, mainly hexanal, were observed throughout the ripening time as a consequence of L. sakei inoculation, which could have a positive effect on the flavor development of the dry-cured fermented "salchichón". CONCLUSIONS: The use of selected strains of lactic acid bacteria (LAB) such as L. sakei 205 as a protective culture could be recommended to improve the quality of traditional "salchichón".

17.
Food Res Int ; 162(Pt A): 112007, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461302

RESUMO

Salame Piemonte is a dry-fermented meat product typical of the Piedmont region in Italy, manufactured using commercial starter cultures. This study aimed to select autochthonous starter cultures (ASCs) that could be used for sausage fermentation in order to strengthen the link with the geographical area of production and improve the sensory properties of the final product. A culture-dependent approach was adopted during three different spontaneous sausage fermentation processes to isolate and characterise the main bacterial resources involved. Dominant lactic acid bacteria (LAB) in each batch were Pediococcus pentosaceus, Latilactobacillus sakei, and Latilactobacillus curvatus; Staphylococcus xylosus was the most dominant coagulase-negative staphylococci (CNS) in all the studied batches. LAB and presumptive CNS isolates were further evaluated for their physiological properties and biotechnological potential. Thereafter, 11 strains were selected and evaluated for safety. Five selected strains (two P. pentosaceus, two L. sakei, and one S. xylosus strain) were used for pilot-scale Salame Piemonte production with seven different strain combinations. Based on the liking test, three ASC combinations led to the highest liking score compared to industrial products. These three ASCs were then used for the second pilot-scale sausage production confirming the high liking score. In summary, the use of P. pentosaceus and S. xylosus ASC significantly improved product sensory properties compared with that obtained using commercial starter cultures.


Assuntos
Lactobacillales , Latilactobacillus sakei , Produtos da Carne , Pediococcus pentosaceus , Biotecnologia
18.
Food Res Int ; 162(Pt A): 111957, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461208

RESUMO

Chinese traditional fermented meat products in Guizhou province harbor a unique microbial community owing to particular geographical, environmental, and climatic conditions. In this study, coagulase-negative staphylococci (CNS) with high protease activity were isolated from a Guizhou traditional naturally fermented meat product, i.e., Qianwufu sausages. In addition, the potential of isolated CNS strains to be used as starter cultures in sausage fermentation was evaluated. Culture- and molecular-biology-based methods were employed to isolate and identify CNS. A total of 40 CNS strains could hydrolyze pork meat proteins. In particular, strain QB7 identified as Staphylococcus simulans had the highest proteolytic activity, was resistant to growth in the presence of 6.5 % NaCl and 150 mg/kg of nitrites, and lacked virulence genes, hemolytic, decarboxylase, DNase, and biofilm-forming activities. Subsequently, S. simulans QB7 was used as a starter in sausage fermentation, which led to an increase in competitiveness of dominant bacteria, reduced growth of undesirable bacteria, higher content of total free fatty acids and free amino acids, and lower pH and water activity values. Thus, S. simulans QB7 can potentially be used as a starter to improve the quality and nutritional properties of fermented meat products.


Assuntos
Produtos da Carne , Carne de Porco , Coagulase , Peptídeo Hidrolases , Proteólise
19.
Food Res Int ; 162(Pt A): 111963, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461213

RESUMO

This work investigated the influence of mixed starters (Lactobacillus plantarum CD101 and Staphylococcus simulans NJ201) on the digestive pattern of dry fermented sausage proteins. The addition of starters resulted in a higher degree of proteolysis and looser protein conformation as evidenced by the decreased carbonyl content and electrophoresis bands intensity of myosin heavy chain (MHC) and actin, increased sulfhydryl content and surface hydrophobicity, and transformation of protein secondary structure from α-helix to ß-sheet and ß-turn. These changes induced by the starters acted as a "pre-digestion" step and improved the digestive pattern of sausage protein. The most remarkable improvement in gastric (33.98%-49.46%) and whole gastrointestinal digestibility (87.41%-94.57%) was observed on sausages of day 21. Comparative peptidomics analysis during digestion revealed that the digested peptides of the inoculated sample were more widely distributed throughout the 3D structure of the sausage proteins, namely, myoglobin, MHC, and creatine kinase M-type. More peptides were degraded in the rod region (780-1933) of MHC. The region was possibly expanded by starters. New bioactive peptides, including MNVKHWPWMK, FFL, and LLF, were released from the MHC and actin altered by the starters. This work highlighted the application of mixed starters as a potential tool to enhance the nutrition of fermented sausage.


Assuntos
Actinas , Produtos da Carne , Conformação Proteica , Mioglobina , Cadeias Pesadas de Miosina , Digestão
20.
Food Chem X ; 16: 100474, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36263244

RESUMO

In vitro digestions of dry-cured sausages formulated with four different rates of added sodium nitrite and sodium nitrate (NaNO2 / NaNO3, in ppm: 0/0; 80/80; 120/120; 0/200) were performed with a dynamic gastrointestinal digester (DIDGI®). The chemical reactivity of the potentially toxic nitroso-compounds (NOCs), oxidation reactions products and different iron types were evaluated over time. No nitrite nor nitrate dose effect was observed on NOCs' chemical reactivity. Nitrosothiols were scarce, and nitrosylheme was destabilized for every conditions, possibly leading to free iron release in the digestive tract. Total noN-volatile N-nitrosamines concentrations increased in the gastric compartment while residual nitrites and nitrates remained stable. The minimal rate of 80/80 ppm nitrite/nitrate was enough to protect against lipid oxidation in the digestive tract. The present results provide new insights into the digestive chemistry of dry sausages, and into new reasonable arguments to reduce the load of additives in formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA