Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1393752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015385

RESUMO

Introduction: While breastfeeding is recommended, knowledge regarding medicine transfer to human milk and its safety for nursing infants is limited. Only one paper has previously described dimethyl fumarate (DMF) transfer during breastfeeding in two patients at 5 and 6 months postpartum, respectively. The current case report describes maternal pharmacokinetic data of monomethyl fumarate (MMF), the active metabolite of DMF, and infant exposure estimations of MMF at 3 months postpartum. Methods: A 32-year-old Caucasian woman started DMF therapy (120 mg, 2x/day) for multiple sclerosis at 3 months postpartum, after weaning her infant from breastfeeding. On day 99 after birth, the patient collected four milk samples over 24 h after 6 days of treatment at the initial dose. Additionally, a single maternal blood sample was collected to calculate the milk-to-plasma (M/P) ratio. The samples were analyzed using liquid chromatography coupled with the mass spectrometry method. Results: A wide range of measured steady-state concentrations of MMF (5.5-83.5 ng/mL) was observed in human milk samples. Estimated daily infant dosage values for MMF, calculated with 150 and 200 mL/kg/day human milk intake, were 5.76 and 7.68 µg/kg/day, and the relative infant doses were 0.16 and 0.22%. The observed mean M/P ratio was 0.059, similar to the M/P ratio predicted using the empirical Koshimichi model (0.06). Discussion: Combining this case report with the two previously described cases, the estimated infant exposure is low, albeit with relevant intra- and inter-patient variabilities. Research should further focus on infant exposure and safety.


Assuntos
Fumaratos , Leite Humano , Humanos , Leite Humano/química , Feminino , Adulto , Aleitamento Materno , Recém-Nascido , Esclerose Múltipla/tratamento farmacológico , Imunossupressores , Lactente , Maleatos
2.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38915544

RESUMO

While cancer survivorship has increased due to advances in treatments, chemotherapy often carries long-lived neurotoxic side effects which reduce quality of life. Commonly affected domains include memory, executive function, attention, processing speed and sensorimotor function, colloquially known as chemotherapy-induced cognitive impairment (CICI) or "chemobrain". Oxidative stress and neuroimmune signaling in the brain have been mechanistically linked to the deleterious effects of chemotherapy on cognition and sensorimotor function. With this in mind, we tested if activation of the master regulator of antioxidant response nuclear factor E2-related factor 2 (Nrf2) alleviates cognitive and sensorimotor impairments induced by doxorubicin. The FDA-approved systemic Nrf2 activator, diroximel fumarate (DRF) was used, along with our recently developed prodrug 1c which has the advantage of specifically releasing monomethyl fumarate at sites of oxidative stress. DRF and 1c both reversed doxorubicin-induced deficits in executive function, spatial and working memory, as well as decrements in fine motor coordination and grip strength, across both male and female mice. Both treatments reversed doxorubicin-induced loss of synaptic proteins and microglia phenotypic transition in the hippocampus. Doxorubicin-induced myelin damage in the corpus callosum was reversed by both Nrf2 activators. These results demonstrate the therapeutic potential of Nrf2 activators to reverse doxorubicin-induced cognitive impairments, motor incoordination, and associated structural and phenotypic changes in the brain. The localized release of monomethyl fumarate by 1c has the potential to diminish unwanted effects of fumarates while retaining efficacy.

3.
Int Immunopharmacol ; 137: 112488, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38889510

RESUMO

Monomethyl fumarate (MMF), a potent anti-inflammatory agent used to treat multiple sclerosis, has demonstrated efficacy in various inflammatory and ischemia/reperfusion (IR) models; however, its impact on IR-induced acute lung injury (ALI) has not been explored. We investigated, for the first time, whether MMF attenuates lung IR injury through inhibition of the GAPDH/Siah1 signaling pathway. Rats were subjected to IR injury using an isolated perfused lung model, and proximity ligation assays were employed to evaluate the presence and distribution of the GAPDH/Siah1 complex. In vitro studies involved pretreating human primary alveolar epithelial cells (HPAECs) with MMF and/or inducing GAPDH overexpression or silencing, followed by exposure to hypoxia-reoxygenation. The findings revealed significantly reduced lung damage indicators, including edema, proinflammatory cytokines, oxidative stress and apoptosis, in MMF-treated rats. Notably, MMF treatment inhibited GAPDH/Siah1 complex formation and nuclear translocation, indicating that disruption of the GAPDH/Siah1 cascade was the primary cause of these improvements. Our in vitro studies on pretreated HPAECs corroborate these in vivo findings, further strengthening this interpretation. Our study results suggest that the protective effects of MMF against lung IR injury may be attributed, at least in part, to its ability to disrupt the GAPDH/Siah1 signaling cascade, thereby attenuating inflammatory and apoptotic responses. Given these encouraging results, MMF has emerged as a promising therapeutic candidate for the management of lung IR injury.


Assuntos
Lesão Pulmonar Aguda , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Masculino , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Ratos , Fumaratos/farmacologia , Fumaratos/uso terapêutico , Apoptose/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38840397

RESUMO

BACKGROUND: Dimethyl fumarate is used to treat patients with relapsing-remitting multiple sclerosis. After ingestion, it is rapidly hydrolyzed to the active primary metabolite monomethyl fumarate. OBJECTIVE: The main objective of our study was to analyze serum concentrations of monomethyl fumarate during routine health care in patients with multiple sclerosis treated with a fixed dose of dimethyl fumarate. METHODS: In the pilot cross-sectional study, data from 42 patients treated with dimethyl fumarate at a dose of 240 mg twice daily were collected. Concentrations of the active metabolite monomethyl fumarate were determined at 1-8 h (median, 3 h) or 10-14 h (median, 13 h) after taking the dose. The relationship between monomethyl fumarate concentrations and absolute lymphocyte count was evaluated. RESULTS: Concentrations of monomethyl fumarate ranged from 2.5-3177.9 µg/L, with most concentrations being undetectable approximately 10 hours after administration. In the 1-8 h (median, 3 h) post-dose subgroup, the concentration/dose ratio ranged widely from 0.04-6.62. The median concentration of monomethyl fumarate in the group with the absolute lymphocyte count <0.8 x 10^9/l was more than four times higher than in the group with the absolute lymphocyte count ≥0.8 x 10^9/l (median 440.1 µg/L versus 98.4 µg/L). CONCLUSION: The wide interindividual variability in monomethyl fumarate pharmacokinetics could contribute to the differential response to dimethyl fumarate in multiple sclerosis patients. A nonsignificant but noticeable trend was observed in the relationship of higher serum monomethyl fumarate concentrations to absolute lymphocyte counts.

5.
Cureus ; 16(4): e57714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711693

RESUMO

Multiple sclerosis is the most common autoimmune disease affecting the central nervous system (CNS) worldwide. Multiple sclerosis involves inflammatory demyelination of nerve fibers in the CNS, often presenting with recurrent episodes of focal sensory or motor deficits associated with the region of the CNS affected. The prevalence of this disease has increased rapidly over the last decade. Despite the approval of many new pharmaceutical therapies in the past 20 years, there remains a growing need for alternative therapies to manage the course of this disease. Treatments are separated into two main categories: management of acute flare versus long-term prevention of flares via disease-modifying therapy. Primary drug therapies for acute flare include corticosteroids to limit inflammation and symptomatic management, depending on symptoms. Several different drugs have been recently approved for use in modifying the course of the disease, including a group of medications known as fumarates (e.g., dimethyl fumarate, diroximel fumarate, monomethyl fumarate) that have been shown to be efficacious and relatively safe. In the present investigation, we review available evidence focused on monomethyl fumarate, also known as Bafiertam®, along with bioequivalent fumarates for the long-term treatment of relapsing-remitting multiple sclerosis.

6.
Pharmacol Res ; 203: 107182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614373

RESUMO

Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.


Assuntos
Epigênese Genética , Inflamação , Processamento de Proteína Pós-Traducional , Piroptose , Humanos , Piroptose/efeitos dos fármacos , Animais , Inflamação/genética , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
7.
Mult Scler ; : 13524585241242027, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605496

RESUMO

Lymphopenia is a known adverse effect in patients with relapsing multiple sclerosis (RMS) treated with fumaric acids. We present a case series of four patients diagnosed with RMS with prolonged lymphocyte stability on dimethyl fumarate for over 1 year who developed significant lymphopenia after transitioning to diroximel fumarate. This case series highlights the need for further research to elucidate the risk of lymphopenia in patients switching between fumaric acids.

8.
Inflammopharmacology ; 32(2): 1239-1252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472616

RESUMO

BACKGROUND: Osteoarthritis (OA) is a chronic disease that may lead to joint structure degeneration, cartilage destruction, osteophyte formation, subchondral bone disruption, and pain. In this scenario, a higher proportion of the proinflammatory macrophage type 1 (M1) than the anti-inflammatory macrophage type 2 (M2) could be highlighted as a hallmark of OA progression. The balance between these two macrophage types emerges as a new therapeutic target in OA. This study aimed to evaluate the analgesia and macrophage profile in the treatment of experimental osteoarthritis (EOA) with systemic dimethyl fumarate (DMF) or local intra-articular monomethyl fumarate (MMF). RESULTS: DMF via gavage or MMF via intra-articular in the right knee of EOA rats showed improvements in gait parameters and the nociceptive recovery of the mechanical threshold assessment by adapted electronic von Frey treatment on the twenty-first day (long-lasting phase). DMF treatment decreased proinflammatory TNF-α while increasing anti-inflammatory IL-10 cytokines from the macerated capsule on the fifth day (inflammatory phase). MMF treatment showed joint capsule mRNA extraction downregulating iNOS and TNF-α gene expression while upregulating IL-10 and MCP-1. However, CD206 was not significant but higher than untreated EOA rats' joints on the seventh day (inflammatory phase). CONCLUSIONS: Our studies with EOA model induced by MIA suggest a new perspective for human treatment committed with OA based on macrophage polarization as a therapeutic target, switching the proinflammatory profile M1 to the anti-inflammatory profile M2 with DMF systematic or by MMF locally treatment according to the OA severity.


Assuntos
Fumaratos , Interleucina-10 , Osteoartrite , Humanos , Ratos , Animais , Fator de Necrose Tumoral alfa , Osteoartrite/metabolismo , Dor/tratamento farmacológico , Fumarato de Dimetilo , Macrófagos/metabolismo , Anti-Inflamatórios/uso terapêutico
9.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396960

RESUMO

Active vitamin D derivatives (VDDs)-1α,25-dihydroxyvitamin D3/D2 and their synthetic analogs-are well-known inducers of cell maturation with the potential for differentiation therapy of acute myeloid leukemia (AML). However, their dose-limiting calcemic activity is a significant obstacle to using VDDs as an anticancer treatment. We have shown that different activators of the NF-E2-related factor-2/Antioxidant Response Element (Nrf2/ARE) signaling pathway, such as the phenolic antioxidant carnosic acid (CA) or the multiple sclerosis drug monomethyl fumarate (MMF), synergistically enhance the antileukemic effects of various VDDs applied at low concentrations in vitro and in vivo. This study aimed to investigate whether glutathione, the major cellular antioxidant and the product of the Nrf2/ARE pathway, can mediate the Nrf2-dependent differentiation-enhancing activity of CA and MMF in HL60 human AML cells. We report that glutathione depletion using L-buthionine sulfoximine attenuated the enhancing effects of both Nrf2 activators concomitant with downregulating vitamin D receptor (VDR) target genes and the activator protein-1 (AP-1) family protein c-Jun levels and phosphorylation. On the other hand, adding reduced glutathione ethyl ester to dominant negative Nrf2-expressing cells restored both the suppressed differentiation responses and the downregulated expression of VDR protein, VDR target genes, as well as c-Jun and P-c-Jun levels. Finally, using the transcription factor decoy strategy, we demonstrated that AP-1 is necessary for the enhancement by CA and MMF of 1α,25-dihydroxyvitamin D3-induced VDR and RXRα protein expression, transactivation of the vitamin D response element, and cell differentiation. Collectively, our findings suggest that glutathione mediates, at least in part, the potentiating effect of Nrf2 activators on VDDs-induced differentiation of AML cells, likely through the positive regulation of AP-1.


Assuntos
Abietanos , Leucemia Mieloide Aguda , Fator de Transcrição AP-1 , Humanos , Fator de Transcrição AP-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Vitamina D/uso terapêutico , Vitaminas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Receptores de Calcitriol/metabolismo , Diferenciação Celular , Transdução de Sinais , Glutationa/metabolismo
10.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 866-877, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37184280

RESUMO

Dendritic cells (DCs) are important targets for eliciting allograft rejection after transplantation. Previous studies have demonstrated that metabolic reprogramming of DCs can transform their immune functions and induce their differentiation into tolerogenic DCs. In this study, we aim to investigate the protective effects and mechanisms of monomethyl fumarate (MMF), a bioactive metabolite of fumaric acid esters, in a mouse model of allogeneic heart transplantation. Bone marrow-derived DCs are harvested and treated with MMF to determine the impact of MMF on the phenotype and immunosuppressive function of DCs by flow cytometry and T-cell proliferation assays. RNA sequencing and Seahorse analyses are performed for mature DCs and MMF-treated DCs (MMF-DCs) to investigate the underlying mechanism. Our results show that MMF prolongs the survival time of heart grafts and inhibits the activation of DCs in vivo. MMF-DCs exhibit a tolerogenic phenotype and function in vitro. RNA sequencing and Seahorse analyses reveal that MMF activates the Nrf2 pathway and mediates metabolic reprogramming. Additionally, MMF-DC infusion prolongs cardiac allograft survival, induces regulatory T cells, and inhibits T-cell activation. MMF prevents allograft rejection in mouse heart transplantation by inducing tolerogenic DCs.


Assuntos
Transplante de Coração , Animais , Camundongos , Linfócitos T Reguladores , Fumaratos/metabolismo , Células Dendríticas , Tolerância Imunológica , Rejeição de Enxerto/prevenção & controle , Camundongos Endogâmicos C57BL
11.
Pharmacology ; 108(2): 188-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724743

RESUMO

INTRODUCTION: Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the central nervous system. Dimethyl fumarate (DMF) and monomethyl fumarate (MMF) belong to the disease-modifying drugs in treatment of MS. There is evidence that astrocytes and microglia are involved in MS pathology, but few studies are available about MMF and DMF effects on astrocytes and microglia. The aim of this study was to investigate the effects of MMF and DMF on microglial activation and morphology as well as potential effects on glial viability, Cx43, and AQP4 expressions in different set-ups of an in vitro astrocyte-microglia co-culture model of inflammation. METHODS: Primary rat glial co-cultures of astrocytes containing 5% (M5, mimicking "physiological" conditions) or 30% (M30, mimicking "pathological, inflammatory" conditions) of microglia were treated with different concentrations of MMF (0.1, 0.5, and 2 µg/mL) or DMF (1.5, 5, and 15 µM) for 24 h. Viability, proliferation, and cytotoxicity of glial cells were examined using MTT assay. Immunocytochemistry was performed to analyze the microglial phenotypes. Connexin 43 (Cx43) and aquaporin 4 (AQP4) expressions were quantified by immunoblot analysis. RESULTS: Treatment with different concentrations of MMF or DMF for 24 h did not change the glial cell viability in M5 and M30 co-cultures. Microglial phenotypes were not altered by DMF under physiological M5 conditions, but treatment with higher concentration of DMF (15 µM) induced microglial activation under inflammatory M30 conditions. Incubation with different concentrations of MMF had no effects on microglial phenotypes. The Cx43 expression in M5 and M30 co-cultures was not changed significantly by immunoblot analysis after incubation with different concentrations of DMF or MMF for 24 h. The AQP4 expression was significantly increased in M5 co-cultures after incubation with 5 µm DMF. Under the other conditions, AQP4 expression was not affected by DMF or MMF. DISCUSSION: In different set-ups of the astrocyte-microglia co-culture model of inflammation, MMF has not shown significant effects. DMF had only limited effects on microglia phenotypes and AQP4 expression. In summary, mechanisms of action of fumarates probably do not involve direct effects on microglia phenotypes as well as Cx43 and AQP4 expression.


Assuntos
Fumarato de Dimetilo , Microglia , Ratos , Animais , Fumarato de Dimetilo/metabolismo , Fumarato de Dimetilo/farmacologia , Microglia/metabolismo , Astrócitos , Conexina 43/metabolismo , Conexina 43/farmacologia , Técnicas de Cocultura , Inflamação/metabolismo
12.
Pharmacol Res ; 189: 106697, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796462

RESUMO

Necroptosis has been implicated in various inflammatory diseases including tumor-necrosis factor-α (TNF-α)-induced systemic inflammatory response syndrome (SIRS). Dimethyl fumarate (DMF), a first-line drug for treating relapsing-remitting multiple sclerosis (RRMS), has been shown to be effective against various inflammatory diseases. However, it is still unclear whether DMF can inhibit necroptosis and confer protection against SIRS. In this study, we found that DMF significantly inhibited necroptotic cell death in macrophages induced by different necroptotic stimulations. Both the autophosphorylation of receptor-interacting serine/threonine kinase 1 (RIPK1) and RIPK3 and the downstream phosphorylation and oligomerization of MLKL were robustly suppressed by DMF. Accompanying the suppression of necroptotic signaling, DMF blocked the mitochondrial reverse electron transport (RET) induced by necroptotic stimulation, which was associated with its electrophilic property. Several well-known anti-RET reagents also markedly inhibited the activation of the RIPK1-RIPK3-MLKL axis accompanied by decreased necrotic cell death, indicating a critical role of RET in necroptotic signaling. DMF and other anti-RET reagents suppressed the ubiquitination of RIPK1 and RIPK3, and they attenuated the formation of necrosome. Moreover, oral administration of DMF significantly alleviated the severity of TNF-α-induced SIRS in mice. Consistent with this, DMF mitigated TNF-α-induced cecal, uterine, and lung damage accompanied by diminished RIPK3-MLKL signaling. Collectively, DMF represents a new necroptosis inhibitor that suppresses the RIPK1-RIPK3-MLKL axis through blocking mitochondrial RET. Our study highlights DMF's potential therapeutic applications for treating SIRS-associated diseases.


Assuntos
Proteínas Quinases , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases/metabolismo , Fumarato de Dimetilo , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Síndrome de Resposta Inflamatória Sistêmica , Fosforilação Oxidativa , Apoptose
13.
Cancers (Basel) ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672496

RESUMO

Merkel cell carcinoma (MCC) is a rare, difficult-to-treat skin cancer once immunotherapy has failed. MCC is associated either with the clonal integration of the Merkel cell polyomavirus (MCPyV) or mutagenic UV-radiation. Fumaric acid esters, including dimethyl fumarate (DMF), have been shown to inhibit cell growth in cutaneous melanoma and lymphoma. We aimed to explore the effects of DMF on MCPyV-negative MCC cell lines. Three MCC cell lines (MCC13, MCC14.2, and MCC26) were treated with different doses of DMF. The cytotoxic effects and cell proliferation were assessed by the MTT cytotoxicity assay and BrdU proliferation assay at different time points. A significant reduction in cell viability and proliferation were demonstrated for all the cell lines used, with DMF proving to be effective.

14.
Free Radic Biol Med ; 194: 337-346, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521578

RESUMO

Hyperexcitability-induced neuronal damage plays a role both in epilepsy as well as in inflammatory brain diseases such as multiple sclerosis (MS) and as such represents an important disease pathway which potentially can be targeted to mitigate neuronal damage. Dimethyl fumarate (DMF) and its pharmacologically active metabolite monomethyl fumarate (MMF) are FDA-approved therapeutics for MS, which can induce immunosuppressive and antioxidant pathways, and their neuroprotective capacity has been demonstrated in other preclinical neurological disease models before. In this study, we used an unbiased proteomic approach to identify potential new targets upon the treatment of MMF in glio-neuronal hippocampal cultures. MMF treatment results in induction of antioxidative (HMOX1, NQO1) and anaplerotic metabolic (GAPDH, PC) pathways, which correlated with reduction in ROS production, increased mitochondrial NADH-redox index and decreased NADH pool, independent of glutathione levels. Additionally, MMF reduced glycolytic capacity indicating individual intra-cellular metabolic programs within different cell types. Furthermore, we demonstrate a neuroprotective effect of MMF upon hyperexcitability in vitro (low magnesium model), where MMF prevents glio-neuronal death via reduced ROS production. These results highlight MMF as a potential new therapeutic opportunity in hyperexcitability-induced neurodegeneration.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , NAD , Proteômica , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo
15.
Nutrients ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235813

RESUMO

Research has connected Parkinson's disease (PD) with impaired intestinal barrier. The activation of G-protein-coupled receptor 109A (GPR109A) protects the intestinal barrier by inhibiting the NF-κB signaling pathway. Sodium butyrate (NaB), which is a GPR109A ligand, may have anti-PD effects. The current study's objective is to demonstrate that NaB or monomethyl fumarate (MMF, an agonist of the GPR109A) can treat PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) via repairing the intestinal barrier. Male C57BL/6J mice were divided into four groups randomly: control, MPTP + vehicle, MPTP + NaB, and MPTP + MMF. Modeling mice received MPTP (20 mg/kg/day, i.p.) for a week, while control mice received sterile PBS. Then, four groups each received two weeks of sterile PBS (10 mL/kg/day, i.g.), sterile PBS (10 mL/kg/day, i.g.), NaB (600 mg/kg/day, i.g.), or MMF (100 mg/kg/day, i.g.). We assessed the expression of tight junction (TJ) proteins (occludin and claudin-1), GPR109A, and p65 in the colon, performed microscopic examination via HE staining, quantified markers of intestinal permeability and proinflammatory cytokines in serum, and evaluated motor symptoms and pathological changes in the substantia nigra (SN) or striatum. According to our results, MPTP-induced defected motor function, decreased dopamine and 5-hydroxytryptamine levels in the striatum, decreased tyrosine hydroxylase-positive neurons and increased activated microglia in the SN, and systemic inflammation were ameliorated by NaB or MMF treatment. Additionally, the ruined intestinal barrier was also rebuilt and NF-κB was suppressed after the treatment, with higher levels of TJ proteins, GPR109A, and decreased intestinal permeability. These results show that NaB or MMF can remedy motor symptoms and pathological alterations in PD mice by restoring the intestinal barrier with activated GPR109A. We demonstrate the potential for repairing the compromised intestinal barrier and activating GPR109A as promising treatments for PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Ácido Butírico/farmacologia , Claudina-1 , Citocinas , Modelos Animais de Doenças , Dopamina/metabolismo , Fumaratos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Fármacos Neuroprotetores/farmacologia , Ocludina , Receptores Acoplados a Proteínas G , Serotonina , Tirosina 3-Mono-Oxigenase
16.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631325

RESUMO

Dimethyl fumarate (DMF) is a small molecule that has been shown to assert potent in vivo immunoregulatory and anti-inflammatory therapeutic actions. The drug has been approved and is currently in use for treating multiple sclerosis and psoriasis in the USA and Europe. Since inflammatory reactions have been significantly implicated in the etiology and progression of diverse disease states, the pharmacological actions of DMF are presently being explored and generalized to other diseases where inflammation needs to be suppressed and immunoregulation is desirable, either as a monotherapeutic agent or as an adjuvant. In this review, we focus on DMF, and present an overview of its mechanism of action while briefly discussing its pharmacokinetic profile. We further discuss in detail its pharmacological uses and highlight its potential applications in the treatment of cardiovascular diseases. DMF, with its unique combination of anti-inflammatory and vasculoprotective effects, has the potential to be repurposed as a therapeutic agent in patients with atherosclerotic cardiovascular disease. The clinical studies mentioned in this review with respect to the beneficial effects of DMF in atherosclerosis involve observations in patients with multiple sclerosis and psoriasis in small cohorts and for short durations. The findings of these studies need to be assessed in larger prospective clinical trials, ideally with a double-blind randomized study design, investigating the effects on cardiovascular endpoints as well as morbidity and mortality. The long-term impact of DMF therapy on cardiovascular diseases also needs to be confirmed.

17.
J Clin Aesthet Dermatol ; 15(1): 53-58, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35309277

RESUMO

Objective: Safe, effective, long-term oral therapies are needed for plaque psoriasis. This study aimed to assess the safety and effectiveness of tepilamide fumarate (a fumaric acid ester) extended-release tablets. Methods: This Phase IIb, randomized, double-blind, placebo-controlled, 24-week, multicenter study treated adults with moderate-to-severe plaque psoriasis with tepilamide fumarate 400 mg once (QD) or twice daily (BID), 600 mg BID, or placebo. Coprimary endpoints were the proportion of patients achieving ≥75% reduction in the Psoriasis Area and Severity Index (PASI-75) and Investigator's Global Assessment (IGA) of clear or almost clear (≥2 points' reduction). Results: A total of 426 patients were randomized (mean age 49.6 [±13.0] years). There was a ≥75% PASI reduction in 39.7%, 47.2%, 44.3%, and 20.0% in the 400 mg QD, 400 mg BID, 600 mg BID, and placebo groups, respectively; IGA treatment success was 35.7%, 41.4%, 44.4%, and 22.0%, respectively. Between 50%-66% of tepilamide fumarate and 48% of placebo patients experienced ≥1 treatment-emergent adverse event. Gastrointestinal intolerance (20%-42%), infection (6%-18%), and decreased lymphocyte count (4%-9%) were more common with tepilamide fumarate. Limitations: High placebo response somewhat limits the utility of these findings. Conclusion: Patients with moderate-to-severe plaque psoriasis treated with oral tepilamide fumarate demonstrated positive response.

18.
Neurol Ther ; 11(1): 353-371, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35041178

RESUMO

INTRODUCTION: Diroximel fumarate (DRF) is a next-generation oral fumarate that is indicated in the USA for relapsing forms of multiple sclerosis (MS). A joint population pharmacokinetic model was developed for the major active metabolite (monomethyl fumarate, MMF) and the major inactive metabolite (2-hydroxyethyl succinimide, HES) of DRF. METHODS: MMF and HES data were included from 341 healthy volunteers and 48 patients with MS across 11 phase I and III studies in which DRF was administered as single or multiple doses. Population modeling was performed with NONMEM version 7.3 with the first-order conditional estimation method. RESULTS: Estimated MMF clearance (CLMMF), volume of distribution, and absorption rate constant (Ka) were 13.5 L/h, 30.4 L, and 5.04 h-1, respectively. CLMMF and HES clearance (CLHES) increased with increasing body weight. CLHES decreased with decreasing renal function. CLMMF and CLHES were 28% and 12% lower in patients with MS than in healthy volunteers, respectively. Ka was reduced in the presence of low-, medium-, and high-fat meals by 37%, 51%, and 67%, respectively, for MMF; and by 34%, 49%, and 62%, respectively, for HES. CONCLUSIONS: Age, sex, race, and baseline liver function parameters such as total bilirubin, albumin, and aspartate aminotransferase were not considered to be significant predictors of MMF or HES disposition.

19.
JID Innov ; 1(4): 100040, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34909741

RESUMO

Dimethyl fumarate (DMF) is an effective oral treatment for psoriasis administered in Europe for nearly 60 years. However, its potential has been limited by contact dermatitis that prohibits topical application. This paper characterizes a DMF derivative, isosorbide DMF (IDMF), which was designed to have antipsoriatic effects without skin-sensitizing properties. We show that IDMF exhibits neither genotoxicity nor radiation sensitivity in skin fibroblasts and is nonirritating and nonsensitizing in animal models (rat, rabbit, guinea pig). Microarray analysis of cytokine-stimulated keratinocytes showed that IDMF represses the expression of genes specifically upregulated in psoriatic skin lesions but not those of other skin diseases. IDMF also downregulated genes induced by IL-17A and TNF in keratinocytes as well as predicted targets of NF-κB and the antidifferentiation noncoding RNA (i.e., ANCR). IDMF further stimulated the transcription of oxidative stress response genes (NQO1, GPX2, GSR) with stronger NRF2/ARE activation compared to DMF. Finally, IDMF reduced erythema and scaling while repressing the expression of immune response genes in psoriasiform lesions elicited by topical application of imiquimod in mice. These data show that IDMF exhibits antipsoriatic activity that is similar or improved compared with that exhibited by DMF, without the harsh skin-sensitizing effects that have prevented topical delivery of the parent molecule.

20.
Ann Pharm Fr ; 79(2): 179-193, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33091397

RESUMO

OBJECTIVE: The objective of current study was to develop and validate a short, economical, accurate, precise stability-indicating RP-HPLC method for identification, quantitation of related substances (fumaric acid and mono methyl fumarate) and assay of dimethyl fumarate (DMF) drug substance. MATERIAL AND METHODS: The RP-HPLC method was developed by using liquid chromatography (waters 2695 with PDA detector & Agilent 1200 with DAD) with Symmetry C18 column. Pharmaceutical grade of high pure materials of DMF, MMF, FA and HPLC grade water, acetonitrile and orthophosphoric acid were used for this study. The mobile phase consists of 0.1% of ortho-phosphoric acid in water: acetonitrile (55:45% v/v). RESULTS: The developed method was validated according to ICH guidelines. To prove the stability indicating potential, stress studies performed using acid, base, peroxide and thermal. After sufficient exposure, these solutions were injected in to HPLC and found that all degradants formed during stress study were well separated from the main peak and resolution between all impurities was more than ICH requirements. CONCLUSION: A simple, short and stability indicating RP-HPLC method was developed and validated for simultaneous estimation of DMF and its related substances in drug substance. Based on literature survey it was evident that many methods were published for determination of DMF individually or its related substances, however short run time methods were not available for simultaneous estimation of DMF and its related substances. The intended method would support to industries for quick quantitation of DMF and its related substances without compromising quality parameters like precision and accuracy.


Assuntos
Fumarato de Dimetilo , Preparações Farmacêuticas , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA