Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.806
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125039, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39197211

RESUMO

A ratiometric nanosensor was developed for detecting methyl orange (MO) based on down/up-conversion luminescence achieved by a triplet-triplet annihilation upconversion luminescence (TTA-UCL) system. The probe, utilizing sensitizer and annihilator fluorophores encapsulated in nanomicelles, demonstrated high sensitivity and selectivity for MO detection. The energy transfer from UCL to MO endowed the sensor with responsive capabilities. The unaffected triplet-triplet energy transfer process maintained the phosphorescence signal constant, serving as a reference to construct the ratiometric sensor along with the UCL signal. Additionally, a smartphone-assisted colorimetric detection method was also developed based on the ratiometric sensor, enabling rapid and convenient detection of MO without the need for a spectrometer. The performance of the nanosensor in real water samples confirmed its potential for practical environmental applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124963, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39151400

RESUMO

Sm3+ions doped Phospho-Borate glasses were synthesized and their physical and spectroscopic parameters were studied to evaluate its potential reddish-orange emission for photonic applications. Structural investigation made through XRD analysis confirms the amorphous nature. The evaluated bonding parameters from the absorption spectral analysis confirm the ionic bonding of the Sm-O network in the prepared glasses. Four emission bands were observed from the luminescence spectra, and the HT 4G5/2 → 6H7/2 is observed at 601 nm. The oscillator strength values elucidate the intensity of the absorption bands, and the PBKZnF:Sm sample exhibits a higher oscillator strength value. The Judd-Ofelt intensity parameters were observed to trail the trend Ω4 > Ω6. > Ω2 for the majority of the samples. The CIE 1931 color chromaticity investigation confirms that the present glass samples are suitable for reddish-orange media. Barium and strontium-incorporated glasses exhibit outstanding lasing potential, which was confirmed through the efficiency of the quantum yield and some of the radiative parameters like effective bandwidth, transition probability and stimulated emission cross-section. Radiative parameters have been calculated from the luminescence spectra. Amid all transitions, 4G5/2 →6H7/2 transition has higher transition probability and higher stimulated emission cross-section values for all the prepared glass samples. Barium-incorporated glass exhibits a higher emission cross-section of 30.55 × 10-22 cm2 and a transition probability of 30.89 s-1 compared to all other glasses. The non-exponential decay profiles of the fabricated samples were plotted by examining the excitation wavelength at 402 nm and emission wavelength at 600 nm. Of all the prepared glasses, the quantum efficiency is found to be higher for the glass sample PBKSrF:Sm (65 %).

3.
Trop Anim Health Prod ; 56(8): 326, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361180

RESUMO

The current study was designed to investigate the effect of dried orange pulp inclusion (OP diet), natural zeolite addition (Z diet), or both (OPZ diet) compared to control (CON diet) on digestibility, growth performance, nitrogen utilization, blood biochemical, antioxidative status, and cecum microbiota of growing rabbits. Seventy-two V-line male rabbits (6 weeks old) were divided into 4 balanced experimental groups. Results showed that administration of dried orange pulp or zeolite especially the OPZ diet significantly improved nutrient digestibility and nutritive values. Rabbits fed the experimental diets (OP, Z, or OPZ) recorded significantly higher values of average daily gain, N-retention, and N-balance compared with those fed the CON diet. Data on blood biochemical, showed non-significant differences in globulin concentrations, and significant decreases in levels of cholesterol, LDL (low-density lipoproteins), triglycerides, and MDA (malondialdehyde) as an antioxidant biomarker with OP, Z, or OPZ diets. Moreover, the incorporation of orange pulp or zeolite in diets significantly decreased the cecal count of E. coli, with no significant difference in total bacterial count among the experimental groups. It could be concluded that a combination between dried orange pulp and natural zeolite in the diet can enhance the growth performance, antioxidant and health status of rabbits.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Antioxidantes , Ceco , Citrus sinensis , Dieta , Nitrogênio , Zeolitas , Animais , Coelhos/crescimento & desenvolvimento , Masculino , Zeolitas/administração & dosagem , Zeolitas/farmacologia , Ração Animal/análise , Antioxidantes/metabolismo , Dieta/veterinária , Nitrogênio/metabolismo , Citrus sinensis/química , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Ceco/microbiologia , Digestão/efeitos dos fármacos , Valor Nutritivo , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Frutas/química
4.
J Prev Alzheimers Dis ; 11(5): 1378-1383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39350383

RESUMO

BACKGROUND: The number of cases of all types of dementia is increasing, and a significant increase in prevalence has been noted among veterans. Evidence of an association between dementia and exposure to chemicals such as Agent Orange from the Vietnam War is still limited, and there is a reported lack of awareness. OBJECTIVE: This study aimed to investigate the risk of dementia among Vietnam War veterans in Korea. DESIGN: This retrospective longitudinal study compared the incidence of dementia between Vietnam War veterans and the general population. SETTING: This study used data from the nationally representative Korean Vietnam War Veterans' Health Study Cohort, a combined dataset sourced from the Ministry of Patriots and Veterans Affairs in Korea and the National Health Insurance Sharing Service database. PARTICIPANTS: There were 191,272 Vietnam War veterans and 1,000,320 people of different ages, sexes, and residences. matched control in 2002. The total number of person-years were 18,543,181. MEASUREMENTS: The dementia group included participants who had visited a medical facility with any of the following ICD-10 codes in the follow-up periods: "F00 Dementia in Alzheimer's disease," "F01 Vascular dementia," "F02 Dementia in other diseases classified elsewhere," or "F03 Unspecified dementia." RESULTS: The incidence rate ratio for all types of dementia was 1.16, with higher ratios observed for vascular and unspecified dementia, particularly in the younger age groups. There was a significant increase in the risk of dementia, Alzheimer's disease, vascular dementia, and unspecified dementia. CONCLUSION: Vietnam War veterans showed an increased risk for all types of dementia. These findings are hypothesized to be due to the effects of the chemicals used during the Vietnam War, which can cause a variety of neurodegenerative diseases. Further studies are warranted to investigate the potential health determinants related to the Vietnam War, focusing on the neurodegenerative effects.


Assuntos
Agente Laranja , Demência , Veteranos , Guerra do Vietnã , Humanos , Masculino , Veteranos/estatística & dados numéricos , Demência/epidemiologia , República da Coreia/epidemiologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Feminino , Estudos Longitudinais , Incidência , Idoso , Fatores de Risco , Ácido 2,4,5-Triclorofenoxiacético , Ácido 2,4-Diclorofenoxiacético , Desfolhantes Químicos/efeitos adversos , Adulto
5.
Cureus ; 16(8): e68261, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39350834

RESUMO

INTRODUCTION: Root canal retreatment often employs organic solvents like chloroform, eucalyptol, and orange oil. However, studies comparing their effectiveness yield inconsistent results. The quantity of d-limonene, a crucial component in orange oil, varies depending on the oil production method. Cold-pressed orange oil has been observed to contain the highest d-limonene levels. This study investigates the comparative solvent effects of cold-pressed and steam-hydrodistilled orange oils on gutta-percha and GuttaFlow2, typically used components in root canal fillings. METHODS: Thirty-two discs (10 mm in diameter and 2 mm in thickness) were prepared using GuttaFlow and gutta-percha cones. The samples were weighed and then randomly divided into four groups (n=8) based on the type of solvent used. Each group was immersed in its respective solvent for 10 minutes. After exposure to the solvent, the samples were reweighed to determine the amount of material removed. RESULTS: The weight loss in the group treated with cold-pressed orange oil on gutta-percha was significantly higher than in other groups (GuttaFlow2 + cold-pressed orange oil, gutta-percha + steam hydrodistilled orange oil, GuttaFlow2 + steam hydrodistilled orange oil) (p<0.001, p<0.001, and p<0.001). CONCLUSION: According to the study findings, cold-pressed orange oil demonstrated a higher solvent effect on both GuttaFlow2 and traditional gutta-percha compared to steam-hydrodistilled orange oil. This indicates the significant impact of the production method of orange oil on its efficacy as a solvent in root canal therapy retreatment.

6.
Front Microbiol ; 15: 1425441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268534

RESUMO

Introduction: Reactive oxygen species (ROS) generation is a common disease defense mechanism in plants. However, it is unclear whether Citrus host activates defense response against Diaporthe citri causing citrus melanose disease by producing ROS, and the underlying molecular mechanisms are unknown. Methods: DAB staining and RNA-Seq technology were used to compare the active oxygen burst and differential gene expression, respectively, in uninfected and infected Citrus sinensis leaves at different time points during D. citri infection in vivo. The functions of CsRBOH (a significant DEG) were confirmed in N. benthamiana through the Agrobacterium-mediated transient expression system. Results: DAB staining indicated that C. sinensis initiated defense against D. citri infection within 24 h by generating ROS. Illumina sequencing revealed 25,557 expressed genes of C. sinensis. The most upregulated DEGs (n = 1,570) were identified 72 h after fungal inoculation (sample denoted as CD72). In the CD72 vs. Cs (samples at 0 h after fungal inoculation) comparison, the KEGG pathway category with the highest number of genes (n = 62) and most significant enrichment was Protein processing in endoplasmic reticulum, followed by Glutathione metabolism and MAPK signaling pathway-plant. GO analysis revealed that the DEGs of CD72 vs. Cs related to active oxygen burst and chitin recognition were significantly grouped into the regulation of biological processes and molecular functions, with GO terms including response to ROS, response to fungus, and oxidoreductase activity. Remarkably, CsRBOH was significantly enriched in the GO and KEGG analyses, and its expression pattern in qRT-PCR and DAB staining results were consistent. Among the 63 ROS-related DEGs, HSP genes and genes associated with the peroxidase family were highly significant as revealed by protein-protein interaction networks. Furthermore, ROS accumulation, cell death, and upregulation of defense-related genes were observed in N. benthamiana leaves with CsRBOH expressed through the Agrobacterium-mediated transient expression system. Conclusion: Our findings suggested that C. sinensis activates CsRBOH and ROS-related genes, leading to ROS accumulation to resist the invasion by D. citri. This study laid the foundation for future research on molecular mechanisms and breeding of C. sinensis cultivars resistant to citrus melanose.

7.
J Econ Entomol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39257088

RESUMO

Examining the host range of emerging invasive insects is essential to assess their invasion potential and to anticipate the negative impacts of their spread. The ongoing North American invasion of spotted lanternfly (SLF) [Lycorma delicatula (White, 1845)] threatens agricultural, urban, and natural areas. The survival and development of SLF nymphs on Washington navel orange [Citrus sinensis (L.) Osbeck (Sapindales: Rutaceae)] trees were assessed in a quarantine facility. Results indicated that SLF nymphs can develop to at least the third instar by feeding exclusively on Washington navel orange. This finding suggests that, at least up to the third stage of nymphal development, Washington navel orange might be a suitable host for SLF, highlighting the possibility that this invasive pest represents an unrecognized threat to this globally important crop and possibly to other Citrus species.

8.
J Ultrasound Med ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39257135

RESUMO

OBJECTIVES: In the treatment of acute myeloid leukemia (AML), conventional therapies can lead to severe side effects and drug resistance. There is a need for alternative treatments that do not cause treatment resistance and have minimal or no side effects. Sonodynamic therapy (SDT), due to its noninvasive, multiple repeatability, localized treatment feature and do not cause treatment resistance, emerges as an alternative treatment option. However, it has not received sufficient attention in the treatment of AML especially acute promyelocytic leukemia (APL). The aim of the study was to investigate the potential differentiation and antileukemic effects of acridine orange (AO)-mediated SDT on HL60 cells. METHODS: Cell viability was determined by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) method in the control, ultrasound, AO concentrations, and ultrasound-exposed AO concentrations groups. Transmission electron microscopy (TEM) was used to determine morphology, and flow cytometry was used to determine apoptosis, DNA cycle, cell volume, mitochondria membrane potential (Δψm), reactive oxygen species (ROS) production, and differentiation markers (CD11b and CD15) expressions. Additionally, toluidine blue staining for semithin sections was used to determine differentiation. RESULTS: The cytotoxicity of AO-mediated SDT on HL60 cells was significantly higher than other groups, and TEM images showed that it caused various morphological changes typical for apoptosis. Flow cytometry results showed the presence of early apoptosis, subG1 arrest, loss of Δψm, increase of intracellular ROS production, decreased cell volume, and increased expression of CD11b (1.3-fold) antigen and CD15 (1.2-fold) antigen. CONCLUSION: Data showed that AO-mediated SDT significantly induced apoptosis in HL60 cells. Increased expression of CD11b and CD15 antigens and morphological findings demonstrated that AO-mediated SDT contributes to granulocytic differentiation in HL60 cells. AO-mediated SDT has potential as an alternative treatment of APL.

9.
Food Chem ; 463(Pt 1): 141107, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39265402

RESUMO

Rapid and accurate detection of Burkholderia gladioli (B. gladioli) and effective sterilization are crucial for ensuring food safety. Hence, a novel "loong frolic pearls" platform based on platinum-based fluorescent nanozymes (Pt-OCDs) and strand exchange amplification (SEA) was reported. Magnetic nanoparticles were modified on primer SEAF, while Pt-OCDs were covalently coupled with primer SEA-R. The highly efficient amplification capability of SEA permitted the accumulation of a large number of double-labeled amplicons. After magnetic adsorption, the supernatant was detected in reverse direction to collect colorimetric-fluorescence-photothermal signal values, enabling ultra-precise detection within 1 h. Furthermore, the Pt-based multifunctional nanoplatform generated abundant •OH and 1O2, which synergistically attacked B. gladioli and its biofilm, resulting in significant bactericidal efficacy within 30 min. This "triple-detection and double-sterilization" platform has been successfully applied in the field of food analysis with good recovery rates and immediate control over B. gladioli, thus demonstrating promising prospects for broad applications.

10.
J Integr Plant Biol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315817

RESUMO

Ethylene treatment promotes orange coloration in the flavedo of Satsuma mandarin (Citrus unshiu Marc.) fruit, but the corresponding regulatory mechanism is still largely unknown. In this study, we identified a C2H2-type zinc-finger transcription factor, CitZAT4, the expression of which was markedly induced by ethylene. CitZAT4 directly binds to the CitPSY promoter and activates its expression, thereby promoting carotenoid biosynthesis. Transient expression in Satsuma mandarin fruit and stable transformation of citrus calli showed that overexpressing of CitZAT4 inhibited CitLCYE expression, thus inhibiting α-branch yellow carotenoid (lutein) biosynthesis. CitZAT4 overexpression also enhanced the transcript levels of CitLCYB, CitHYD, and CitNCED2, promoting ß-branch orange carotenoid accumulation. Molecular biochemical assays, including yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR), and luciferase (LUC) assays, demonstrated that CitZAT4 directly binds to the promoters of its target genes and regulates their expression. An ethylene response factor, CitERF061, which is induced by ethylene signaling, was found to directly bound to the CitZAT4 promoter and induced its expression, thus positively regulating CitZAT4-mediated orange coloration in citrus fruit. Together, our findings reveal that a CitZAT4-mediated transcriptional cascade is driven by ethylene via CitERF061, linking ethylene signaling to carotenoid metabolism in promoting orange coloration in the flavedo of Satsuma mandarin fruit. The molecular regulatory mechanism revealed here represents a significant step toward developing strategies for improving the quality and economic efficiency of citrus crops.

11.
Curr Res Food Sci ; 9: 100826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314221

RESUMO

This study evaluated antioxidant and antimicrobial properties of chitosan gel (Cs-gel) functionalized with cinnamaldehyde oil (CN) and orange peel-derived flavonoid extract (Fs) using the ionic-gelation method. Results showed that the encapsulation efficiencies of CCF-9 and CCN were 83.14 ± 3.34 and 80.56 ± 1.17%, respectively. The interaction of CN or Fs on Cs-gel indicates the presence of H-bonding formation, as observed by UV-vis spectroscopy, Fourier transform infrared spectrophotometry (FTIR), and Raman-spectroscopy showed a good corroboration with Surflex-dock findings. Scanning electron microscopy also showed the integration that occurred between Cs and both ligands, which was further supported with X-ray diffraction and X-Ray photoelectron spectroscopy spectra. The textural properties of CCF-5 gel showed high hardness, chewiness, and gumminess values, indicating that the integration of Fs and CN altered the microstructure of Cs-gel. Chotison-functionalized based gels exhibited higher antioxidant abilities against DPPH and ABTS free radicals than Cs-gel. The CCF-9 gel showed a good inhibition value of 29.91 ± 1.22 and 93.61 ± 2.12% against Penicillium expansum and Alternaria westerdijkiae, respectively. Additionally, CCF-9 inhibition zones against Staphylococcus aureus, Escherichia coli, and Bacillus cerues were 28.65 ± 0.05, 27.69 ± 0.04, and 26.16 ± 0.02 mm, respectively. These findings demonstrated the potential antioxidant and antimicrobial effects of functionalized chitosan gel indicating its potential as a bioactive additive for food preservation.

13.
Environ Res ; 262(Pt 2): 119966, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39260722

RESUMO

The removal of dyes from industrial wastewater is one of the most environmental challenges that should be addressed through sustainable technologies. In this study, a novel green and cost-effective granular from bentonite and bio-wastes of sawdust and corncob (GBSC) was prepared for sustainable treatment of acid orange 7 (AO7) dye wastewater. The d-optimal mixture method was employed to determine the optimum combination of the GBSC in terms of dye adsorption and structure stability. Characterizations of the GBSC were investigated using SEM, XRD, FTIR and BET analyses and compared with bentonite powder (BP), modified bentonite powder (MBP), and granular modified bentonite (GMB). According to the results, a mixture of bentonite 60 wt%, sawdust 20 wt% and corncob 20 wt% at 550 °C yielded the optimal combination of the GBSC which resulted to the highest adsorption capacity 135.22 mg/g, the lowest mass loss 3.1% and maximum crushing strength 12.275 N. The kinetic and isotherm of the adsorption data were fitted well by the pseudo-second-order model and Langmuir isotherm. Our finding suggested a green circular economy model by utilizing agriculture wastes (sawdust and corncob) to synthesize GBSC for sustainable dye wastewater treatment, which offers a cost-effective adsorbent (0.907 $/g) with high regeneration (4 times reusability with 40.5% removal rate) to keep them in circulation for as long as possible.

14.
Antioxidants (Basel) ; 13(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39334718

RESUMO

This study explores the valorization of tea leaf waste by extracting polyphenols through reflux extraction, subsequently using them to synthesize zero-valent iron nanoparticles (nZVI). The in situ generated nanoparticles, when combined with fixed amounts of hydrogen peroxide, facilitated the removal of various dyes (methylene blue, methyl orange, and orange G) via a hetero-catalytic Fenton process. The iron nanoparticles were thoroughly characterized by gas adsorption of N2 at 77 K, scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), FT-IR spectroscopy, X-ray diffraction (XRD), and thermal analysis, including thermogravimetric analysis (TG) and temperature-programmed reduction (TPR). A statistical design of experiments and response surface methodology were employed to analyze the influence of polyphenol, Fe(III), and H2O2 concentrations on dye removal efficiency. The results demonstrated that optimizing the operational conditions could achieve 100% dye removal efficiency. This study highlights the potential of nZVI synthesized through eco-friendly methods as a promising solution for water decontamination involving diverse model dyes, thus contributing to sustainable waste management and environmental protection.

15.
Vet World ; 17(8): 1821-1827, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39328442

RESUMO

Background and Aim: Heat stress (HS) can negatively impact oocytes by disrupting mitochondrial activity, increasing the production of reactive oxygen species, and decreasing antioxidant levels. This study investigated the impact of orange peel (OP) exposure on zebrafish oocytes (ZOs) diameter, survival rate, and germinal vesicle breakdown (GVBD) during HS. Material and Methods: We investigated the antioxidant effect of flavonoids (concentration = 328.58 ppm) derived from OP (Citrus sinensis) added to in vitro maturation (IVM) media of ZOs (Danio rerio) under non-heat stress (NHS) and HS conditions to mimic in vivo HS conditions due to the global warming phenomenon on females. ZO in stage 3 (n = 1080) was treated with 4 µL of OP extract (not treated/control) under HS: 32°C (Heat stress 32°C solution/Heat stress 32°C orange peel [HS32S/HS32O]) and 34°C (Heat stress 34°C solution/Heat stress 34°C orange peel [HS34S/HS34O]); and NHS: 28°C (Non-heat stress solution/Non-heat stress orange peel [NHSS/NHSO]), during maturation. After 24 h of maturation, we observed the oocyte diameter, survival rate, and GVBD rate. The data were analyzed with IBM Statistics 23 software using two-way analysis of variance and Kruskal-Wallis (p < 0.05). Results: The highest oocyte diameter data were in NHS treated with OP extract (NHSO) group (0.759 ± 0.01; mean ± standard error) compared with HS group using and without OP extract (HS32S [0.583 ± 0.02]; HS32O [0.689 ± 0.02]; HS34S [0.554 ± 0.02]; and HS34O [0.604 ± 0.02]). The survival rate of OP treated group, namely, NHSO (93% ± 3%), HS32O (85% ± 2%), and HS34O (80% ± 2%) was higher than that of the group without treatment (NHSS [83% ± 3%], HS32S [71% ± 6%], and HS34S [63% ± 3%]). ZO treated with OP extract (NHSO [93% ± 3%], HS32O [85% ± 2%], and HS34O [80% ± 2%]) showed a higher GVBD rate than the group without treatment (NHSS [83% ± 3%], HS32S [71% ± 6%], and HS34S [63% ± 3%]). Conclusion: It revealed that OP can enhance the oocyte diameter, survival rate, and GVBD rate of ZO under NHS and HS. Further investigation should be conducted to determine the effect of OP extract (C. sinensis) on in vivo conditions in females as an alternative treatment to face global warming.

16.
Nanomaterials (Basel) ; 14(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39330675

RESUMO

Thin films of silver-doped zinc oxide (SZO) were deposited at room temperature using a DC reactive magnetron co-sputtering technique using two independent Zn and Ag targets. The crystallographic structure, chemical composition and surface morphology of SZO films with different silver concentrations were correlated with the photocatalytic (PC) properties. The crystallization of the SZO films was made using millisecond range flash-lamp-annealing (FLA) treatments. FLA induces significant structural ordering of the wurtzite structure and an in-depth redistribution of silver, resulting in the formation of silver agglomerates. The wurtzite ZnO structure is observed for silver contents below 10 at.% where Ag is partially incorporated into the oxide matrix, inducing a decrease in the optical band-gap. Regardless of the silver content, all the as-grown SZO films do not exhibit any significant PC activity. The best PC response is achieved for samples with a relatively low Ag content (2-5 at.%) after FLA treatment. The enhanced PC activity of SZO upon FLA can be attributed to structural ordering and the effective band-gap narrowing through the combination of silver doping and the plasmonic effect caused by the formation of Ag clusters.

17.
Sci Rep ; 14(1): 22318, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333146

RESUMO

In this research, the use of a three-component nanocomposite of graphene oxide-methyl methacrylate and copper(II) oxide (PMMA-GO-CuO) was investigated. The aim of synthesizing this nanocomposite is to removal dye pollutants, specifically methylene blue (MB) and methyl orange (MO), which are commonly used in dyeing industries, through adsorption. The study focuses on creating GO-CuO and PMMA-GO-CuO nanocomposites as effective adsorbents. A simple and quick method led to the development of the PMMA-GO-CuO nanocomposite, which shows enhanced physical and chemical properties. Key materials include graphene oxide, methyl methacrylate, and copper(II) oxide nanoparticles. Characterization techniques such as FT-IR, XRD, SEM, and TGA were used to analyze the nanocomposite. Results indicate that dye adsorption is more effective at lower pH levels, suggesting that the PMMA-GO-CuO nanocomposite can efficiently remove dyes from industrial wastewater. The experimental data showed that the Langmuir isotherm model accurately represented the equilibrium adsorption, with maximum capacities of 285.71 mg g-1 for methylene blue and 256.41 mg g-1 for methyl orange, indicating a single layer of adsorption. The kinetics followed a pseudo-second order model, suggesting that the adsorption process involves chemical bonding. Additionally, thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption is spontaneous. The adsorption mechanism involves hydrogen bonding, π-π interactions, and electrostatic interactions. This study investigates how factors like pH, temperature, contact time, and dye concentration affect the adsorption of methyl orange and methylene blue dyes. A PMMA-GO-CuO nanocomposite was used, achieving 84% removal of MB and 35% removal of MO from industrial wastewater. This study highlights the promising potential of PMMA-GO-CuO nanocomposite as an effective material for the removal of dye pollutants from industrial wastewater. The results showed that the graphene oxide in the composite is effective for removing cationic dyes due to its negative charge. Further research will focus on the optimization of the synthesis process with the aim of achieving competitive performance of this nanocomposite on a large scale. These findings not only advance the field of nanocomposite materials but also provide a practical solution to an important environmental issue, demonstrating the innovation of the present study in the literature.

18.
BMC Biotechnol ; 24(1): 66, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334269

RESUMO

Orange (Citrus sinensis L.) is a common fruit crop widely distributed worldwide with the peel of its fruits representing about 50% of fruit mass. In the current study, orange peel was employed to mediate the synthesis of silver nanoparticles (AgNPs) in a low-cost green approach. Aqueous extracts of suitably-processed peel were prepared using different extraction methods; and their phytochemical profile was identified. Based on phytochemical screening, amount of main phytochemicals, free radical-scavenging ability, reducing power and antioxidant activity, the peel extract prepared by boiling seemed to be the most promising. Thus, major compounds of this extract were identified by gas chromatography-mass spectrometry. Potency of the peel extract to mediate the synthesis of AgNPs was then monitored by visual observation, UV-visible spectroscopy, energy dispersive X-ray analysis, transmission electron microscopy and zetametry. Color change of the reaction mixture to brown and absorption peak at 450 nm indicated AgNPs formation. Characterization of AgNPs revealed spherical shape, size of 30-40 nm, zeta potential of -18.2 mV and yield conversion of 82%. The as-synthesized AgNPs had antioxidant capacity (free radical-scavenging ability, reducing power and antioxidant activity) lower than that of the orange peel extract. However, these biogenic AgNPs had antitumor activity (IC50 of 16 ppm against HCT-116 and 1.6 ppm against HepG2 cell lines) much higher than the peel extract that was completely non-toxic to the considered cell lines.


Assuntos
Antineoplásicos , Antioxidantes , Citrus sinensis , Nanopartículas Metálicas , Extratos Vegetais , Prata , Citrus sinensis/química , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Frutas/química , Linhagem Celular Tumoral , Química Verde
19.
Materials (Basel) ; 17(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274696

RESUMO

In this study, we prepared a low-cost novel Cu/Cu2O/BC nanocomposite visible-light photocatalyst by the impregnation method using CuSO4·5H2O and rice husk biochar (BC) as raw materials and Na2S2O4 as a single reductant to improve the stability and dispersion of the Cu/Cu2O nanoparticles, in order to solve their aggregation tendency during photocatalysis. The morphology and structure of the Cu/Cu2O/BC were characterized using various analytical and spectroscopic techniques. The photocatalytic effect and cyclic stability of the synthesized photocatalyst on methyl orange (MO) removal were investigated under visible light radiation and various parameter conditions, including the mass ratio of BC to Cu/Cu2O, initial MO concentration, pH, temperature, and catalyst dosage. The results show that the synthesized Cu/Cu2O/BC nanocomposite composed of Cu/Cu2O spherical particles was loaded on the BC carrier, which has better stability and dispersion. The best adsorption-photocatalytic effect of the Cu/Cu2O/BC is exhibited when the mass ratio of BC to Cu/Cu2O is 0.2. A total of 100 mg of Cu/Cu2O/BC can remove 95% of the MO and 88.26% of the COD in the aqueous solution at pH = 6, T = 25 °C, and an initial MO concentration of 100 mg/L. After five cycles of degradation, the MO degradation rate in the sample can still remain at 78.41%. Both the quasi-secondary kinetic model and the Langmuir isothermal adsorption model describe the adsorption process. Additionally, the thermodynamic analysis demonstrates that the photocatalytic process follows the quasi-primary kinetic model and that the removal process is of spontaneous heat absorption. The photocatalyst described in this paper offers a cost-effective, easily prepared, and visible-light-responsive solution for water pollution treatment.

20.
J Fluoresc ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320632

RESUMO

A new category of 4-nitrophenol (4-NP) luminophores, infused with varying amounts of Pyrene (Py), was synthesized using the standard solid-state reaction method to investigate novel luminophores that emit at longer wavelengths. Their optical and electrochemical properties were analyzed using fluorimetry and cyclic voltammetry techniques. The fluorescence spectrum of Py-doped 4-NP displayed a broad fluorescence band with a peak at 599 nm for a Py concentration of 1 × 10- 3 mol, indicating exciplex formation between 4-NP and Py in the excited state. The electrochemical data revealed that the energy levels of the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) for the synthesized luminophores ranged from - 5.72 to -5.73 eV and - 3.01 to -3.08 eV, respectively. Thermal stability was evaluated through TGA analysis. The XRD confirmed the synthesis of a homogeneous material. The SEM images showed crystal sizes of approximately 115 nm. This thorough investigation indicates the potential of these newly synthesized yellow-orange fluorescent luminophores for optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA