Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Technol Biotechnol ; 62(1): 35-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601970

RESUMO

Research background: There is considerable diversity in newly developed pummelo × sweet orange citrus hybrids. Most hybrids showed lower peel thickness and high juice yield but there is a lack of information on fruit quality parameters and molecular characterization. Therefore, the aim of the current study is to determine the content of antioxidants and properties of the fresh juice of 24 new pummelo × sweet orange citrus hybrids (Citrus maxima [Burm. f.] Osbeck × Citrus sinensis [L.] Osbeck) and the parental genotypes along with molecular characteristics determined using acidity specific markers. Experimental approach: The correlation and estimate of inheritance of the fruit juice properties: ascorbic acid, total phenol, total flavonoid, total antioxidant, total soluble solid and sugar contents, pH, titratable acidity, along with sensory evaluation was performed. Molecular characterization of these hybrids was carried out using de novo generated acidity specific simple sequence repeat (SSR) markers. Results and conclusions: The main constituents of the fruit juice of pummelo × sweet orange hybrids were observed in the range of w(ascorbic acid)=40.00-58.13 mg/100 g, total phenols expressed as gallic acid equivalents w(GAE)=40.67-107.33 mg/100 g, total antioxidants expressed as Trolox equivalents b(Trolox)=2.03-5.49 µmol/g, total flavonoids expressed as quercetin equivalents w(QE)=23.67-59.33 mg/100 g, along with other properties: total soluble solids=7.33-11.33 %, w(total sugar)=2.10-5.76 %, w(reducing sugar)=1.69-2.78 %, w(non-reducing sugar)=0.39-3.17 % and titratable acidity 1.00-2.11 %. The above parameters differed significantly in the fruit juice of the evaluated pummelo × sweet orange hybrids. Considering these parameters, the hybrids SCSH 17-9, SCSH 13-13, SCSH 11-15 and SCSH 3-15 had superior antioxidant properties in terms of these parameters. A higher heritability (≥80 %) was also observed for all juice properties. Molecular characterization of pummelo × sweet orange hybrids showed that >50 % of the hybrids were grouped with medium acidity parents. Both molecular and biochemical parameter-based clustering showed that interspecific hybrids exhibit transgressive segregation with increased antioxidants that help alleviate the health problems. Novelty and scientific contribution: These newly developed pummelo × sweet orange citrus hybrids are a valuable source of high-quality antioxidants for a healthy diet. The identification of trait markers that enable selection at the seedling stage is of great benefit to citrus breeders, as the characteristic features of a mature tree are not yet visible at the juvenile stage.

2.
Food Chem ; 429: 136901, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487395

RESUMO

In order to improve the effectiveness of the active packaging, we aimed to develop an active packaging film with unidirectional sustained release, high barrier protection, and seamless attachment between the layers. An active film based on glutenin/tamarind gum loaded with the binary microemulsion of melatonin/pummelo essential oil (G/T-M-E) with sustained release and combination effects of internal and external layers was prepared. The outer barrier layer exerted an excellent protective barrier effect after adding (3-chloropropyl) triethoxysilane, which effectively reduced external interference and the ineffective diffusion of active substances in the inner layer. The effective attachment of melatonin and essential oil layer in the G/T-M-E film enhanced antioxidation, microorganism inhibition, and free-radical-scavenging properties, which effectively delayed the senescence of post-harvest white mushrooms. Furthermore, the G/T-M-E exhibited excellent tensile strength, barrier capacity, and load-bearing strength, which had a potential, positive effect on food preservation. Therefore, this film is highly recommended for packaging purposes.


Assuntos
Agaricus , Melatonina , Óleos Voláteis , Tamarindus , Óleos Voláteis/farmacologia , Melatonina/farmacologia , Embalagem de Alimentos , Preparações de Ação Retardada/farmacologia
3.
J Food Sci ; 88(8): 3357-3372, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37458289

RESUMO

The nutritional and volatile profiles of pulp and flavedo samples from four distinct local pummelo landraces ("Siji," "Pingshan," "Wendan," and "Guanxi") cultivated in Fujian province of China were investigated. "Guanxi" pummelo exhibited relatively high contents of vitamin C (42.01 mg/100 mL) and phenols (360.61 mg/L) and displayed a robust antioxidant capacity (41.15 mg/100 mL). Conversely, the red pulp from "Pingshan" demonstrated relatively high values of carotenoids (55.96 µg/g) and flavonoids (79.79 mg/L). Considerable differences were observed in volatile compositions between the two fruit tissues and among the four genotypes. A total of 166 and 255 volatile compounds were detected in the pulp and flavedo samples, respectively. Notably, limonene and ß-myrcene were identified as the principal volatile compounds in flavedo, whereas hexanal was highly abundant in the pulp of "Siji," "Pingshan," and "Guanxi." "Wendan" displayed distinct separation from the other three pummelo cultivars in principal component analysis based on the pulp volatile compositions. This distinction was attributed to the higher number and content of volatile compounds in "Wendan" pulp, particularly the remarkable enrichment of ß-myrcene. The newly characterized pummelo landraces and genotype/tissue-dependent variations in volatiles provide essential information for the genetic improvement of pummelo aroma, as well as for fruit processing and utilization.


Assuntos
Citrus , Compostos Orgânicos Voláteis , Carotenoides/análise , Monoterpenos Acíclicos , Flavonoides , Frutas/química , Compostos Orgânicos Voláteis/análise , Citrus/genética
4.
Food Chem Toxicol ; 178: 113933, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37419271

RESUMO

This study investigated the effect of pummelo extract (Citrus maxima) on biochemical, inflammatory, antioxidant and histological changes in NAFLD rats. Forty male Wistar rats divided into four groups were used: (1) control group; (2) fructose associated with high-fat diet - DHF; (3) normal diet + pummelo extract (50 mg/kg); and (4) FHD + pummelo extract. This was administered at dose of 50 mg/kg of the animal's weight, by gavage, for 45 days. Significant improvement in lipid profile, liver and kidney function, inflammation, oxidative stress markers was identified in group 4 compared to group 2. Regarding TNF-α and IL-1ß, group 2 showed higher values (respectively 142, 5 ± 0.7 and 560.5 ± 2.7 pg/mg protein) compared to group 4 (respectively 91.4 ± 0.9 and 402.1.4 ± 0.9 pg/mg protein), p < 0.05. Significant increases were found in SOD and CAT activities, respectively 0.10 ± 0.06 and 8.62 ± 1.67 U/mg protein for group 2 and respectively 0.28 ± 0.08 and 21.52 ± 2.28 U/mg of protein for group 4. Decreases in triglycerides, hepatic cholesterol and fat droplets in hepatic tissue were observed in group 4 compared to group 2. Results highlight that pummelo extract may be useful for prevent the development of NAFLD.


Assuntos
Citrus , Hepatopatia Gordurosa não Alcoólica , Ratos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos Wistar , Ratos Sprague-Dawley , Fígado , Inflamação/metabolismo , Estresse Oxidativo , Dieta Hiperlipídica/efeitos adversos
5.
Int J Biol Macromol ; 242(Pt 2): 124865, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207756

RESUMO

This study aimed to investigate the mechanisms of nature and modified 'Guanximiyou' pummelo peel pectin (GGP and MGGP) in alleviating T2DM through in vitro and in vivo. After modification, pectin was transformed from high methoxy pectin (HMP) to low methoxy pectin (LMP), and the content of galacturonic acid was increased. These made MGGP have stronger antioxidant capacity and better inhibition effect on corn starch digestion in vitro. In vivo experiments have shown that both GGP and MGGP inhibited the development of diabetes after 4 weeks of ingestion. However, MGGP can more effectively reduce blood glucose and regulate lipid metabolism, and has significant antioxidant capacity and the ability to promote SCFAs secretion. In addition, 16S rRNA analysis showed that MGGP changed the composition of intestinal microbiota in diabetic mice, decreased the abundance of Proteobacteria, and increased the relative abundance of Akkermansia, Lactobacillus, Oscillospirales and Ruminococcaceae. The phenotypes of the gut microbiome also changed accordingly, indicating that MGGP can inhibit the growth of pathogenic bacteria, alleviate intestinal functional metabolic disorders and reverse the potential risk of related complications. Altogether, our findings demonstrate that MGGP, as a dietary polysaccharide, may inhibit the development of diabetes by reversing the imbalance of gut microbiota.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Pectinas/farmacologia , Pectinas/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , RNA Ribossômico 16S/genética , Antioxidantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico
6.
Plant Biotechnol J ; 21(8): 1577-1589, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37115171

RESUMO

Pummelo (Citrus maxima or Citrus grandis) is a basic species and an important type for breeding in Citrus. Pummelo is used not only for fresh consumption but also for medicinal purposes. However, the molecular basis of medicinal traits is unclear. Here, compared with wild citrus species/Citrus-related genera, the content of 43 bioactive metabolites and their derivatives increased in the pummelo. Furthermore, we assembled the genome sequence of a variety for medicinal purposes with a long history, Citrus maxima 'Huazhouyou-tomentosa' (HZY-T), at the chromosome level with a genome size of 349.07 Mb. Comparative genomics showed that the expanded gene family in the pummelo genome was enriched in flavonoids-, terpenoid-, and phenylpropanoid biosynthesis. Using the metabolome and transcriptome of six developmental stages of HZY-T and Citrus maxima 'Huazhouyou-smooth' (HZY-S) fruit peel, we generated the regulatory networks of bioactive metabolites and their derivatives. We identified a novel MYB transcription factor, CmtMYB108, as an important regulator of flavone pathways. Both mutations and expression of CmtMYB108, which targets the genes PAL (phenylalanine ammonia-lyase) and FNS (flavone synthase), displayed differential expression between Citrus-related genera, wild citrus species and pummelo species. This study provides insights into the evolution-associated changes in bioactive metabolism during the origin process of pummelo.


Assuntos
Citrus , Flavonas , Multiômica , Melhoramento Vegetal , Citrus/genética , Flavonas/metabolismo , Flavonoides/genética , Flavonoides/metabolismo
7.
Food Res Int ; 162(Pt A): 111987, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461228

RESUMO

This study evaluated the effects of thermal treatment conditions (100-120 °C, 0-5 h) and active substance stability on the isomerization and degradation of lycopene in the "Sanhong" pummelo (C. grandis cv. Sanhongmiyou) matrix. The results revealed that the degradation of (all-E)-lycopene and total lycopene in pummelo could be well fit by the first-order kinetic model under thermal treatment. The total Z-lycopene ratio was maintained at nearly 40 % (120 °C, 4 h). The behavior of lycopene was related to the degradation of active substances, such as the degradation of ascorbic acid and polysaccharides. The stability of polysaccharides was temperature-dependent, and with the increasing temperature (100-120 °C), a significant negative correlation was observed between the content of Z-isomers and polysaccharides. The enhancement of lycopene isomerization was attributed to the degradation of polysaccharides under thermal treatment. These findings facilitate the functional development and efficient utilization of lycopene in fruit processing.


Assuntos
Ácido Ascórbico , Citrus , Licopeno , Isomerismo , Frutas
8.
J Food Sci Technol ; 59(10): 4067-4074, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36193353

RESUMO

The study investigated the effect of albedo and flavedo extracts of grapefruit and pomelo on storage stability of turkey patties during refrigerated storage. Five different types of products were developed depending on the addition of extracts viz. control (C), albedo and flavedo extract of grapefruit (GA and GF), and albedo and flavedo extract of pomelo (PA and PF). The products were stored for 10 days and evaluated for lipid and protein oxidation, pH, colour and sensory properties. The extracts improved the lipid oxidative stability by decreasing (P < 0.05) the TBARS values of the samples compared to control group. No effect of the extract treatments (P > 0.05) was observed on pH and colour values of the products (a* and b*). The lowest TBARS values were found for the products containing GF (0.78 mg MA/kg) on day 4. The treatments showed a significant impact on flavour of the products and the highest scores were obtained for PA containing products.

9.
Food Chem ; 372: 131239, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34627096

RESUMO

Pummelo fruit rapidly depreciate in commodity value due to postharvest fungal decay and fruit quality deterioration. Here, we used carvacrol (CVR) to control Phomopsis stem-end rot (SER) caused by Diaporthe citri in pummelo fruit stored at 25 °C. Antifungal activity of CVR inhibited D. citri growth and Phomopsis SER development. Harvested pummelo fruit treated with CVR delayed firmness loss and lowered electrolyte leakage, and retarded hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulation. Unlike the control fruit, the CVR-treated fruit maintained higher levels of adenosine triphosphate and energy charge, and increased ATPase, succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and cytochrome C oxidase (CCO) activities, along with up-regulated expression levels of the respective genes. CVR improved the antioxidant capacity, as evidenced by higher non-enzymatic antioxidants amounts, higher activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR), and up-regulated expression levels of ROS-scavenging-related genes. Collectively, CVR treatment maintained the energy status and antioxidant capacity in D. citri-infected pummelo fruit, which revealed antifungal mechanisms critical for controlling postharvest fungal diseases.


Assuntos
Antioxidantes , Frutas , Ascomicetos , Catalase , Cimenos , Peróxido de Hidrogênio , Phomopsis
10.
Front Plant Sci ; 13: 1117106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743559

RESUMO

Introduction: Apple polyphenols (AP), derived from the peel of mature-green apples, are widely used as natural plant-derived preservatives in the postharvest preservation of numerous horticultural products. Methods: The goal of this research was to investigate how AP (at 0.5% and 1.0%) influences senescence-related physiological parameters and antioxidant capacity of 'Jinshayou' pummelo fruits stored at 20°C for 90 d. Results: The treating pummelo fruit with AP could effectively retard the loss of green color and internal nutritional quality, resulting in higher levels of total soluble solid (TSS) content, titratable acidity (TA) content and pericarp firmness, thus maintaining the overall quality. Concurrently, AP treatment promoted the increases in ascorbic acid, reduced glutathione, total phenols (TP) and total flavonoids (TF) contents, increased the scavenging rates of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and hydroxyl radical (•OH), and enhanced the activities of superoxide dismutase (SOD), catalase, peroxidase, ascorbate peroxidase (APX), and glutathione reductase (GR) as well as their encoding genes expression (CmSOD, CmCAT, CmPOD, CmAPX, and CmGR), reducing the increases in electrolyte leakage, malondialdehyde content and hydrogen peroxide level, resulting in lower fruit decay rate and weight loss rate. The storage quality of 'Jinshayou' pummelo fruit was found to be maintained best with a 1.0% AP concentration. Conclusion: AP treatment can be regarded as a promising and effective preservative of delaying quality deterioration and improving antioxidant capacity of 'Jinshayou' pummelo fruit during storage at room temperature.

11.
Food Chem ; 366: 130605, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311239

RESUMO

The Citrus genus is a good source of dietary flavonoids, which have many health benefits. As a representative citrus fruit, the flavonoids composition in Shatianyu (Citrus grandis L. Osbeck) pulp remains to be investigated. In the present study, 11 flavonoids were isolated and identified from Shatianyu pulp flavonoid extracts (SPFEs). Among them, 4 flavonoids were previously undescribed and 2 flavonoids were firstly isolated from pummelo. The cellular antioxidant activity (CAA) and oxygen radical absorbance capacity (ORAC) of isolated compounds were evaluated. Naringin and rhoifolin showed the highest ORAC activity, and the presence of a 3-hydroxy-3-methylglutaryl or a 4'-glucose decreased the ORAC activity of flavonoids. The contribution of isolated flavonoids to the holistic antioxidant activity of SPFEs was determined by an online knockout method. Melitidin, bergamjuicin and naringin contributed most to ORAC activity, while bergamjuicin, melitidin and apigenin-4'-O-ß-d-glucopyranosyl-7-O-α-l-rhamnopyranosyl-(1 â†’ 2)-[6″-O-(3- hydroxy-3-methylgltaryl)]-ß-d-glucopyranoside contributed most to CAA activity.


Assuntos
Citrus , Antioxidantes , Flavonoides , Extratos Vegetais , Polifenóis
12.
J Sci Food Agric ; 102(8): 3140-3149, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34791654

RESUMO

BACKGROUND: Phomopsis stem-end rot caused by Diaporthe citri, causes significant commercial postharvest losses of pummelo fruit during storage. Carvacrol (CVR) is a known generally recognized as safe and has the ability to prolong the preservation of harvested fruits. In the present study, the inhibitory effects of CVR treatment at the appropriate concentration on Phomopsis stem-end rot development of harvested pummelo fruit inoculated with D. citri were evaluated by the amounts of cell wall components, the activities and gene expressions of related enzymes involved in cell wall modification and lignin biosynthesis. RESULTS: Results indicated that CVR completely inhibited D. citri growth in vitro at 200 mg L-1 and significantly controlled Phomopsis stem-end rot development in harvested pummelo. The CVR treatment delayed peel softening and browning, and retarded electrolyte leakage, superoxide radical (O2 •- ) production, and malondialdehyde content. The CVR-treated fruit maintained higher amounts of cell wall material, protopectin, hemicelluloses, and cellulose, but exhibited lower water-soluble pectin amount. Moreover, in D. citri-inoculated fruit, CVR treatment suppressed the activities and gene expressions of cell wall disassembling-enzymes, including pectin methylesterase, polygalacturonase, cellulase, and ß-galactosidase, while the development of cell wall degradation was reduced. Meanwhile, the CVR treatment enhanced the lignin biosynthesis by increasing the activities and up-regulating the gene expressions of phenylalanine ammonialyase, cinnamic alcohol dehydrogenase, and peroxidase accompanied with elevated level of lignin in pummelo fruit. CONCLUSION: The disease resistance to D. citri in pummelo fruit elicited by CVR treatment is related to delaying cell wall degradation and enhancing lignin biosynthesis. © 2021 Society of Chemical Industry.


Assuntos
Citrus , Frutas , Ascomicetos , Parede Celular/metabolismo , Citrus/metabolismo , Cimenos , Resistência à Doença , Lignina/metabolismo
13.
Front Plant Sci ; 12: 739108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531892

RESUMO

The selection of elite bud-sports is an important breeding approach in horticulture. We discovered and evaluated a thornless pummelo bud-sport (TL) that grew more vigorously and was more tolerant to Huanglongbing (HLB) than the thorny wild type (W). To reveal the underlying molecular mechanisms, we carried out whole-genome sequencing of W, and transcriptome comparisons of W, TL, and partially recovered thorny "mutants" (T). The results showed W, TL, and T varied in gene expression, allelic expression, and alternative splicing. Most genes/pathways with significantly altered expression in TL compared to W remained similarly altered in T. Pathway and gene ontology enrichment analysis revealed that the expression of multiple pathways, including photosynthesis and cell wall biosynthesis, was altered among the three genotypes. Remarkably, two polar auxin transporter genes, PIN7 and LAX3, were expressed at a significantly lower level in TL than in both W and T, implying alternation of polar auxin transport in TL may be responsible for the vigorous growth and thornless phenotype. Furthermore, 131 and 68 plant defense-related genes were significantly upregulated and downregulated, respectively, in TL and T compared with W. These genes may be involved in enhanced salicylic acid (SA) dependent defense and repression of defense inducing callose deposition and programmed cell death. Overall, these results indicated that the phenotype changes of the TL bud-sport were associated with tremendous transcriptome alterations, providing new clues and targets for breeding and gene editing for citrus improvement.

14.
Food Chem ; 362: 130223, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091161

RESUMO

Naringenin, a flavonoid compound found in pummelo, is a key biological active compound in some traditional Chinese medicines, including Citri reticulatae pericarpium, Citri reticulatae pericarpium viride, Aurantii fructus immaturus, and Aurantii fructus. These Chinese medicinal preparations are the peels or immature fruits of certain citrus species. Aiming at detecting naringenin in complex matrices such as pummelo and traditional Chinese medicines, we put forward a sensitive and practical indirect competitive enzyme-linked immunosorbent assay (icELISA) based on anti-naringenin monoclonal antibodies (anti-Nar-mAbs). The median inhibitory concentration (IC50) was 4.43 ng/mL, and the working range was 1.15-15.81 ng/mL. The findings of the icELISA for the analysis of naringenin in pummelo and herb samples had a good correlation with the ultra performance liquid chromatography (UPLC) methodology and showed good accuracy and reproducibility. These data demonstrated that the developed icELISA is reliable, accurate, and suitable for detecting naringenin in pummelo and traditional Chinese medicines.


Assuntos
Citrus/química , Medicamentos de Ervas Chinesas/análise , Ensaio de Imunoadsorção Enzimática/métodos , Flavanonas/análise , Animais , Anticorpos Monoclonais , Feminino , Flavanonas/imunologia , Flavonoides/análise , Frutas/química , Camundongos Endogâmicos BALB C , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Front Plant Sci ; 12: 640512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33719319

RESUMO

Pummelos and hybrids, such as grapefruits, have high furanocoumarin and low flavonoid contents. Furanocoumarins interact negatively with certain drugs, while flavonoids are antioxidant compounds with health benefits. To obtain new grapefruit-like varieties with low furanocoumarin and high flavonoid contents, diploid and triploid hybrid populations from crosses between diploid and tetraploid "Clemenules" clementine and diploid "Pink" pummelo were recovered and analyzed. With regard to furanocoumarins, triploids produce less bergapten, bergamottin and 6,7-DHB than diploids. Regarding flavonoids, triploids yielded more eriocitrin, narirutin, hesperidin and neohesperidin than diploids, whereas no differences were observed in neoeriocitrin and naringin. These results indicate that, the strategy to recover triploid hybrids by 4x × 2x crosses is more appropriate than the recovery of diploid hybrids by 2x × 2x crosses for obtaining grapefruit-like varieties of citrus with lower furanocoumarin and higher flavonoid contents.

16.
Drug Des Devel Ther ; 15: 937-947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688168

RESUMO

PURPOSE: Citrus essential oils are widely used for aromatherapy and the alternative treatment of chronic diseases. Beyond the aroma substances, they are known to contain bioactive nonvolatile components; however, little knowledge has been gained about nonvolatiles in the essential oil of pomelo (Citrus grandis Osbeck), the largest citrus fruit. The purpose of this study was to analyze the nonvolatile oxygenated heterocyclic compounds (OHCs) of pomelo essential oils and evaluate their in vitro antioxidant activities for further development. METHODS: Cold-pressed essential oil (CPEO) and distilled essential oil (DEO) were obtained from the peel of the Liangping pomelo cultivar. High-performance liquid chromatography (HPLC) coupled with a photodiode array and fluorescence detection method was developed to identify and quantify the OHCs of the two essential oils. Ferric reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl 3-oxide (PTIO) radical scavenging assays were used to determine the antioxidative capabilities. RESULTS: Thirteen OHCs were identified in CPEO. Coumarins such as meranzin (2.0 mmol L-1) and furanocoumarins such as isoimperatorin (1.3 mmol L-1) composed the majority of nonvolatiles in CPEO. These OHCs were characterized by high proportion (58%) of side chain epoxides. Five OHCs, namely, auraptenol, 6',7'-dihydroxybergamottin (6',7'-DHB), imperatorin, isoimperatorin and 8-geranyloxypsoralen were first identified in pomelo CPEO. Eight OHCs were detected at trace amounts in pomelo DEO. Antioxidant assays showed that CPEO was multiple times more potent than DEO regarding the total reducing power and radical scavenging capacity. Clearance of PTIO, a stable reactive oxygen species, followed slow kinetics. CONCLUSION: Coumarins and furanocoumarins, two families of OHCs, constituted most of the nonvolatile components in CPEO. The nonvolatiles contributed significantly to the in vitro antioxidant activity of CPEO. Pomelo CPEO showed good prospects as a potential long-lasting natural antioxidant.


Assuntos
Antioxidantes/farmacologia , Citrus/química , Compostos Heterocíclicos/farmacologia , Óleos Voláteis/farmacologia , Oxigênio/química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Compostos Heterocíclicos/química , Estrutura Molecular , Óleos Voláteis/química , Picratos/antagonistas & inibidores
17.
J Agric Food Chem ; 69(10): 3175-3188, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33667086

RESUMO

Ichang lemon is a citrus fruit whose rind gives off a delicious and much appreciated fragrance and flavor. The volatile components of the fruit peel of Ichang lemon were investigated by GC-MS and GC-O (AEDA method). Simultaneously, its genetic origin was identified by using diagnostic SNP markers specific to ancestral species and multiallelic SSR and InDel markers. Ichang lemon combines three ancestral genomes (Citrus maxima, Citrus ichangensis, and Citrus reticulata) and may be a pummelo × Yuzu hybrid. Although the major compounds of the Ichang lemon aromatic profile were present in Citrus junos, a few pummelo-specific compounds were also detected, such as indole and nootkatone, in agreement with its maternal lineage. 3-Methyl-3-sulfanylbutyl acetate, reported to occur in passion fruit and brewed coffee, was identified by GC-MS, GC-QTOF-MS, and GC-FTIR for the first time in citrus. This odor-active compound has a sulfurous, tropical fruity, green note.


Assuntos
Citrus , Citrus/genética , DNA , Frutas/genética , Genótipo , Odorantes
18.
Sci China Life Sci ; 64(7): 1165-1173, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33009992

RESUMO

Delayed greening of young leaves is an unusual phenomenon of plants in nature. Citrus are mostly evergreen tree species. Here, a natural mutant of "Guanxi" pummelo (Citrus maxima), which shows yellow leaves at the young stage, was characterized to identify the genes underlying the trait of delayed leaf greening in plants. A segregating population with this mutant as the seed parent and a normal genotype as the pollen parent was generated. Two DNA pools respectively from the leaves of segregating seedlings with extreme phenotypes of normal leaf greening and delayed leaf greening were collected for sequencing. Bulked segregant analysis (BSA) and InDel marker analysis demonstrated that the delayed leaf greening trait is governed by a 0.3 Mb candidate region on chromosome 6. Gene expression analysis further identified a key candidate gene (Citrus Delayed Greening gene 1, CDG1) in the 0.3 Mb region, which showed significantly differential expression between the genotypes with delayed and normal leaf greening phenotypes. There was a 67 bp InDel region difference in the CDG1 promoter and the InDel region contains a TATA-box element. Confocal laser-scanning microscopy revealed that the CDG1-GFP fusion protein signals were co-localized with the chloroplast signals in the protoplasts. Overexpression of CDG1 in tobacco and Arabidopsis led to the phenotype of delayed leaf greening. These results suggest that the CDG1 gene is involved in controlling the delayed leaf greening phenotype with important functions in chloroplast development.


Assuntos
Proteínas de Cloroplastos/metabolismo , Citrus/genética , Folhas de Planta/metabolismo , Proteínas Quinases/genética , Cor , Regulação da Expressão Gênica de Plantas , Genótipo , Mutação , Fenótipo
19.
Food Chem ; 336: 127636, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32805513

RESUMO

Deposition of both lignin and cellulose accompanied by juice sac granulation is widespread in harvested citrus fruit. Hence, measures to suppress postharvest granulation of 'Majiayou' pummelo is of great importance. The fruit was treated with 1.5% chitosan and then stored at room temperature (20 ± 2 °C) for 150 d. As compared to the control fruits, chitosan coating significantly suppressed granulation index and maintained good quality. Chitosan coating inhibited lignification by suppressing the activities and expression levels of lignin synthesis-related enzymes (PAL, CAD and POD). By contrast, chitosan treatment enhanced the activities and expression levels of cell wall degrading enzymes, including PME, PG, Cx, XTH and ß-Gal, which might contribute to the decrease in cellulose. In a nutshell, chitosan coating can effectively suppress juice sac granulation and fruit senescence of pummelo fruits, and play a crucial role in maintaining the cell wall modification.


Assuntos
Parede Celular/efeitos dos fármacos , Quitosana/farmacologia , Citrus/efeitos dos fármacos , Armazenamento de Alimentos , Frutas/efeitos dos fármacos , Parede Celular/química , Parede Celular/metabolismo , Celulose/metabolismo , Citrus/metabolismo , Enzimas/genética , Enzimas/metabolismo , Conservantes de Alimentos/farmacologia , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Temperatura
20.
Metabolites ; 10(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255226

RESUMO

The citrus industry at present is severely affected by huanglongbing disease (HLB). HLB is caused by the supposed bacterial pathogen "Candidatus Liberibacter asiaticus" and is transmitted by the insect vector, the Asian citrus psyllid, Diaphorina citri Kuwayama. Developing new citrus hybrids to improve HLB management is much needed. In this study, we investigated the metabolomic profiles of three new hybrids produced from the cross of C2-5-12 Pummelo (Citrus maxima (L.) Osbeck) × pollen from Citrus latipes. The hybrids were selected based on leaf morphology and seedling vigor. The selected hybrids exhibited compact and upright tree architecture as seen in C. latipes. Hybrids were verified by simple sequence repeat markers, and were subjected to metabolomic analysis using gas chromatography-mass spectrometry. The volatile organic compounds (VOCs) and polar metabolites profiling also showed that the new hybrids were different from their parents. Interestingly, the levels of stored VOCs in hybrid II were higher than those observed in its parents and other hybrids. The level of most VOCs released by hybrid II was also higher than that released from its parents. Additionally, the preference assay showed that hybrid II was more attractive to D. citri than its parents and other hybrids. The leaf morphology, compact and upright architecture of hybrid II, and its attraction to D. citri suggest that it could be used as a windbreak and trap tree for D. citri (double duty), once its tolerance to HLB disease is confirmed. Our results showed that metabolomic analysis could be successfully used to understand the biochemical mechanisms controlling the interaction of D. citri with its host plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA