Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 7(1)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-35125348

RESUMO

Electronic micro and nano-devices are suitable tools to monitor the activity of many individual neurons over mesoscale networks. However the inorganic materials currently used in microelectronics are barely accepted by neural cells and tissues, thus limiting both the sensor lifetime and efficiency. In particular, penetrating intracortical probes face high failure rate because of a wide immune response of cells and tissues. This adverse reaction called gliosis leads to the rejection of the implanted probe after few weeks and prevent long-lasting recordings of cortical neurons. Such acceptance issue impedes the realization of many neuro-rehabilitation projects. To overcome this, graphene and related carbon-based materials have attracted a lot of interest regarding their positive impact on the adhesion and regeneration of neurons, and their ability to provide high-sensitive electronic devices, such as graphene field effect transistor (G-FET). Such devices can also be implemented on numerous suitable substrates including soft substrates to match the mechanical compliance of cells and tissues, improving further the biocompatibility of the implants. Thus, using graphene as a coating and sensing device material could significantly enhance the acceptance of intracortical probes. However, such a thin monolayer of carbon atoms could be teared off during manipulation and insertion within the brain, and could also display degradation over time. In this work, we have investigated the ability to protect graphene with a natural, biocompatible and degradable polymeric film derivated from hyaluronic acid (HA). We demonstrate that HA-based coatings can be deposited over a wide range of substrates, including intracortical probes and graphene FET arrays without altering the underlying device material, its biocompatibility and sensitivity. Moreover, we show that this coating can be monitoredin situby quantifying the number of deposited charges with the G-FET arrays. The reported graphene functionalization offers promising alternatives for improving the acceptance of various neural interfaces.


Assuntos
Grafite , Biomimética , Neurônios/fisiologia , Polímeros , Próteses e Implantes
2.
Micromachines (Basel) ; 9(9)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30424376

RESUMO

Neural implants offer solutions for a variety of clinical issues. While commercially available devices can record neural signals for short time periods, they fail to do so chronically, partially due to the sustained tissue response around the device. Our objective was to assess the correlation between device stiffness, a function of both material modulus and cross-sectional area, and the severity of immune response. Meta-analysis data were derived from nine previously published studies which reported device material and geometric properties, as well as histological outcomes. Device bending stiffness was calculated by treating the device shank as a cantilevered beam. Immune response was quantified through analysis of immunohistological images from each study, specifically looking at fluorescent markers for neuronal nuclei and astrocytes, to assess neuronal dieback and gliosis. Results demonstrate that the severity of the immune response, within the first 50 µm of the device, is highly correlated with device stiffness, as opposed to device modulus or cross-sectional area independently. In general, commercially available devices are around two to three orders of magnitude higher in stiffness than devices which induced a minimal tissue response. These results have implications for future device designs aiming to decrease chronic tissue response and achieve increased long-term functionality.

3.
Micromachines (Basel) ; 9(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30424433

RESUMO

Current intracortical probe technology is limited in clinical implementation due to the short functional lifetime of implanted devices. Devices often fail several months to years post-implantation, likely due to the chronic immune response characterized by glial scarring and neuronal dieback. It has been demonstrated that this neuroinflammatory response is influenced by the mechanical mismatch between stiff devices and the soft brain tissue, spurring interest in the use of softer polymer materials for probe encapsulation. Here, we demonstrate stable recordings and electrochemical properties obtained from fully encapsulated shape memory polymer (SMP) intracortical electrodes implanted in the rat motor cortex for 13 weeks. SMPs are a class of material that exhibit modulus changes when exposed to specific conditions. The formulation used in these devices softens by an order of magnitude after implantation compared to its dry, room-temperature modulus of ~2 GPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA