Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Chem Asian J ; : e202400662, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095336

RESUMO

The design and development of new and efficient catalyst binder materials are important for improving cell performance in high-temperature proton-exchange membrane fuel cells (HT-PEMFCs). In this study, a series of tetrafluorophenyl phosphonic acid-based binder materials (PF-y-P, y = 1, 0.83, and 0.67) with rigid structures and controllable degrees of phosphonation were prepared and used in HT-PEMFCs using the ultra-strong acid-catalyzed Friedel-Crafts reaction and the combined Michaelis-Arbuzov reaction. The samples exhibited high stability, low water uptake, superior proton conductivity, and cell performance. In addition, the oxygen mass transport properties of the PF-1-P binder were investigated using high-temperature microelectrode electrochemical testing techniques. Compared with the phosphoric acid-doped polybenzimidazole (PBI) binder, the O2 solubility of PF-1-P binder material increased by 30% (5.36 × 10-6 mol cm-3) and the PF-1-P binder material exhibited better cell stability in HT-PEMFCs. After 10.5 h of discharge at a constant current of 0.12 A cm-2, the MEA voltage decreased by 7.1% and 20.8% in case of the PF-1-P and PBI binders, respectively.

2.
Mar Pollut Bull ; 206: 116758, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098135

RESUMO

The nearshore zone turns out to be the area with the higher concentration of plastic debris and, for this reason, it is important to know the processes that affect the transport and the fate of this type of litter. This study focuses on investigating the dynamics of various plastic types under several hydrodynamic conditions primarily induced by waves. 2D tests were carried out at the Hydraulic Laboratory of the University of Messina reproducing the main phenomena that occurred during the wave propagation on a planar beach. More than 200 different conditions were tested changing the wave characteristics, the water depth, the plastic debris characteristics (density and shape), and the roughness of the fixed bottom. In general, it can be observed that the reduction in particle displacement occurs due to: i) a decrease in wave steepness; ii) an increase in depth; iii) an increase in particle size; iv) an increase in plastic density. However, the experimental investigation shows that some plastic characteristics and bed roughness, even when hydraulically smooth, can alter these results. The experimental data analysis identified a criterion for predicting the short-term fate of plastic debris under wave action. This criterion to determine equilibrium conditions, based on an empirical relationship, takes into account the wave characteristics, the bed roughness and slope, and the weight of the debris.

3.
J Membr Biol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133275

RESUMO

Drug delivery through electroporation could be highly beneficial for the treatment of different types of diseased tissues within the human body. In this work, a mathematical model of reversible tissue electroporation is presented for injecting drug into the diseased cells. The model emphasizes the tissue boundary where the drug is injected as a point source. In addition, the effect of drug loss at tissue boundaries through extracellular space is studied elaborately. Multiple pulses are applied to deliver a sufficient amount of drug into the targeted cells. The set of differential equations that model the physical circumstances are solved numerically. This model obtains a mass transfer coefficient (MTC), in terms of pore fraction coefficient and drug permeability that controls the drug transport from extracellular to intracellular space. The drug penetration throughout the tissue is captured for the application of different pulses. The boundary effects on drug concentration are highlighted in this study. The advocated model is able to perform homogeneous drug transport into the cells so that the affected tissue is treated completely. This model can be applied to optimize clinical experiments by avoiding the lengthy and costly in vivo and in vitro experiments.

4.
ACS Appl Mater Interfaces ; 16(31): 40714-40725, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39056539

RESUMO

The hypothesis of the study was that (1) 3D printed drug delivery systems (DDS) could be characterized in situ during drug release using NMR/MRI techniques in terms of mass transport phenomena description (interfacial phenomena), particularly for systems dealing with two mobile phases (e.g., water and low molecular weight liquid polymer); (2) consequently, it could be possible to deduce how these interfacial mass transport phenomena influence functional properties of 3D printed DDS. Matrix drug delivery systems, prepared using masked stereolithography (MSLA), containing poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight polyethylene glycol (PEG) with ropinirole hydrochloride (RH) were studied as example formulations. The PEGDA to PEG (mobile phase) concentration ratio influenced drug release. It was reflected in spatiotemporal changes in parametric T2 relaxation time (T2) and amplitude (A) images obtained using magnetic resonance imaging (MRI) and T1-T2 relaxation time correlations obtained using low-field time-domain nuclear magnetic resonance (LF TD NMR) relaxometry during incubation in water. For most of the tested formulations, two signal components related to PEG and water were assessed in the hydrated matrices by MRI relaxometry (parametric T2/A images). The PEG component faded out due to outward PEG diffusion and was gradually replaced by the water component. Both components spatially and temporally changed their parameters, reflecting evolving water-polymer interactions. The study shows that dynamic phenomena related to bidirectional mass transport can be quantified in situ using NMR and MRI techniques to gain insight into drug release mechanisms from 3D printed DDS systems.


Assuntos
Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Polietilenoglicóis , Impressão Tridimensional , Polietilenoglicóis/química , Imageamento por Ressonância Magnética/métodos , Liberação Controlada de Fármacos , Indóis/química
5.
Front Bioeng Biotechnol ; 12: 1401899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994122

RESUMO

Background: The bone repair requires the bone scaffolds to meet various mechanical and biological requirements, which makes the design of bone scaffolds a challenging problem. Novel triply periodic minimal surface (TPMS)-based bone scaffolds were designed in this study to improve the mechanical and biological performances simultaneously. Methods: The novel bone scaffolds were designed by adding optimization-guided multi-functional pores to the original scaffolds, and finite element (FE) method was used to evaluate the performances of the novel scaffolds. In addition, the novel scaffolds were fabricated by additive manufacturing (AM) and mechanical experiments were performed to evaluate the performances. Results: The FE results demonstrated the improvement in performance: the elastic modulus reduced from 5.01 GPa (original scaffold) to 2.30 GPa (novel designed scaffold), resulting in lower stress shielding; the permeability increased from 8.58 × 10-9 m2 (original scaffold) to 5.14 × 10-8 m2 (novel designed scaffold), resulting in higher mass transport capacity. Conclusion: In summary, the novel TPMS scaffolds with multi-functional pores simultaneously improve the mechanical and biological performances, making them ideal candidates for bone repair. Furthermore, the novel scaffolds expanded the design domain of TPMS-based bone scaffolds, providing a promising new method for the design of high-performance bone scaffolds.

6.
Nano Lett ; 24(29): 8851-8858, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991547

RESUMO

The interpretation of mechanisms governing hot carrier reactivity on metallic nanostructures is critical, yet elusive, for advancing plasmonic photocatalysis. In this work, we explored the influence of the diffusion of molecules on the hot carrier extraction rate at the solid-liquid interface, which is of fundamental interest for increasing the efficiency of photodevices. Through a spatially defined scanning photoelectrochemical microscopy investigation, we identified a diffusion-controlled regime hindering the plasmon-driven photochemical activity of metallic nanostructures. Using low-power monochromatic illumination (<2 W cm-2), we unveiled the hidden influence of mass transport on the quantum efficiency of plasmonic photocatalysts. The availability of molecules at the solid-liquid interface directly limits the extraction of hot holes, according to their nature and energy, at the reactive spots in Au nanoislands on an ultrathin TiO2 substrate. An intriguing question arises: does the mass transport enhancement caused by thermal effects unlock the reactivity of nonthermal carriers under steady state?

7.
Molecules ; 29(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38998938

RESUMO

The mechanics of capillary force in biological systems have critical roles in the formation of the intra- and inter-cellular structures, which may mediate the organization, morphogenesis, and homeostasis of biomolecular condensates. Current techniques may not allow direct and precise measurements of the capillary forces at the intra- and inter-cellular scales. By preserving liquid droplets at the liquid-liquid interface, we have discovered and studied ideal models, i.e., interfacial liquids and marbles, for understanding general capillary mechanics that existed in liquid-in-liquid systems, e.g., biomolecular condensates. The unexpectedly long coalescence time of the interfacial liquids revealed that the Stokes equation does not hold as the radius of the liquid bridge approaches zero, evidencing the existence of a third inertially limited viscous regime. Moreover, liquid transport from a liquid droplet to a liquid reservoir can be prohibited by coating the droplet surface with hydrophobic or amphiphilic particles, forming interfacial liquid marbles. Unique characteristics, including high stability, transparency, gas permeability, and self-assembly, are observed for the interfacial liquid marbles. Phase transition and separation induced by the formation of nanostructured materials can be directly observed within the interfacial liquid marbles without the need for surfactants and agitation, making them useful tools to research the interfacial mechanics.

8.
Adv Colloid Interface Sci ; 331: 103239, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936181

RESUMO

Surfactant mass transport towards an interface plays a critical role during formation of emulsions, foams and in industrial processes where two immiscible phases coexist. The understanding of these mechanisms as experimentally observed by dynamic interfacial tension measurements, is crucial. In this review, theoretical models describing both equilibrated systems and surfactant kinetics are covered. Experimental results from the literature are analysed based on the nature of surfactants and the tensiometry methods used. The innovative microfluidic techniques that have become available to study both diffusion and adsorption mechanisms during surfactant mass transport are discussed and compared with classical methods. This review focuses on surfactant transport during formation of droplets or bubbles; stabilisation of dispersed systems is not discussed here.

9.
ACS Appl Mater Interfaces ; 16(24): 31798-31806, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38835166

RESUMO

Surface barriers are commonly observed in nanoporous materials. Although researchers have explored methods to repair defects or create flawless crystals to mitigate surface barriers, these approaches may not always be practical or readily achievable in targeted metal-organic frameworks (MOFs). In our study, we propose an alternative approach focusing on the introduction of diverse ligands onto a MOF-808 node to finely adjust its adsorption and mass transport characteristics. Significantly, our findings indicate that while adsorption curves can be inferred based on the MOF's chemical composition and the probing molecule, surface permeabilities exhibit variations dependent on the specific probe utilized and the incorporated ligand. Our investigation, considering van der Waals forces exclusively between the adsorbate (e.g., n-hexane, propane, and benzene) and the adsorbent, revealed that augmenting these interactions can indeed improve surface permeation to a certain extent. Conversely, strong adsorption resulting from hydrogen bonding interactions, particularly with water in modified MOFs, led to compromised permeation within the MOF crystals. These outcomes provide valuable insights for the porous materials community and offer guidance in the development of adsorbents with enhanced affinity and superior mass transport properties for gases and vapors.

10.
ACS Appl Mater Interfaces ; 16(24): 31534-31542, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856659

RESUMO

The integration of metal-organic frameworks (MOFs) into composite systems serves as an effective strategy to increase the processability of these materials. Notably, MOF/fiber composites have shown much promise as protective equipment for the capture and remediation of chemical warfare agents. However, the practical application of these composites requires an understanding of their mass transport properties, as both mass transfer resistance at the surface and diffusion within the materials can impact the efficacy of these materials. In this work, we synthesized composite fibers of MOF-808 and amidoxime-functionalized polymers of intrinsic microporosity (PIM-1-AX) and measured the adsorption and mass transport behavior of n-hexane and 2-chloroethyl ethyl sulfide (CEES), a sulfur mustard simulant. We developed a new Fickian diffusion model for cylindrical shapes to fit the dynamic adsorption data obtained from a commercial volumetric adsorption apparatus and found that mass transport behavior in composite fibers closely resembled that in the pure PIM fibers, regardless of MOF loading. Moreover, we found that n-hexane adsorption mirrors that of CEES, indicating that it could be used as a structural mimic for future adsorption studies of the sulfur mustard simulant. These preliminary insights and the new model introduced in this work lay the groundwork for the design of next-generation composite materials for practical applications.

11.
Pharm Res ; 41(5): 937-945, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698196

RESUMO

BACKGROUND: Phosphate buffer is often used as a replacement for the physiological bicarbonate buffer in pharmaceutical dissolution testing, although there are some discrepancies in their properties making it complicated to extrapolate dissolution results in phosphate to the in vivo situation. This study aims to characterize these discrepancies regarding solubility and dissolution behavior of ionizable compounds. METHODS: The dissolution of an ibuprofen powder with a known particle size distribution was simulated in silico and verified experimentally in vitro at two different doses and in two different buffers (5 mM pH 6.8 bicarbonate and phosphate). RESULTS: The results showed that there is a solubility vs. dissolution mismatch in the two buffers. This was accurately predicted by the in-house simulations based on the reversible non-equilibrium (RNE) and the Mooney models. CONCLUSIONS: The results can be explained by the existence of a relatively large gap between the initial surface pH of the drug and the bulk pH at saturation in bicarbonate but not in phosphate, which is caused by not all the interfacial reactions reaching equilibrium in bicarbonate prior to bulk saturation. This means that slurry pH measurements, while providing surface pH estimates for buffers like phosphate, are poor indicators of surface pH in the intestinal bicarbonate buffer. In addition, it showcases the importance of accounting for the H2CO3-CO2 interconversion kinetics to achieve good predictions of intestinal drug dissolution.


Assuntos
Bicarbonatos , Liberação Controlada de Fármacos , Ibuprofeno , Fosfatos , Solubilidade , Soluções Tampão , Bicarbonatos/química , Concentração de Íons de Hidrogênio , Ibuprofeno/química , Fosfatos/química , Tamanho da Partícula , Simulação por Computador , Pós/química , Cinética , Química Farmacêutica/métodos
12.
Methods Mol Biol ; 2804: 103-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753143

RESUMO

In this chapter, we present the design and fabrication of a device and implementation of a protocol to realize increased efficiency of immunoassays within microtiter plates. The device, WellProbe, is a 3D-structured probe that can be used to deliver precise flows at the bottom of standard well plates to establish concentric areas of shear stress intensities using hydrodynamically confined flows. The protocols involve both operation and data analysis.


Assuntos
Desenho de Equipamento , Imunoensaio/métodos , Imunoensaio/instrumentação , Hidrodinâmica , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Humanos
13.
ChemSusChem ; : e202400518, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687205

RESUMO

A modified Metal-Organic Framework UiO-66-NH2-based photocathode in a zero-gap gas phase photoelectrolyzer was applied for CO2 reduction. Four types of porous carbon fiber layers with different wettability were employed to tailor the local environment of the cathodic surface reactions, optimizing activity and selectivity towards formate, methanol, and ethanol. Results are explained by mass transport through the different type and arrangement of carbon fiber support layers in the photocathodes and the resulting local environment at the UiO-66-NH2 catalyst. The highest energy-to-fuel conversion efficiency of 1.06 % towards hydrocarbons was achieved with the most hydrophobic carbon fiber (H23C2). The results are a step further in understanding how the design and composition of the photoelectrodes in photoelectrochemical electrolyzers can impact the CO2 reduction efficiency and selectivity.

14.
Sci Rep ; 14(1): 7772, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565874

RESUMO

In recent years, the issue of energy consumption in farm buildings has received much attention. The roofs of farm buildings in Northwest China have a variety of roof forms. This paper presents the implementation of first fully confirmed the indoor thermal environment of different roof construction was significantly effected by periodic thermogenesis. In order to determine the indoor temperature distribution of the farmhouse in summer in Ningxia Hui Autonomous Region, we provided the heat transfer coefficient data of the farmhouse envelope, also detailed in the manuscript. Model of Thermal Mass Transport enables fast and accurately simulates the indoor temperature distribution of farmhouses with different roof forms on the same day, taking into account the climate zone of the region. This is despite the phase delay time of indoor temperatures for different roof forms caused by periodic initial temperature boundaries ranged from 1.55 to 2.78 h , and the phase delay angle ranged from 23.25 ∘ to 41.7 ∘ . Extensive simulated results revealed individual variability in the role of roof form, demonstrating indoor temperatures in farmhouses corresponding to different climatic zones. In addition, by analyzing and discussing the indoor temperature phase delay angle and delay time for each type of roof forms, statistical results identified the advantages of Non-equal-sloped roof as a local farmhouse roof.

15.
Environ Sci Technol ; 58(17): 7643-7652, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38573006

RESUMO

Electrochemical-induced precipitation is a sustainable approach for tap-water softening, but the hardness removal performance and energy efficiency are vastly limited by the ultraslow ion transport and the superlow local HCO3-/Ca2+ ratio compared to the industrial scenarios. To tackle the challenges, we herein report an energy-efficient electrochemical tap-water softening strategy by utilizing an integrated cathode-anode-cathode (CAC) reactor in which the direction of the electric field is reversed to that of the flow field in the upstream cell, while the same in the downstream cell. As a result, the transport of ions, especially HCO3-, is significantly accelerated in the downstream cell under a flow field. The local HCO3-/Ca2+ ratio is increased by 1.5 times, as revealed by the finite element numerical simulation and in situ imaging. In addition, a continuous flow electrochemical system with an integrated CAC reactor is operated for 240 h to soften tap water. Experiments show that a much lower cell voltage (9.24 V decreased) and energy consumption (28% decreased) are obtained. The proposed ion-transport enhancement strategy by coupled electric and flow fields provides a new perspective on developing electrochemical technologies to meet the flexible and economic demand for tap-water softening.


Assuntos
Transporte de Íons , Eletricidade , Água Potável , Eletrodos , Purificação da Água/métodos , Técnicas Eletroquímicas/métodos
16.
ACS Nano ; 18(14): 9765-9772, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38545891

RESUMO

Soft devices integrating flexible structures and versatile material functionalities offer platform technologies for the healthcare, information, and communication industries. The flexibility can be achieved by constructing devices from low-dimensional nanostructures or nanoporous soft materials. By pushing the limits of fabrication and structuring down to the nanometer and Ångstrom scales, nanofluidics with extreme spatial confinement has recently been actively explored for energy-, environment-, and human-friendly device applications as alternative solutions to electronics and mechanotronics. Soft nanofluidic machinery enables ultrafast and selective fluidic transport, efficient energy conversion, and information processing, offering unconventional dimensions of design. The physics behind the design is introduced, followed by discussions on their implementations and performance and an outlook on the opportunities and challenges.

17.
J Physiol ; 602(7): 1273-1295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513000

RESUMO

Vision relies on the continuous exchange of material between the photoreceptors, retinal pigment epithelium and choriocapillaris, a dense microvascular bed located underneath the outer retina. The anatomy and physiology of the choriocapillaris and their association with retinal homeostasis have proven difficult to characterize, mainly because of the unusual geometry of this vascular bed. By analysing tissue dissected from 81 human eyes, we show that the thickness of the choriocapillaris does not vary significantly over large portions of the macula or with age. Assessments of spatial variations in the anatomy of the choriocapillaris in three additional human eyes indicate that the location of arteriolar and venular vessels connected to the plane of the choriocapillaris is non-random, and that venular insertions cluster around arteriolar ones. Mathematical models built upon these anatomical analyses reveal that the choriocapillaris contains regions where the transport of passive elements is dominated by diffusion, and that these diffusion-limited regions represent areas of reduced exchange with the outer retina. The width of diffusion-limited regions is determined by arterial flow rate and the relative arrangement of arteriolar and venular insertions. These analyses demonstrate that the apparent complexity of the choriocapillaris conceals a fine balance between several anatomical and functional parameters to effectively support homeostasis of the outer retina. KEY POINTS: The choriocapillaris is the capillary bed supporting the metabolism of photoreceptors and retinal pigment epithelium, two critical components of the visual system located in the outer part of the retina. The choriocapillaris has evolved a planar multipolar vascular geometry that differs markedly from the branched topology of most vasculatures in the human body. Here, we report that this planar multipolar vascular geometry is associated with spatially heterogenous molecular exchange between choriocapillaris and outer retina. Our data and analyses highlight a necessary balance between choriocapillaris anatomical and functional parameters to effectively support homeostasis of the outer retina.


Assuntos
Corioide , Retina , Humanos , Corioide/irrigação sanguínea , Vasos Retinianos , Capilares , Arteríolas
18.
mSphere ; 9(4): e0018524, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38530018

RESUMO

Most microbial life on Earth is found in localized microenvironments that collectively exert a crucial role in maintaining ecosystem health and influencing global biogeochemical cycles. In many habitats such as biofilms in aquatic systems, bacterial flocs in activated sludge, periphyton mats, or particles sinking in the ocean, these microenvironments experience sporadic or continuous flow. Depending on their microscale structure, pores and channels through the microenvironments permit localized flow that shifts the relative importance of diffusive and advective mass transport. How this flow alters nutrient supply, facilitates waste removal, drives the emergence of different microbial niches, and impacts the overall function of the microenvironments remains unclear. Here, we quantify how pores through microenvironments that permit flow can elevate nutrient supply to the resident bacterial community using a microfluidic experimental system and gain further insights from coupled population-based and computational fluid dynamics simulations. We find that the microscale structure determines the relative contribution of advection vs diffusion, and even a modest flow through a pore in the range of 10 µm s-1 can increase the carrying capacity of a microenvironment by 10%. Recognizing the fundamental role that microbial hotspots play in the Earth system, developing frameworks that predict how their heterogeneous morphology and potential interstitial flows change microbial function and collectively alter global scale fluxes is critical.IMPORTANCEMicrobial life is a key driver of global biogeochemical cycles. Similar to the distribution of humans on Earth, they are often not homogeneously distributed in nature but occur in dense clusters that resemble microbial cities. Within and around these clusters, diffusion is often assumed as the sole mass-transfer process that dictates nutrient supply and waste removal. In many natural and engineered systems such as biofilms in aquatic environments, aggregates in bioremediation, or flocs in wastewater treatment plants, these clusters are exposed to flow that elevates mass transfer, a process that is often overlooked. In this study, we show that advective fluxes can increase the local growth of bacteria in a single microenvironment by up to 50% and shape their metabolism by disrupting localized anoxia or supplying nutrients at different rates. Collectively, advection-enhanced mass transport may thus regulate important biogeochemical transformations in both natural and engineered environments.

19.
Materials (Basel) ; 17(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541502

RESUMO

The Keyhole Plasma Arc Welding (KPAW) process utilizes arc plasma highly constricted by a water-cooled cupper nozzle to produce great arc pressure for opening a keyhole in the weld pool, achieving full penetration to the thick plate. However, advanced control of welding is known to still be difficult due to the complexity of the process mechanism, in which thermal and dynamic interactions among the arc, keyhole, and weld pool are critically important. In KPAW, two large eddies are generally formed in the weld pool behind the keyhole by plasma shear force as the dominant driving force. These govern the heat transport process in the weld pool and have a strong influence on the weld pool formation process. The weld pool flow velocity is much faster than those of other welding processes such as Tungsten Inert Gas (TIG) welding and Gas Metal Arc (GMA) welding, enhancing the heat transport to lower the weld pool surface temperature. Since the strength and direction of this shear force strongly depend on the keyhole shape, it is possible to control the weld pool formation process by changing the keyhole shape by adjusting the torch design and operating parameters. If the lower eddy is relatively stronger, the heat transport to the bottom side increases and the penetration increases. However, burn-through is more likely to occur, and heat transport to the top side decreases, causing undercut. In order to realize further sophistication of KPAW, a deep theoretical understanding of the process mechanism is essential. In this article, the recent progress in studies regarding the interaction mechanism of arc, keyhole, and weld pool in KPAW is reviewed.

20.
ACS Nano ; 18(9): 6740-6747, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354032

RESUMO

Diffusion and surface oxidation are critical processes in metal alloy designs and use. Surface oxides provide opportunities to improve material properties or performance beyond bulk alterations. Surface oxidation is, however, often oversimplified into a classical diffusion process. Passivating oxide surfaces are also thought to be lacking in complexity or critical information. A closer look, however, shows inherent complexity with kinetics-driven competition between the elements in the process leading to redox-speciation across a very small (nm) thickness. Questions that remain to be answered for a comprehensive understanding of surface oxides are diverse and call for interdisciplinary approaches. By using the thermodynamics-based Preferential Interactivity Parameter (PIP) alongside kinetic consideration, we show how complexity in these oxides can be predicted allowing us to tailor these thin films. We use our work, and that of others, to illustrate predictability while also highlighting that there is still much more to be done.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA