Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Med Imaging (Bellingham) ; 11(Suppl 1): S12806, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39072220

RESUMO

Purpose: Evaluation of iodine quantification accuracy with varying iterative reconstruction level, patient habitus, and acquisition mode on a first-generation dual-source photon-counting computed tomography (PCCT) system. Approach: A multi-energy CT phantom with and without its extension ring equipped with various iodine inserts (0.2 to 15.0 mg/ml) was scanned over a range of radiation dose levels ( CTDI vol 0.5 to 15.0 mGy) using two tube voltages (120, 140 kVp) and two different source modes (single-, dual-source). To assess the agreement between nominal and measured iodine concentrations, iodine density maps at different iterative reconstruction levels were utilized to calculate root mean square error (RMSE) and generate Bland-Altman plots by grouping radiation dose levels (ultra-low: < 1.5 ; low: 1.5 to 5; medium: 5 to 15 mGy) and iodine concentrations (low: < 5 ; high: 5 to 15 mg/mL). Results: Overall, quantification of iodine concentrations was accurate and reliable even at ultra-low radiation dose levels. RMSE ranged from 0.25 to 0.37, 0.20 to 0.38, and 0.25 to 0.37 mg/ml for ultra-low, low, and medium radiation dose levels, respectively. Similarly, RMSE was stable at 0.31, 0.28, 0.33, and 0.30 mg/ml for tube voltage and source mode combinations. Ultimately, the accuracy of iodine quantification was higher for the phantom without an extension ring (RMSE 0.21 mg/mL) and did not vary across different levels of iterative reconstruction. Conclusions: The first-generation PCCT allows for accurate iodine quantification over a wide range of iodine concentrations and radiation dose levels. Stable accuracy across iterative reconstruction levels may allow further radiation exposure reductions without affecting quantitative results.

2.
World J Radiol ; 16(4): 82-93, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38690548

RESUMO

BACKGROUND: Currently, the differentiation of jaw tumors is mainly based on the lesion's morphology rather than the enhancement characteristics, which are important in the differentiation of neoplasms across the body. There is a paucity of literature on the enhancement characteristics of jaw tumors. This is mainly because, even though computed tomography (CT) is used to evaluate these lesions, they are often imaged without intravenous contrast. This study hypothesised that the enhancement characteristics of the solid component of jaw tumors can aid in the differentiation of these lesions in addition to their morphology by dual-energy CT, therefore improving the ability to differentiate between various pathologies. AIM: To evaluate the role of contrast enhancement and dual-energy quantitative parameters in CT in the differentiation of jaw tumors. METHODS: Fifty-seven patients with jaw tumors underwent contrast-enhanced dual-energy CT. Morphological analysis of the tumor, including the enhancing solid component, was done, followed by quantitative analysis of iodine concentration (IC), water concentration (WC), HU, and normalized IC. The study population was divided into four subgroups based on histopathological analysis-central giant cell granuloma (CGCG), ameloblastoma, odontogenic keratocyst (OKC), and other jaw tumors. A one-way ANOVA test for parametric variables and the Kruskal-Wallis test for non-parametric variables were used. If significant differences were found, a series of independent t-tests or Mann-Whitney U tests were used. RESULTS: Ameloblastoma was the most common pathology (n = 20), followed by CGCG (n = 11) and OKC. CGCG showed a higher mean concentration of all quantitative parameters than ameloblastomas (P < 0.05). An IC threshold of 31.35 × 100 µg/cm3 had the maximum sensitivity (81.8%) and specificity (65%). Between ameloblastomas and OKC, the former showed a higher mean concentration of all quantitative parameters (P < 0.001), however when comparing unilocular ameloblastomas with OKCs, the latter showed significantly higher WC. Also, ameloblastoma had a higher IC and lower WC compared to "other jaw tumors" group. CONCLUSION: Enhancement characteristics of solid components combined with dual-energy parameters offer a more precise way to differentiate between jaw tumors.

3.
J Clin Imaging Sci ; 14: 7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628606

RESUMO

Objectives: To assess the range of quantitative iodine values in renal cysts (RC) (with a few renal neoplasms [RNs] as a comparison) to develop an expected range of values for RC that can be used in future studies for their differentiation. Material and Methods: Consecutive patients (n = 140) with renal lesions who had undergone abdominal examination on a clinical photon-counting computed tomography (PCCT) were retrospectively included. Automated iodine quantification maps were reconstructed, and region of interest (ROI) measurements of iodine concentration (IC) (mg/cm3) were performed on whole renal lesions. In addition, for heterogeneous lesions, a secondary ROI was placed on the area most suspicious for malignancy. The discriminatory values of minimum, maximum, mean, and standard deviation for IC were compared using simple logistic regression and receiver operating characteristic curves (area under the curve [AUC]). Results: A total of 259 renal lesions (243 RC and 16 RN) were analyzed. There were significant differences between RC and RN for all IC measures with the best-performing metrics being mean and maximum IC of the entire lesion ROI (AUC 0.912 and 0.917, respectively) but also mean and minimum IC of the most suspicious area in heterogeneous lesions (AUC 0.983 and 0.992, respectively). Most RC fell within a range of low measured iodine values although a few had higher values. Conclusion: Automated iodine quantification maps reconstructed from clinical PCCT have a high diagnostic ability to differentiate RCs and neoplasms. The data from this pilot study can be used to help establish quantitative values for clinical differentiation of renal lesions.

5.
Diagnostics (Basel) ; 14(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472968

RESUMO

BACKGROUND: Despite a considerable amount of literature on dual-energy CT (DECT) iodine uptake of the head and neck, the physiologic iodine uptake of this region has not been defined yet. This study aims to establish reference values for the iodine uptake of healthy organs to facilitate clinical application. METHODS: Consecutive venous DECT scans of the head and neck were reviewed, and unremarkable exams were included (n = 617). A total of 35 region of interest measurements were performed in 16 anatomical regions. Iodine uptake was compared among different organs/tissues and subgroup analysis was performed (male (n = 403) vs. female (n = 214); young (n = 207) vs. middle-aged (n = 206) vs. old (n = 204); and normal weight (n = 314) vs. overweight (n = 196) vs. obese (n = 107)). RESULTS: Overall mean iodine uptake values ranged between 0.5 and 9.4 mg/mL. Women showed higher iodine concentrations in the cervical vessels and higher uptake for the parotid gland, masseter muscle, submandibular glands, sublingual glands, palatine tonsils, tongue body, thyroid gland, and the sternocleidomastoid muscle than men (p ≤ 0.04). With increasing age, intravascular iodine concentrations increased as well as iodine uptake for cerebellum and thyroid gland, while values for the tongue and palatine tonsils were lower compared to younger subjects (p ≤ 0.03). Iodine concentrations for parotid glands and sternocleidomastoid muscles decreased with a higher BMI (p ≤ 0.004), while normal-weighted patients showed higher iodine values inside the jugular veins, other cervical glands, and tonsils versus patients with a higher BMI (p ≤ 0.04). CONCLUSION: physiologic iodine uptake values of cervical organs and tissues show gender-, age-, and BMI-related differences, which should be considered in the clinical routine of head and neck DECT.

6.
Eur J Radiol ; 167: 111031, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37591133

RESUMO

PURPOSE: Purpose of this study is to re-evaluate the accuracy and diagnostic reliability of virtual non-contrast (VNC) images acquired with the photon-counting computed tomography (PCCT) after an update of the CT scanner software. METHODS: Fifty-four patients were retrospectively enrolled. VNC images were reconstructed from true non-contrast (TNC) images (VNCn) and contrast-enhanced images in portal venous contrast phase (VNCv). Additionally, a liver-specific VNC (VNCl) was assessed. Quantitative image properties of VNC and TNC images were compared and consistency between VNC images was evaluated. Regions of interest were drawn in the liver, spleen, renal cortex, aorta, muscle and subcutaneous fat. RESULTS: Attenuation values on all VNC images differed significantly from TNC images in the liver, renal cortex, aorta and fat. A mean offset of <10HU between TNC and all VNC images was found in the liver, spleen and muscle. The comparison of TNC and VNCl images revealed an offset < 10HU in fat. Differences ≤ 10HU between TNC and VNCv and between TNC and VNCl were found in 68%, respectively in 75%. Differences ≤ 15HU were found in 79%, respectively in 92% of all measurements. Differences ≤ 10HU between TNC and VNCn were found in 79% and differences ≤ 15HU in 85%. CONCLUSION: Although there are statistically significant differences between HU values measured on TNC and VNC images in certain tissues, the minor offsets measured in liver and spleen suggest a good clinical applicability of VNCv and VNCl images. The significantly lower offset in subcutaneous fat on VNCl images suggests a superiority for measurements in adipose tissues.


Assuntos
Fígado , Tomografia Computadorizada por Raios X , Humanos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Fígado/diagnóstico por imagem , Abdome
7.
Med Phys ; 50(9): 5421-5433, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37415402

RESUMO

BACKGROUND: Quantitative imaging techniques, such as virtual monochromatic imaging (VMI) and iodine quantification (IQ), have proven valuable diagnostic methods in several specific clinical tasks such as tumor and tissue differentiation. Recently, a new generation of computed tomography (CT) scanners equipped with photon-counting detectors (PCD) has reached clinical status. PURPOSE: This work aimed to investigate the performance of a new photon-counting CT (PC-CT) in low-dose quantitative imaging tasks, comparing it to an earlier generation CT scanner with an energy-integrating detector dual-energy CT (DE-CT). The accuracy and precision of the quantification across size, dose, material types (including low and high iodine concentrations), displacement from iso-center, and solvent (tissue background) composition were explored. METHODS: Quantitative analysis was performed on two clinical scanners, Siemens SOMATOM Force and NAEOTOM Alpha using a multi-energy phantom with plastic inserts mimicking different iodine concentrations and tissue types. The tube configurations in the dual-energy scanner were 80/150Sn kVp and 100/150Sn kVp, while for PC-CT both tube voltages were set to either 120 or 140 kVp with photon-counting energy thresholds set at 20/65 or 20/70 keV. The statistical significance of patient-related parameters in quantitative measurements was examined using ANOVA and pairwise comparison with the posthoc Tukey honest significance test. Scanner bias was assessed in both quantitative tasks for relevant patient-specific parameters. RESULTS: The accuracy of IQ and VMI in the PC-CT was comparable between standard and low radiation doses (p < 0.01). The patient size and tissue type significantly affect the accuracy of both quantitative imaging tasks in both scanners. The PC-CT scanner outperforms the DE-CT scanner in the IQ task in all cases. Iodine quantification bias in the PC-CT (-0.9 ± 0.15 mg/mL) at low doses in our study was comparable to that of DE-CT (range -2.6 to 1.5 mg/mL, published elsewhere) at a 1.7× higher dose, but the dose reduction severely biased DE-CT (4.72 ± 0.22 mg/mL). The accuracy in Hounsfield units (HU) estimation was comparable for 70 and 100 keV virtual imaging between scanners, but PC-CT was significantly underestimating virtual 40 keV HU values of dense materials in the phantom representing the extremely obese population. CONCLUSIONS: The statistical analysis of our measurements reveals better IQ at lower radiation doses using new PC-CT. Although VMI performance was mostly comparable between the scanners, the DE-CT scanner quantitatively outperformed PC-CT when estimating HU values in the specific case of very large phantoms and dense materials, benefiting from increased X-ray tube potentials.


Assuntos
Iodo , Humanos , Tomografia Computadorizada por Raios X/métodos , Tomógrafos Computadorizados , Imagens de Fantasmas , Fótons
8.
Acta Radiol ; 64(8): 2347-2356, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37138467

RESUMO

BACKGROUND: No quantitative computed tomography (CT) biomarker is actually sufficiently accurate to assess Crohn's disease (CD) lesion activity, with adequate precision to guide clinical decisions. PURPOSE: To assess the available literature on the use of iodine concentration (IC), from multi-spectral CT acquisition, as a quantitative parameter able to distinguish healthy from affected bowel and assess CD bowel activity and heterogeneity of activity along the involved segments. MATERIAL AND METHODS: A literature search was conducted to identify original research studies published up to February 2022. The inclusion criteria were original research papers (>10 human participants), English language publications, focus on dual-energy CT (DECT) of CD with iodine quantification (IQ) as an outcome measure. The exclusion criteria were animal-only studies, languages other than English, review articles, case reports, correspondence, and study populations <10 patients. RESULTS: Nine studies were included in this review; all of which showed a strong correlation between IC measurements and CD activity markers, such as CD activity index (CDAI), endoscopy findings and simple endoscopic score for Crohn's disease (SES-CD), and routine CT enterography (CTE) signs and histopathologic score. Statistically significant differences in IC were reported between affected bowel segments and healthy ones (higher P value was P < 0.001), normal segments and those with active inflammation (P < 0.0001) as well as between patients with active disease and those in remission (P < 0.001). CONCLUSION: The mean normalized IC at DECTE could be a reliable tool in assisting radiologists in the diagnosis, classification and grading of CD activity.


Assuntos
Doença de Crohn , Iodo , Humanos , Doença de Crohn/diagnóstico por imagem , Doença de Crohn/patologia , Tomografia Computadorizada por Raios X/métodos , Intestinos , Biomarcadores
9.
Heliyon ; 9(4): e14726, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37064458

RESUMO

Introduction: By using bolus tracking with an appropriate acquisition delay dual-energy computed tomography (DECT) iodine maps might serve as a replacement of CT perfusion maps at reduced radiation exposure. This study aimed to evaluate the optimal acquisition delays of DECT for the replacement of parameter maps calculated with the Patlak model in pancreatic adenocarcinoma by corresponding iodine maps. Materials and methods: Dual-source dynamic DECT acquisitions at 80 kVp/Sn140 kVp of 14 patients with pancreatic carcinoma were used to calculate CT perfusion maps of blood volume and permeability with the Patlak model. DECT iodine maps were generated from individual DECT acquisitions, matching acquisition times relative to prior bolus-triggered three-phase CT acquisitions for investigating different acquisition delays. Correlation between perfusion parameters and iodine concentrations was determined for acquisition delays between -6 s and 33 s. Results: Correlation between iodine concentrations and perfusion parameters ranged from -0.05 to 0.63 for blood volume and from -0.05 to 0.71 for permeability, depending on potential trigger delay. The correlation was significant for potential acquisition delays above 1.5 s for blood volume and above 9.0 s for permeability (both p < 0.05). Maximum correlation occurred at an acquisition delay of 15.0 s for blood volume (r = 0.63) and at 25.5 s for permeability (r = 0.71), with significantly lower iodine concentrations in carcinoma (15.0 s: 1.3 ± 0.5 mg/ml; 22.5 s: 1.4 ± 0.7 mg/ml) than in non-neoplastic pancreatic parenchyma (15.0 s: 2.3 ± 0.8 mg/ml; 22.5 s: 2.4 ± 0.6 mg/ml; p < 0.05). Discussion: In the future, well-timed DECT iodine maps acquired with bolus tracking could provide an alternative to permeability and blood volume maps calculated with the Patlak model.

10.
Eur J Radiol ; 158: 110618, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455337

RESUMO

OBJECTIVE: This study aimed to investigate whether histopathological confirmed extramural vascular invasion (EMVI) is associated with quantitative parameters derived from dual-energy computed tomography (DECT) of rectal cancer. METHODS: This retrospective study included patients with rectal cancer who underwent rectal cancer surgery and DECT (including arterial-, venous-, and delay-phase scanning) between November 2019 and November 2020. The EMVI of rectal cancer was confirmed via postoperative pathological results. Iodine concentration (IC), IC normalized to the aorta (NIC), and CT attenuation values of the three phases were measured and compared between patients with and without EMVI. Receiver operating characteristic (ROC) curves were generated to determine the diagnostic performance of these DECT quantitative parameters. RESULTS: Herein, 36 patients (22 men and 14 women) with a mean age of 62 [range, 43-77] years) with (n = 13) and without (n = 23) EMVI were included. Patients with EMVI exhibited significantly higher IC in the venous and delay phases (venous-phase: 2.92 ± 0.6 vs 2.34 ± 0.48; delay-phase: 2.46 ± 0.47 vs 1.88 ± 0.35) and NIC in all the three phases (arterial-phase: 0.31 ± 0.12 vs 0.24 ± 0.06; venous-phase: 0.58 ± 0.11 vs 0.41 ± 0.07; delay-phase: 0.68 ± 0.10 vs 0.46 ± 0.08) than patients without EMVI. Among them, the highest area under the ROC curve (AUC) was obtained in the delay-phase NIC (AUC = 0.983). IC in the arterial-phase and CT attenuation in all the three phases did not significantly differ between patients with and without EMVI (p = 0.205-0.869). CONCLUSION: Iodine quantification using dual-energy CT, especially the NIC of the tumor, differs between the EMVI-positive and EMVI-negative groups and seems to help predict the EMVI of rectal cancer in this preliminary study; however, a larger sample size study is warranted in the future.


Assuntos
Iodo , Neoplasias Retais , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologia , Reto/patologia , Tomografia
11.
Jpn J Radiol ; 41(1): 45-53, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36029365

RESUMO

PURPOSE: To assess the diagnostic feasibility of iodine concentration (IC) and extracellular volume (ECV) fraction measurement using the equilibrium phase dual-energy CT (DECT) for the evaluation of thymic epithelial tumors (TETs). MATERIALS AND METHODS: This study included 33 TETs (11 low-risk thymomas, 11 high-risk thymomas, and 11 thymic carcinomas) that were assessed by pretreatment DECT. IC was measured during the equilibrium phases and ECV fraction was calculated using IC of the thymic lesion and the aorta. IC and ECV fraction were compared among TET subtypes using the Kruskal-Wallis H test and Mann-Whitney U test. Receiver-operating characteristic (ROC) curve analysis was performed to evaluate the ability of IC and ECV fraction to diagnose thymic carcinoma. RESULTS: IC during the equilibrium phase and ECV fraction differed among the three TET groups (both p < 0.001). IC during the equilibrium phase and ECV fraction was significantly higher in thymic carcinomas than in thymomas (1.9 mg/mL vs. 1.2 mg/mL, p < 0.001; 38.2% vs. 25.9%, p < 0.001; respectively). The optimal cutoff values of IC during the equilibrium phase and of ECV fraction to diagnose thymic carcinoma were 1.5 mg/mL (AUC, 0.955; sensitivity, 100%; specificity, 90.9%) and 26.8% (AUC, 0.888; sensitivity, 100%; specificity, 72.7%), respectively. CONCLUSION: IC and ECV fraction measurement using DECT are helpful in diagnosing TETs. High IC during the equilibrium phase and high ECV fraction are suggestive of thymic carcinoma.


Assuntos
Iodo , Neoplasias Epiteliais e Glandulares , Timoma , Neoplasias do Timo , Humanos , Tomografia Computadorizada por Raios X , Estudos de Viabilidade , Meios de Contraste , Neoplasias do Timo/diagnóstico por imagem , Neoplasias do Timo/patologia , Neoplasias Epiteliais e Glandulares/diagnóstico por imagem , Estudos Retrospectivos
12.
Acad Radiol ; 30(3): 461-469, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35644755

RESUMO

RATIONALE AND OBJECTIVES: To compare the accuracy of iodine quantification in liver parenchyma and lesions between dual-source photon-counting detector CT (PCD-CT) and dual-source energy-integrating detector CT (EID-CT) in a phantom and to demonstrate the feasibility of iodine quantification with PCD-CT in liver parenchyma and lesions in patients. MATERIALS AND METHODS: An anthropomorphic abdominal phantom with a liver insert containing parenchyma and lesions was imaged on a clinical PCD-CT at 120kV and in the dual-energy mode on an EID-CT with kV-combinations of 80/Sn150kV, 90/Sn150kV, and 100/Sn150kV. Three patient sizes were imaged at three different radiation doses (CTDIvol: 5, 10, 15mGy). Thirty patients with liver cysts, hemangiomas or metastases imaged with PCD-CT were retrospectively included. Iodine maps were reconstructed and iodine concentrations were measured in liver parenchyma and lesions. For the phantom, iodine error was quantified as the absolute difference to the vendor's specifications as reference. RESULTS: Overall iodine error was 0.33 ± 0.29, 0.34 ± 0.32, 0.39 ± 0.37, 0.35 ± 0.39 mgI/mL for 80/Sn150kV, 90/Sn150kV, 100/Sn150kV of EID-CT, and PCD-CT, respectively, without significant differences between PCD-CT and EID-CT (p > 0.05). Radiation dose did not significantly influence error of PCD-CT (p > 0.05) nor EID-CT (p > 0.05). For both scanners, smaller patient sizes were associated with lower errors (p < 0.05). Iodine concentration and base material attenuation significantly influenced quantification for EID-CT (p < 0.05) but not PCD-CT (p > 0.05). In patients, iodine quantification was feasible in liver parenchyma, cysts, hemangiomas, and metastases. CONCLUSION: Iodine quantification with PCD-CT is accurate in simulated liver parenchyma and lesions irrespective of radiation dose, iodine concentration, and base attenuation and is feasible in common liver lesions in patients.


Assuntos
Iodo , Humanos , Estudos de Viabilidade , Estudos Retrospectivos , Fótons , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Fígado/diagnóstico por imagem
13.
Med Phys ; 50(3): 1428-1435, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36427356

RESUMO

OBJECTIVE: To measure the accuracy of material decomposition using a dual-source photon-counting-detector (DS-PCD) CT operated in the high-pitch helical scanning mode and compare the results against dual-source energy-integrating-detector (DS-EID) CT, which requires use of a low-pitch value in dual-energy mode. METHODS: A DS-PCD CT and a DS-EID CT were used to scan a cardiac motion phantom consisting of a 3-mm diameter iodine cylinder. Iodine maps were reconstructed using DS-PCD in high-pitch mode and DS-EID in low-pitch mode. Image-based circularity, diameter, and iodine concentration of the iodine cylinder were calculated and compared between the two scanners. With institutional review board approval, in vivo exams were performed with the DS-PCD CT in high-pitch mode. Images were qualitatively compared against patients with similar heart rates that were scanned with DS-EID CT in low-pitch dual-energy mode. RESULTS: On iodine maps, the mean circularity was 0.97 ± 0.02 with DS-PCD in high-pitch mode and 0.95 ± 0.06 with DS-EID in low-pitch mode. The mean diameter was 2.9 ± 0.2 mm with DS-PCD and 3.1 ± 0.2 mm with DS-EID, both of which are close to the 3 mm ground truth. For DS-PCD, the mean iodine concentration was 9.6 ± 0.8 mg/ml and this was consistent with the 9.4 ± 0.6 mg/ml value obtained with the cardiac motion disabled. For DS-EID, the concentration was 12.7 ± 1.2 mg/ml with motion enabled and 11.7 ± 0.5 mg/ml disabled. The background noise in the iodine maps was 15.1 HU with DS-PCD and 14.4 HU with DS-EID, whereas the volume CT dose index (CTDIvol ) was 3 mGy with DS-PCD and 11 mGy with DS-EID. On comparison of six patients (three on PCD, three on EID) with similar heart rates, DS-PCD provided iodine maps with well-defined coronaries even at a high heart rate of 86 beats per minute. Meanwhile, there were substantial motion artifacts in iodine maps obtained with DS-EID for patients with similar heart rates. CONCLUSION: In a cardiac motion phantom, DS-PCD CT can perform accurate material decomposition in high-pitch mode, providing iodine maps with excellent geometric accuracy and robustness to motion at approximately 38% of the dose for similar noise as DS-EID CT.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico , Fótons
14.
Diagnostics (Basel) ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359446

RESUMO

Background: This study investigates the correlation and discriminative diagnostic accuracy of dual-energy CT (DECT)-derived imaging biomarkers in patients with acute pancreatitis of varying severity. Methods: In this retrospective study, we included 51 patients with acute pancreatitis who had undergone portal-venous phase DECT of the abdomen. Three blinded readers independently performed region-of-interest measurements on DECT images in the inflammatory pancreatic parenchyma. The correlation between modified CT severity index (CTSI) and quantitative imaging parameters was investigated using Pearson correlation coefficient. We performed receiver operator curve (ROC) analysis to assess diagnostic accuracy of the quantitative image parameters for the differentiation between mild/moderate versus severe acute pancreatitis. The optimal discriminative cut-off value to diagnose severe acute pancreatitis was determined using the Youden index. Results: Moderate correlations were found between CTSI scores and iodine density (Pearson's correlation coefficient r = −0.65; p < 0.001), as well as attenuation (r = −0.55; p < 0.001) and normalized iodine uptake (r = −0.50; p < 0.001). ROC curve analysis revealed highest ability to differentiate mild/moderate from severe acute pancreatitis for iodine density (AUC = 0.86, 95% confidence interval 0.75 to 0.97). An optimal iodine density threshold of ≤1.63 mg/mL was found to indicate severe acute pancreatitis with a sensitivity of 81.3% and specificity of 77.1%. Conclusion: DECT-derived iodine density correlates with acute pancreatitis severity and may facilitate prediction of severe acute pancreatitis.

15.
Diagnostics (Basel) ; 12(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36292183

RESUMO

Purpose: To investigate if quantitative contrast enhancement and iodine mapping of common brain tumor (BT) entities may correctly differentiate between tumor etiologies in standardized stereotactic CT protocols. Material and Methods: A retrospective monocentric study of 139 consecutive standardized dual-layer dual-energy CT (dlDECT) scans conducted prior to the stereotactic needle biopsy of untreated primary brain tumor lesions. Attenuation of contrast-enhancing BT was derived from polyenergetic images as well as spectral iodine density maps (IDM) and their contrast-to-noise-ratios (CNR) were determined using ROI measures in contrast-enhancing BT and healthy contralateral white matter. The measures were correlated to histopathology regarding tumor entity, isocitrate dehydrogenase (IDH) and MGMT mutation status. Results: The cohort included 52 female and 76 male patients, mean age of 59.4 (±17.1) years. Brain lymphomas showed the highest attenuation (IDM CNR 3.28 ± 1,23), significantly higher than glioblastoma (2.37 ± 1.55, p < 0.005) and metastases (1.95 ± 1.14, p < 0.02), while the differences between glioblastomas and metastases were not significant. These strongly enhancing lesions differed from oligodendroglioma and astrocytoma (Grade II and III) that showed IDM CNR in the range of 1.22−1.27 (±0.45−0.82). Conventional attenuation measurements in DLCT data performed equally or slightly superior to iodine density measurements. Conclusion: Quantitative attenuation and iodine density measurements of contrast-enhancing brain tumors are feasible imaging biomarkers for the discrimination of cerebral tumor lesions but not specifically for single tumor entities. CNR based on simple HU measurements performed equally or slightly superior to iodine quantification.

16.
AJR Am J Roentgenol ; 218(4): 746-755, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34668387

RESUMO

BACKGROUND. Clinical use of the dual-energy CT (DECT) iodine quantification technique is hindered by between-platform (i.e., across different manufacturers) variability in iodine concentration (IC) values, particularly at low iodine levels. OBJECTIVE. The purpose of this study was to develop in an anthropomorphic phantom a method for reducing between-platform variability in quantification of low iodine content levels using DECT and to evaluate the method's performance in patients undergoing serial clinical DECT examinations on different platforms. METHODS. An anthropomorphic phantom in three body sizes, incorporating varied lesion types and scanning conditions, was imaged with three distinct DECT implementations from different manufacturers at varying radiation exposures. A cross-platform iodine quantification model for correcting between-platform variability at low iodine content was developed using the phantom data. The model was tested in a retrospective series of 30 patients (20 men, 10 women; median age, 62 years) who each underwent three serial contrast-enhanced DECT examinations of the abdomen and pelvis (90 scans total) for routine oncology surveillance using the same three DECT platforms as in the phantom. Estimated accuracy of phantom IC values was summarized using root-mean-square error (RMSE) relative to known IC. Between-platform variability in patients was summarized using root-mean-square deviation (RMSD). RMSE and RMSD were compared between platform-based IC (ICPB) and cross-platform IC (ICCP). ICPB was normalized to aorta and portal vein. RESULTS. In the phantom study, mean RMSE of ICPB across platforms and other experimental conditions was 0.65 ± 0.18 mg I/mL compared with 0.40 ± 0.08 mg I/mL for ICCP (38% decrease in mean RMSE; p < .05). Intrapatient between-platform variability across serial DECT examinations was higher for ICPB than ICCP (RMSD, 97% vs 88%; p < .001). Between-platform variability was not reduced by normalization of ICPB to aorta (RMSD, 97% vs 101%; p = .12) or portal vein (RMSD, 97% vs 97%; p = .81). CONCLUSION. The developed cross-platform method significantly decreased between-platform variability occurring at low iodine content with platform-based DECT iodine quantification. CLINICAL IMPACT. With further validation, the cross-platform method, which has been implemented as a web-based app, may expand clinical use of DECT iodine quantification, yielding meaningful IC values that reflect tissue biologic viability or treatment response in patients who undergo serial examinations on different platforms.


Assuntos
Iodo , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Abdome , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
17.
Diagn Interv Imaging ; 103(1): 31-40, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34625394

RESUMO

PURPOSE: The purpose of this study was to assess the impact of advanced modeled iterative reconstruction (ADMIRE) algorithm and dose levels on the accuracy of Hounsfield unit (HU) measurement, image noise and contrast-to-noise ratio (CNR) in virtual monochromatic images (VMIs) with low iodine concentrations, and the accuracy of iodine quantification. MATERIALS AND METHODS: A CT phantom was scanned with dual-source CT using abdomen-pelvis examination parameters at four dose levels: 5, 8, 11 and 20 mGy. Images were reconstructed using filtered-back projection (FBP) and ADMIRE levels 3 and 5 (A3-A5). HU accuracy was assessed calculating the root-mean-square deviation (RMSDHU). Image noise and CNR were computed on VMIs at 40/50/60/70 keV for 4 iodine inserts with 0.5, 1, 2 and 5 mg/mL concentrations. Accuracy of iodine quantification was assessed by the RMSDiodine and iodine bias (IB). RESULTS: The RMSDHU decreased significantly as the dose levels increased compared to 5 mGy, except for 8 mGy with A3 (P = 0.380) and with A5 level (P = 0.945). Noise increased by 63.0 ± 3.0 (standard deviation [SD])% from 20 mGy to 5 mGy. Noise decreased significantly by -53.8 ± 0.9 (SD) % with A5 compared to FBP. The CNR decreased by -43.1 ± 6.5 (SD)% from 20 mGy to 5 mGy. It increased using ADMIRE, and as the ADMIRE levels increased. The RMSDiodine and IB decreased as the dose level increased, and this was similar for all reconstruction types. CONCLUSION: ADMIRE strongly improves image quality in VMIs and slightly improves HU accuracy but does not affect the accuracy of iodine quantification.


Assuntos
Iodo , Abdome , Algoritmos , Humanos , Imagens de Fantasmas , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X
18.
Acta Radiol ; 63(5): 623-631, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33887965

RESUMO

BACKGROUND: Iodine quantification using dual-energy computed tomography (DECT) is helpful in characterizing, and follow-up after treatment of tumors. Some malignant masses, for instance papillary renal cell carcinomas (p-RCC), are hard to differentiate from benign lesions because of very low contrast enhancement. In these cases, iodine concentrations might be very low, and it is therefore important that iodine quantification is reliable even at low concentrations if this technique is used. PURPOSE: To examine the accuracy of iodine quantification and to determine whether it is also accurate for low iodine concentrations. MATERIAL AND METHODS: Twenty-six syringes with different iodine concentrations (0-30 mg I/mL) were scanned in a phantom model using a DECT scanner with two different kilovoltage and image reconstruction settings. Iodine concentrations were measured and compared to known concentration. Absolute and relative errors were calculated. RESULTS: For concentrations of 1 mg I/mL or higher, there was an excellent correlation between true and measured iodine concentrations for all settings (R = 0.999-1.000; P < 0.001). For concentrations <1.0 mg I/mL, the relative error was greater. Absolute and relative errors were smaller using tube voltages of 80/Sn140 kV than 100/Sn140 kV (P < 0.01). Reconstructions using a 3.0-mm slice thickness had less variance between repeated acquisitions versus 0.6 mm (P < 0.001). CONCLUSION: Iodine quantification using DECT was in general very accurate, but for concentrations < 1.0 mg I/mL the technique was less reliable. Using a tube voltage with larger spectral separation was more accurate and the result was more reproducible using thicker image reconstructions.


Assuntos
Iodo , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Meios de Contraste , Humanos , Imagens de Fantasmas , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos
19.
Diagnostics (Basel) ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34943613

RESUMO

The present study evaluates the diagnostic reliability of virtual non-contrast (VNC) images acquired with the first photon counting CT scanner that is approved for clinical use by comparing quantitative image properties of VNC and true non-contrast (TNC) images. Seventy-two patients were retrospectively enrolled in this study. VNC images reconstructed from the arterial (VNCa) and the portalvenous (VNCv) phase were compared to TNC images. In addition, consistency between VNCa and VNCv images was evaluated. Regions of interest (ROI) were drawn in the following areas: liver, spleen, kidney, aorta, muscle, fat and bone. Comparison of VNCa and VNCv images revealed a mean offset of less than 4 HU in all tissues. The greatest difference between TNC and VNC images was found in spongious bone (VNCv 86.13 HU ± 28.44, p < 0.001). Excluding measurements in spongious bone, differences between TNC and VNCv of 10 HU or less were found in 40% (VNCa 36%) and differences of 15 HU or less were found in 72% (VNCa 68%) of all measurements. The underlying algorithm for the subtraction of iodine works in principle but requires adjustments. Until then, special caution should be exercised when using VNC images in routine clinical practice.

20.
J Appl Clin Med Phys ; 22(10): 249-260, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34472700

RESUMO

A novel routine dual-energy computed tomography (DECT) quality control (QC) program was developed to address the current deficiency of routine QC for this technology. The dual-energy quality control (DEQC) program features (1) a practical phantom with clinically relevant materials and concentrations, (2) a clinically relevant acquisition, reconstruction, and postprocessing protocol, and (3) a fully automated analysis software to extract quantitative data for database storage and trend analysis. The phantom, designed for easy set up for standalone or adjacent imaging next to the ACR phantom, was made in collaboration with an industry partner and informed by clinical needs to have four iodine inserts (0.5, 1, 2, and 5 mg/ml) and one calcium insert (100 mg/ml) equally spaced in a cylindrical water-equivalent background. The imaging protocol was based on a clinical DECT abdominal protocol capable of producing material specific concentration maps, virtual unenhanced images, and virtual monochromatic images. The QC automated analysis software uses open-source technologies which integrates well with our current automated CT QC database. The QC program was tested on a GE 750 HD scanner and two Siemens SOMATOM FLASH scanners over a 3-month period. The automated algorithm correctly identified the appropriate region of interest (ROI) locations and stores measured values in a database for monitoring and trend analysis. Slight variations in protocol settings were noted based on manufacturer. Overall, the project proved to provide a convenient and dependable clinical tool for routine oversight of DE CT imaging within the clinic.


Assuntos
Iodo , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Humanos , Imagens de Fantasmas , Controle de Qualidade , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA