Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202412080, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39234632

RESUMO

Proton exchange membrane (PEM) electrolysis holds great promise for green hydrogen production, but suffering from high loading of platinum-group metals (PGM) for large-scale deployment. Anchoring PGM-based materials on supports can not only improve the atomic utilization of active sites but also enhance the intrinsic activity. However, in practical PEM electrolysis, it is still challenging to mediate hydrogen adsorption/desorption pathways with high coverage of hydrogen intermediates over catalyst surface. Here, operando generated stable palladium (Pd) hydride nanoclusters anchored on tungsten carbide (WCx) supports were constructed for hydrogen evolution in PEM electrolysis. Under PEM operando conditions, hydrogen intercalation induces formation of Pd hydrides (PdHx) featuring weakened hydrogen binding energy (HBE), thus triggering reverse hydrogen spillover from WCx (strong HBE) supports to PdHx sites, which have been evidenced by operando characterizations, electrochemical results and theoretical studies. This PdHx-WCx material can be directly utilized as cathode electrocatalysts in PEM electrolysis with ultralow Pd loading of 0.022 mg cm-2, delivering the current density of 1 A cm-2 at the cell voltage of ~1.66 V and continuously running for 200 hours without obvious degradation. This innovative strategy via tuning the operando characteristics to mediate reverse hydrogen spillover provide new insights for designing high-performance supported PGM-based electrocatalysts.

2.
ACS Nano ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223090

RESUMO

Phosphates within tumors function as key biomolecules, playing a significant role in sustaining the viability of tumors. To disturb the homeostasis of cancer cells, regulating phosphate within the organism proves to be an effective strategy. Herein, we report single-atom Ce-doped Pt hydrides (Ce/Pt-H) with high phosphatase-like activity for phosphate hydrolysis. The resultant Ce/Pt-H exhibits a 26.90- and 6.25-fold increase in phosphatase-like activity in comparison to Ce/Pt and Pt-H, respectively. Mechanism investigations elucidate that the Ce Lewis acid site facilitates the coordination with phosphate groups, while the surface hydrides enhance the electron density of Pt for promoting catalytic ability in H2O cleavage and subsequent nucleophilic attack of hydroxyl groups. Finally, by leveraging its phosphatase-like activity, Ce/Pt-H can effectively regulate intracellular phosphates to disrupt redox homeostasis and amplify oxidative stress within cancer cells, ultimately leading to tumor apoptosis. This work provides fresh insights into noble-metal-based phosphatase mimics for inducing tumor apoptosis.

3.
Chemphyschem ; : e202400649, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172113

RESUMO

The platinum hydride cluster Pt12H24- is studied in gas phase by a combination of trapped ion electron diffraction and density functional theory computations. We find a cuboctahedral platinum cage with bridge bound hydrogen atoms. This unusual structure is stabilized by Pt-H-Pt multicenter bonds and shows characteristics of spherical aromaticity.

4.
Heliyon ; 10(15): e35739, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170160

RESUMO

The effect of the substitution of Ti by Zr on the crystal structure, microstructure, and first hydrogenation behavior of Ti2-xZrxCrV where X = 0.5, 1.0, 1.5, and 2.0 have been investigated. The samples were synthesized by arc-melting and characterized by X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The hydrogenation capacity was measured using a home-made Sieverts apparatus. Pure-Ti2CrV crystallizes in a body-centered cubic structure (BCC). Substitution of Ti by Zr leads to the appearance of a secondary phase, namely a C15 Laves phase for the Ti-containing samples, and C15 Laves phase plus a Zr-rich phase for the X = 2.0 sample. The substitution of Ti by Zr increased the lattice parameters in both phases for all samples. Increasing Zr content made the first hydrogenation faster but reduced the hydrogen capacity.

5.
Chemphyschem ; : e202400668, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136935

RESUMO

The high content of hydride-hydride contacts Hδ-···Î´-H in hydrogen storage materials appears to be relevant for hydrogen formation. At present time there is no consensus whether these contacts are attractive or repulsive. Accordingly, the main goal of this article is to shed light on physical factors which constitute homopolar hydride-hydride interactions Hδ-···Î´-H in selected transition metal complexes i.e. HCoL4, L = CO,PPh3,PH3. In order to achieve this goal, the charge and energy decomposition ETS-NOCV approach along with the Interacting Quantum Atoms (IQA) and reduced density gradient (NCI) are applied for the bonded adducts L4CoH···HCoL4. Based on DFT and correlated methods it has been shown, that hydride-hydride interactions might be attractive and even far stronger than classical hydrogen bonds. The stability of the adducts is increased by phosphine ligand installation: overall Hδ-···Î´-H bonding energy changes in the order: CO << PPh3 ~ PH3. It has been revealed that depending on monomer's conformations Hδ-···Î´-H bonds are dominated by charge delocalization or London dispersion forces and the electrostatic term is also relevant. It is finally determined by IQA energy decomposition, that diatomic hydride-hydride interaction CoH···HCo is chameleon-like, namely, it is attractive in CO4CoH···HCoCO4, whereas the repulsion is unveiled in (CO)3(PPh3)CoH···HCo(CO)3(PPh3).

6.
Micromachines (Basel) ; 15(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39203650

RESUMO

The preparation method of transmission electron microscopy (TEM) samples for pure zirconium was successfully executed using a focused ion beam (FIB) system. These samples unveiled artifact hydrides induced during the FIB sample preparation process, which resulted from stress damage, ion implantation, and ion irradiation. An innovative solution was proposed to effectively reduce the effect of artifact hydrides for FIB-prepared samples of hydrogen-sensitive materials, such as zirconium alloys. This development lays the groundwork for further research on the micro/nanostructures of zirconium alloys after ion irradiation, thereby facilitating the study of corrosion mechanisms and the prediction of service life for nuclear fuel cladding materials. Furthermore, the solution proposed in this study is also applicable to TEM sample preparation using FIB for other hydrogen-sensitive materials such as titanium, magnesium, and palladium.

7.
J Phys Condens Matter ; 36(42)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38955332

RESUMO

Stabilized and metallic light elements hydrides have provided a potential route to achieve the goal of room-temperature superconductors at moderate or ambient pressures. Here, we have performed systematic DFT theoretical calculations to examine the effects of different light elements C and N atoms doped in cubic K4B8H32hydrides on the superconductivity at low pressures. As a result of various atoms substituting, we have found that metallic K4B_{8-x}MxH32(M = C, N) hydrides are dynamically stable at 50 GPa, band structures and density of states (DOS) indicate that sizeableTccorrelates with a high B-H DOS at the Fermi level. With the increasing of B atoms in K4B_{8-x}MxH32hydrides, the DOS values at Fermi level have been improved due to the delocalized electrons in B-H bonds, which result in strong electron-phonon coupling (EPC) interaction and increase theTcfrom 19.04 to 77.07 K for KC2H8and KB2H8at 50 GPa. The NH4unit in stable K4B7NH32hydrides has weakened the EPC and led to lowTcvalue of 21.47 K. Our results suggest the light elements hydrides KB2H8and K4B7CH32could estimate highTcvalues at 50 GPa, and the boron hydrides would be potential candidates to design or modulate hydrides superconductors with highTcat moderate or ambient pressures.

8.
Chemistry ; : e202402114, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057604

RESUMO

To attain carbon neutrality, significant efforts have been made to capture and use CO2. The homogeneous hydrogenation of CO2 catalyzed by transition metal complexes, particularly ruthenium complexes, has demonstrated significant advantages and is regarded as a viable approach for practical application. Insertion of CO2 into the Ru-H bond, producing the Ru-formate product, is the key step in the hydrogenation of CO2. In order to parameterize the catalytic activities in the CO2 insertion into the Ru-H bond, the concept of simplified mechanism-based approach with data-driven practice (SMADP) has been introduced in this paper. The results showed that the hydricity of the Ru-H complex (ΔGH-) might serve as a single active descriptor in the process of CO2 insertion, and that a novel Ru complex in CO2 catalysis may not be easily obtained by mere modification of the auxiliary ligand at the ruthenium metal site.

9.
Environ Res ; 260: 119606, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39004395

RESUMO

Due to the imperative global energy transition crisis, hydrogen storage and adsorption technologies are becoming popular with the growing hydrogen economy. Recently, complex hydrides have been one of the most reliable materials for storing and transporting hydrogen gas to various fuel cells to generate clean energy with zero carbon emissions. With the ever-increasing carbon emissions, it is necessary to substitute the current energy sources with green hydrogen-based efficient energy-integrated systems. Herein, we propose an input-output model that comprehends complex hydrides such as lithium and magnesium alanates, amides and borohydrides to predict, estimate, and directly analyse hydrogen storage and adsorption. A critical and thorough comparative analysis of the respective complex hydrides for hydrogen adsorption and storage is discussed, elucidating the storage applications in water bodies. Several industrial scale-up processes, economic analysis, and plant design of hydrogen storage and adsorption approaches are suggested through volumetric and gravimetric calculations.


Assuntos
Hidrogênio , Hidrogênio/química , Adsorção , Modelos Químicos , Simulação por Computador
10.
Chem Asian J ; 19(16): e202400320, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38838273

RESUMO

Hydrogen (H2) is being acknowledged as the future energy carrier due to its high energy density and potential to mitigate the intermittency of other renewable energy sources. H2 also ensures a clean, carbon-neutral, and sustainable environment for current and forthcoming generations by contributing to the global missions of decarbonization in the transportation, industrial, and building sectors. Several H2 storage technologies are available and have been employed for its secure and economical transport. The existing H2 storage and transportation technologies like liquid-state, cryogenic, or compressed hydrogen are in use but still suffer from significant challenges regarding successful realization at the commercial level. These factors affect the overall operational cost of technology. Therefore, H2 storage demands novel technologies that are safe for mobility, transportation, long-term storage, and yet it is cost-effective. This review article presents potential opportunities for H2 storage technologies, such as physical and chemical storage. The prime characteristics and requirements of H2 storage are briefly explained. A detailed discussion of chemical-based hydrogen storage systems such as metal hydrides, chemical hydrides (CH3OH, NH3, and HCOOH), and liquid organic hydrogen carriers (LOHCs) is presented. Furthermore, the recent developments and challenges regarding hydrogen storage, their real-world applications, and prospects have also been debated.

11.
Chem Asian J ; 19(16): e202400308, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38880773

RESUMO

Hydrogen-driven energy is fascinating among the everlasting energy sources, particularly for stationary and onboard transportation applications. Efficient hydrogen storage presents a key challenge to accomplishing the sustainability goals of hydrogen economy. In this regard, solid-state hydrogen storage in nanomaterials, either physically or chemically adsorbed, has been considered a safe path to establishing sustainability goals. Though metal hydrides have been extensively explored, they fail to comply with the set targets for practical utilization. Recently, MXenes, both in bare form and hybrid state with metal hydrides, have proven their flair in ascertaining the hydrides' theoretical and experimental hydrogen storage capabilities far beyond the fancy materials and current state-of-the-art technologies. This review encompasses the significant accomplishments achieved by MXenes (primarily in 2019-2024) for enhancing the hydrogen storage performance of various metal hydride materials such as MgH2, AlH3, Mg(BH4)2, LiBH4, alanates, and composite hydrides. It also discusses the bottlenecks of metal hydrides for hydrogen storage, the potential use of MXenes hybrids, and their challenges, such as reversibility, H2 losses, slow kinetics, and thermodynamic barriers. Finally, it concludes with a detailed roadmap and recommendations for mechanistic-driven future studies propelling toward a breakthrough in solid material-driven hydrogen storage using cost-effective, efficient, and long-lasting solutions.

12.
Adv Sci (Weinh) ; 11(31): e2401741, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889243

RESUMO

Properties of high-entropy alloys are currently in the spotlight due to their promising applications. One of the least investigated aspects is the affinity of these alloys to hydrogen, its diffusion, and reactions. In this study, high pressure is applied at ambient temperature and stress-induced diffusion of hydrogen is investigated into the structure of high-entropy alloys (HEA) including the famous Cantor alloy as well as less known, but nevertheless important platinum group (PGM) alloys. By applying X-ray diffraction to samples loaded into diamond anvil cells, a comparative investigation of transition element incorporating HEA alloys in Ne and H2 pressure-transmitting media is performed at ambient temperature. Even under stresses far exceeding conventional industrial processes, both Cantor and PGM alloys show exceptional resistance to hydride formation, on par with widely used industrial grade Cu-Be alloys. The observations inspire optimism for practical HEA applications in hydrogen-relevant industry and technology (e.g., coatings, etc), particularly those related to transport and storage.

13.
Fundam Res ; 4(3): 550-556, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933186

RESUMO

The discovery of covalent H3S and clathrate structure LaH10 with excellent superconducting critical temperatures at high pressures has facilitated a multitude of research on compressed hydrides. However, their superconducting pressures are too high (generally above 150 GPa), thereby hindering their application. In addition, making room-temperature superconductivity close to ambient pressure in hydrogen-based superconductors is challenging. In this work, we calculated the chemically "pre-compressed" Be-H by heavy metals Th and Ce to stabilize the superconducting phase near ambient pressure. An unprecedented ThBeH8 (CeBeH8) with a "fluorite-type" structure was predicted to be thermodynamically stable above 69 GPa (76 GPa), yielding a T c of 113 K (28 K) decompressed to 7 GPa (13 GPa) by solving the anisotropic Migdal-Eliashberg equations. Be-H vibrations play a vital role in electron-phonon coupling and structural stability of these ternary hydrides. Our results will guide further experiments toward synthesizing ternary hydride superconductors at mild pressures.

14.
J Mol Graph Model ; 131: 108808, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852428

RESUMO

Hydrogen energy has attracted a lot of interest from researchers as a sustainable and renewable energy source, but there are some technical challenges related to its storage. Hydride materials demonstrate the ability to store hydrogen adequately and safely. In the current study, we have investigated the structural and optoelectronic properties of the XCuH3 (where X = Li, Na and K) perovskite-type hydride using LDA and GGA formalisms for hydrogen storage application. Electronic properties such as band structure, density of states reveal the metallic character of the studied XCuH3 hydrides. Various optical parameters such as the complex dielectric function, refractive index, extinction coefficient, absorption coefficient, reflectivity, optical conductivity, energy loss function, and joint density of states have been computed and compared. The gravimetric hydrogen storage capacity for LiCuH3, NaCuH3 and KCuH3 are found to be 4.11, 3.37 and 2.86 wt%, respectively. The computed values of the gravimetric ratio manifest that XCuH3 hydrides are potential candidates for hydrogen storage applications. These calculations are made for the first time for XCuH3 hydrides and will be inspirational in the future for comparison and for hydrogen storage purposes.


Assuntos
Compostos de Cálcio , Hidrogênio , Óxidos , Titânio , Hidrogênio/química , Compostos de Cálcio/química , Titânio/química , Óxidos/química , Sódio/química , Lítio/química , Potássio/química , Modelos Moleculares
15.
Natl Sci Rev ; 11(7): nwad307, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38883295

RESUMO

Since the discovery of the high-temperature superconductors H3S and LaH10 under high pressure, compressed hydrides have received extensive attention as promising candidates for room-temperature superconductors. As a result of current high-pressure theoretical and experimental studies, it is now known that almost all the binary hydrides with a high superconducting transition temperature (T c) require extremely high pressure to remain stable, hindering any practical application. In order to further lower the stable pressure and improve superconductivity, researchers have started exploring ternary hydrides and had many achievements in recent years. Here, we discuss recent progress in ternary hydrides, aiming to deepen the understanding of the key factors regulating the structural stability and superconductivity of ternary hydrides, such as structural motifs, bonding features, electronic structures, electron-phonon coupling, etc. Furthermore, the current issues and challenges of superconducting ternary hydrides are presented, together with the prospects and opportunities for future research.

16.
Materials (Basel) ; 17(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893774

RESUMO

Mg-based materials have been widely studied as potential hydrogen storage media due to their high theoretical hydrogen capacity, low cost, and abundant reserves. However, the sluggish hydrogen absorption/desorption kinetics and high thermodynamic stability of Mg-based hydrides have hindered their practical application. Ball milling has emerged as a versatile and effective technique to synthesize and modify nanostructured Mg-based hydrides with enhanced hydrogen storage properties. This review provides a comprehensive summary of the state-of-the-art progress in the ball milling of Mg-based hydrogen storage materials. The synthesis mechanisms, microstructural evolution, and hydrogen storage properties of nanocrystalline and amorphous Mg-based hydrides prepared via ball milling are systematically reviewed. The effects of various catalytic additives, including transition metals, metal oxides, carbon materials, and metal halides, on the kinetics and thermodynamics of Mg-based hydrides are discussed in detail. Furthermore, the strategies for synthesizing nanocomposite Mg-based hydrides via ball milling with other hydrides, MOFs, and carbon scaffolds are highlighted, with an emphasis on the importance of nanoconfinement and interfacial effects. Finally, the challenges and future perspectives of ball-milled Mg-based hydrides for practical on-board hydrogen storage applications are outlined. This review aims to provide valuable insights and guidance for the development of advanced Mg-based hydrogen storage materials with superior performance.

17.
Mater Futur ; 3(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841205

RESUMO

The observation of superconductivity in hydride-based materials under ultrahigh pressures (for example, H3S and LaH10) has fueled the interest in a more data-driven approach to discovering new high-pressure hydride superconductors. In this work, we performed density functional theory (DFT) calculations to predict the critical temperature (Tc) of over 900 hydride materials under a pressure range of (0 to 500) GPa, where we found 122 dynamically stable structures with a Tc above MgB2 (39 K). To accelerate screening, we trained a graph neural network (GNN) model to predict Tc and demonstrated that a universal machine learned force-field can be used to relax hydride structures under arbitrary pressures, with significantly reduced cost. By combining DFT and GNNs, we can establish a more complete map of hydrides under pressure.

18.
Chemistry ; 30(42): e202401262, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38777793

RESUMO

Cationic half-sandwich zinc complexes containing chelating amines [Cp*Zn(Ln)][BAr4 F] (2 a, Cp*=η3-C5Me5, Ln=N,N,N',N'-tetramethylethylenediamine, TMEDA; 2 b, Ln=N,N,N',N'-tetraethylethylenediamine, TEEDA; 2 c, Cp*=η1-C5Me5, Ln=N,N,N',N'',N''-pentamethyldiethylenetriamine, PMDTA; Ar4 F=(3,5-(CF3)2C6H3)4) reacted with dihydrogen (ca. 2 bar) in THF at 80 °C to give molecular zinc hydride cations [(Ln)ZnH(thf)m][BAr4 F] (3 a,b, m=1; 3 c, m=0) previously reported along with Cp*H. Pseudo first-order kinetics with respect to the concentration of 2 b suggests heterolytic cleavage of dihydrogen by the Zn-Cp* bond, reminiscent of σ-bond metathesis. Hydrogenolysis of the zinc cation 2 b in the presence of benzophenone gave the zinc alkoxide [(TEEDA)Zn(OCHPh2)(thf)][BAr4 F] (5 b). Cation 2 b was shown to catalytically hydrogenate N-benzylideneaniline. The PMDTA complex 2 c underwent C-H bond activation in acetonitrile to give a dinuclear µ-κC,κN-cyanomethyl zinc complex [(PMDTA)Zn(CH2CN)]2[BAr4 F]2 (6 c).

19.
Chem Asian J ; 19(16): e202400365, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38705846

RESUMO

Hydrogen energy heralded for its environmentally friendly, renewable, efficient, and cost-effective attributes, stands poised as the primary alternative to fossil fuels in the future. Despite its great potential, the low volumetric density presents a formidable challenge in hydrogen storage. Addressing this challenge necessitates exploring effective storage techniques for a sustainable hydrogen economy. Solid-state hydrogen storage in nanomaterials (physically or chemically) holds promise for achieving large-scale hydrogen storage applications. Such approaches offer benefits, including safety, compactness, lightness, reversibility, and efficient generation of pure hydrogen fuel under mild conditions. This article presents solid-state nanomaterials, specifically nanoporous carbons (activated carbon, carbon fibers), metal-organic frameworks, covalently connected frameworks, nanoporous organic polymers, and nanoscale metal hydrides. Furthermore, new developments in hydrogen fuel cell technology for stationary and mobile applications have been demonstrated. The review outlines significant advancements thus far, identifies key barriers to practical implementation, and presents a perspective for future sustainable energy research. It concludes with recommendations to enhance hydrogen storage performance for cost-effective and long-lasting utilization.

20.
J Phys Condens Matter ; 36(35)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38754446

RESUMO

The successful prediction and confirmation of unprecedentedly high-temperature superconductivity in compressed hydrogen-rich hydrides signify a remarkable advancement in the continuous quest for attaining room-temperature superconductivity. The recent studies have established a broad scope for developing binary and ternary hydrides and illustrated correlation between specific hydrogen motifs and high-Tcs under high pressures. The analysis of the microscopic mechanism of superconductivity in hydrides suggests that the high electronic density of states at the Fermi level (EF), the large phonon energy scale of the vibration modes and the resulting enhanced electron-phonon coupling are crucial contributors towards the high-Tcphonon-mediated superconductors. The aim of our efforts is to tackle forthcoming challenges associated with elevating theTcand reducing the stabilization pressures of hydrogen-based superconductors, and offer insights for the future discoveries of room-temperature superconductors. Our present Review offers an overview and analysis of the latest advancements in predicting and experimentally synthesizing various crystal structures, while also exploring strategies to enhance the superconductivity and reducing their stabilization pressures of hydrogen-rich hydrides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA