Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403486, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031678

RESUMO

The development of high-performance organic photovoltaic materials is of crucial importance for the commercialization of organic solar cells (OSCs). Herein, two structurally simple donor-π-conjugated linker-acceptor (D-π-A)-configured small-molecule donors with methyl-substituted triphenylamine as D unit, 1,1-dicyanomethylene-3-indanone as A unit, and thiophene or furan as π-conjugated linker, named DTICPT and DTICPF, are developed. DTICPT and DTICPF are facilely prepared via a two-step synthetic process with simple procedures. DTICPF with a furan π-conjugated linker exhibits stronger and broader optical absorption, deeper highest occupied molecular orbital (HOMO) energy levels, and better charge transport, compared to its thiophene analog DTICPT. As a result, vacuum-deposited OSCs based on DTICPF: C70 show an impressive power conversion efficiency (PCE) of 9.36% (certified 9.15%) with short-circuit current density (Jsc) up to 17.49 mA cm-2 (certified 17.56 mA cm-2), which is the highest Jsc reported so far for vacuum-deposited OSCs. Besides, devices based on DTICPT: C70 and DTICPF: C70 exhibit excellent long-term stability under different aging conditions. This work offers important insights into the rational design of D-π-A configured small-molecule donors for high efficient and stable vacuum-deposited OSCs.

2.
Small ; : e2309042, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063814

RESUMO

Compared with all-small-molecule (ASM) and other types of organic solar cells (OSCs), the small molecule donor:polymer acceptor (SMD:PA) OSCs develop much slower due to the lack of material matching rules. Herein, by changing the end-cap substituent of the small molecule donor from ethyl (MPhS-C2) to benzyl (MPhS-Ph), the different selection rules of donor properties and thermal annealing (TA) treatment between the ASM and the SMD:PA system under tetrahydrofuran processing are thoroughly investigated. Therefore, MPhS-Ph exhibits more ordered molecular packing, leading to better adaptability in the SMD:PA system without TA; while the inferior molecular packing of MPhS-C2 after spin-coating performs better in the ASM system with TA. Whether spin-coating or TA process dominates morphological optimization also dominates their energy loss. Therefore, the MPhS-Ph:PYF-T-o and MPhS-C2:BTP-eC9 based devices achieve the highest power conversion efficiency (PCE) of 12.1% and 15.7%, respectively, both of which are cutting-edge PCEs in their own type of OSCs fabricated by non-halogen solvent. This result suggests that intrinsic strong crystallization independent of the thermal drive is hoped in SMD:PA-OSCs, while high miscibility after spin-coating and proper assembly under thermal drive is expected in ASM-OSCs, providing deep understanding and guidance in highly efficient materials design rules in both ASM-OSCs and SMD:PA-OSCs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36752273

RESUMO

To construct efficient donor:donor:acceptor (D1:D2:A)-type ternary devices, two new selenophene-containing small-molecule (SM) donors named FSBTSeEHR and FSBTSeHR have been designed and synthesized that show broader and red-shifted absorption spectra than the thiophene analogues. With the introduction of SM donors into the D18:CH-6F host system, enhanced light harvesting and charge transport were achieved, benefiting from more complementary absorptions and cascaded energy levels. Furthermore, the doping of the SM donor could effectively modulate the micromorphology and enable a more suitable phase separation size in the active layer. After systematic optimization, the FSBTSeEHR-based ternary organic solar cell (TOSC) exhibited an excellent power conversion efficiency (PCE) of 18.02% with a high open-circuit voltage (Voc) of 0.905 V, short-circuit current density (Jsc) of 26.41 mA cm-2, and fill factor (FF) of 0.754. By contrast, the FSBTSeHR counterpart showed a superior efficiency of 18.55% due to the higher Jsc (26.91 mA cm-2) and FF (0.761). The outstanding PCEs of D1:D2:A-type TOSCs based on our SM donors, FSBTSeEHR and FSBTSeHR, are significantly higher than those of the corresponding binary host system (16.86%) and among the highest values reported to date. This work demonstrates that D1:D2:A-type TOSCs have tremendous potential to achieve superior performances through elaborate design of the SM donor guest and reasonable combination of D and A ingredients.

4.
J Mol Graph Model ; 115: 108226, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35667144

RESUMO

Herein, photophysical and electronic properties of a newly synthesized D-π-A-π-D benzothiadiazole derivative referred to 'R' molecule, were theoretically improved. Using Density Functional Theory (DFT), and it extended TDDFT methodologies, a news SMi (i = 1-4) benzothiadiazole derivatives are designed and studied by the modification of the acceptor (A) ring. Theoretical calculations show that going from R molecules to SMi ones, an intramolecular charge transfer is obtained. Indeed, the calculated dipole moment variation (µCT) between the ground and the first excited state increases. Consequently, an enhancement of the absorption in the visible part, and a reduction of the calculated optical band gap and the energy gap HOMO-LUMO are obtained. Furthermore, the calculated power conversion efficiency (PCE) factor of the bulk-heterojunction (BHJ) based on the investigated molecules (R and SMi, i = 1-4), as donor material and the fullerene (C60) as an acceptor one, increases drastically from 8% for R molecule to 13.5% for SM3 one according to Marks diagram. Finally, reduced density gradient analysis (RDG) analysis on the SM3-C60 designed composite proves the weak Vander-Waals interactions between the donor SM3 and the chosen acceptor C60.

5.
ACS Appl Mater Interfaces ; 14(12): 14532-14540, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35298146

RESUMO

Side-chain engineering is an efficient molecular design strategy for morphology optimization and performance improvement of organic solar cells (OSCs). Herein, a novel small-molecule donor C-2F, which owns a benzo[1,2-b:4,5-b']dithiophene (BDT) central unit with a symmetrically difluorinated benzene ring as a conjugated side chain, has been synthesized. The conjugated side chain possesses both the symmetry and halogenation effect in novel small molecular donor material. The photovoltaic devices were fabricated with N3 as an acceptor. C-2F:N3 based devices achieved an outstanding power conversion efficiency of 14.64% with a Jsc of 24.87 mA/cm2, a Voc of 0.85 V, and an FF of 69.33%. Then, we investigated the basic material properties, photovoltaic mechanism, and active layer morphology, and the results show that this molecular design strategy of the symmetrically difluorinated moiety as the conjugated side chain provides an effective method for fine-tuning the molecular stacking pattern and active layer phase separation morphology, to improve the all-small-molecule (ASM) OSCs' performances.

6.
ACS Appl Mater Interfaces ; 13(45): 54237-54245, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34726374

RESUMO

Unraveling the relationship between nanoscale morphology of active layers and chemical structures of organic semiconductor photovoltaic materials is crucially important for further advancing the development of all-small-molecule organic solar cells (SM-OSCs). Here, in order to delve into the effect of flexible side chains of small molecule donors on the photovoltaic properties of SM-OSCs, we synthesized two new small molecule donors substituted by different flexible alkyl chains (iso-octyl chains for SM1-EH and n-octyl chains for SM1-Oct). As a result, the two small molecules present different absorption properties, energy levels, and stacking characteristics. When blending with Y6 as an acceptor, the SM1-Oct-based SM-OSC demonstrated a higher PCE value of 11.73%, while the SM1-EH-based device presents a relatively poorer PCE value of 8.42%. In addition, the morphology analysis demonstrated that, compared with the SM1-EH:Y6 blend, the SM1-Oct:Y6 blend film displayed better molecular stacking properties with stronger multilevel diffraction and preferable phase separation, resulting in the higher hole mobility, more efficient charge separation efficiency, and better device performance. These results underline that reasonably adjusting the flexible alkyl chains of small molecule donors can be an effective approach to further advance the development of the SM-OSCs field.

7.
ACS Appl Mater Interfaces ; 13(30): 36033-36043, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34288666

RESUMO

Optimization of morphology and precise control of miscibility between donors and acceptors play an important role in improving the power conversion efficiencies (PCEs) of all-small-molecule organic solar cells (SM-OSCs). Besides device optimization, methods such as additives and thermal annealing are applied for finely tuning bulk-heterojunction morphology; strategies of molecular design are also the key to achieve efficient phase separation. Here, a series of A-D-A-type small-molecule donors (SM4, SM8, and SM12) based on benzodithiophene units were synthesized with different lengths of alkylthio side chains to regulate crystallinity, and their miscibility with the acceptor (BO-4Cl) was investigated. Consequently, SM4 with a short alkylthio substituent had a high crystallization propensity, leading to the oversized molecular domains and the poor morphology of the active layer. Meanwhile, SM12 with a longer alkylthio substituent showed weak crystallinity, causing a relatively looser π-π stacking and thus adversely affecting charge-carrier transport. The SM-OSC based on the small-molecule donor SM8 with a mid-length alkylthio substituent achieved a better PCE over 13%, which was attributed to a more harmonious blend miscibility without sacrificing carrier-charge transport. Eventually, the modulation of phase separation and miscibility via controlling the lateral side chains has proven its potential in optimizing the blend morphology to aid the development of highly efficient SM-OSCs.

8.
Chem Asian J ; 15(16): 2520-2531, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32573105

RESUMO

Four new donor-acceptor-acceptor' (D-A-A')-configured donors, CPNT, DCPNT, CPNBT, and DCPNBT equipped with naphtho[1,2-c:5,6-c']bis([1,2,5]-thiadiazole) (NT) or naphtho[2,3-c][1,2,5]thiadiazole (NBT) as the central acceptor (A) unit bridging triarylamine donor (D) and cyano or dicyanovinylene acceptor (A'), were synthesized and characterized. All molecules exhibit bathochromic absorption shifts as compared to those of the benzothiadiazole (BT)-based analogues owing to improved electron-withdrawing and quinoidal character of NT and NBT cores that lead to stronger intramolecular charge transfer. Favorable energy level alignments with C70 , together with the good thermal stability and the antiparallel dimeric packing render CPNT and DCPNT suitable donors for vacuum-processed organic photovoltaics (OPV)s. OPVs based on DCPNT : C70 active layers displayed the best power conversion efficiency (PCE)=8.3%, along with an open circuit voltage of 0.92 V, a short circuit current of 14.5 mA cm-2 and a fill factor of 62% under 1 sun intensity, simulated AM1.5G illumination. Importantly, continuous light-soaking with AM 1.5G illumination has verified the durability of the devices based on CPNT:C70 and DCPNT : C70 as the active blends. The devices were examined for their feasibility of indoor light harvesting under 500 lux illumination by a TLD-840 fluorescent lamp, giving PCE=12.8% and 12.6%, respectively. These results indicate that the NT-based D-A-A'-type donors CPNT and DCPNT are potential candidates for high-stability vacuum-processed OPVs suitable for indoor energy harvesting.

9.
Front Chem ; 8: 329, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411669

RESUMO

A new small molecule donor with an acceptor-donor-acceptor (A-D-A) structure, namely DRTB-FT, has been designed and synthesized for all-small-molecule organic solar cells (ASM-OSCs). By introducing fluorine atoms on the thienyl substituent of the central benzodithiophene unit, DRTB-FT shows a low-lying highest occupied molecular orbital (HOMO) energy level of -5.64 eV. Blending with an A-D-A type acceptor F-2Cl, DRTB-FT based ASM-OSCs gave a power conversion efficiency (PCE) of 7.66% with a high open-circuit voltage (V oc) of 1.070 V and a low energy loss of 0.47 eV. The results indicate that high V oc of ASM-OSC devices can be obtained through careful donor molecular optimization.

10.
Adv Mater ; 32(21): e1908373, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32270545

RESUMO

It is very important to fine-tune the nanoscale morphology of donor:acceptor blend active layers for improving the photovoltaic performance of all-small-molecule organic solar cells (SM-OSCs). In this work, two new small molecule donor materials are synthesized with different substituents on their thiophene conjugated side chains, including SM1-S with alkylthio and SM1-F with fluorine and alkyl substituents, and the previously reported donor molecule SM1 with an alkyl substituent, for investigating the effect of different conjugated side chains on the molecular aggregation and the photophysical, and photovoltaic properties of the donor molecules. As a result, an SM1-F-based SM-OSC with Y6 as the acceptor, and with thermal annealing (TA) at 120 °C for 10 min, demonstrates the highest power conversion efficiency value of 14.07%, which is one of the best values for SM-OSCs reported so far. Besides, these results also reveal that different side chains of the small molecules can distinctly influence the crystallinity characteristics and aggregation features, and TA treatment can effectively fine-tune the phase separation to form suitable donor-acceptor interpenetrating networks, which is beneficial for exciton dissociation and charge transportation, leading to highly efficient photovoltaic performance.

11.
Front Chem ; 8: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117865

RESUMO

The approach via ternary blends prompts the increase of absorbed photon density and resultant photocurrent enhancement in organic solar cells (OSCs). In contrast to actively reported high efficiency ternary OSCs, little is known about charge recombination properties and carrier loss mechanisms in these emerging devices. Here, through introducing a small molecule donor BTR as a guest component to the PCE-10:PC71BM binary system, we show that photocarrier losses via recombination are mitigated with respect the binary OSCs, owing to a reduced bimolecular recombination. The gain of the fill factor in ternary devices are reconciled by the change in equilibrium between charge exaction and recombination in the presence of BTR toward the former process. With these modifications, the power conversion efficiency in ternary solar cells receives a boost from 8.8 (PCE-10:PC71BM) to 10.88%. We further found that the voltage losses in the ternary cell are slightly suppressed, related to the rising charge transfer-state energy. These benefits brought by the third guest donor are important for attaining improvements on key photophysical processes governing the photovoltaic efficiencies in organic ternary solar cells.

12.
Chemphyschem ; 20(20): 2674-2682, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31257670

RESUMO

To achieve high open-circuit voltage (Voc ) and low acceptor content, the molecular design of a small-molecule donor with low energy loss (Eloss ) is very important for solution-processable organic solar cells (OSCs). Herein, we designed and synthesized a new coplanar A-D-A structured organic small-molecule semiconductor with non-fused ring structure π-bridge, namely B2TPR, and applied it as donor material in OSCs. Owing to the strong electron-withdrawing effect of the end group and the coplanar π-bridge, B2TPR exhibits a low-lying highest occupied molecular orbital and strong crystallinity. Furthermore, benefiting from the coplanar molecular skeleton, the high hole mobility, balanced charge transport and reduced recombination were achieved, leading to a high fill factor (FF). The OSCs based on B2TPR : PC71 BM blend film (w/w=1 : 0.35) demonstrates a moderate power conversion efficiency (PCE) of 7.10 % with a remarkable Voc of 0.98 V and FF of 64 %, corresponding to a low fullerene content of 25.9 % and a low Eloss of 0.70 eV. These results demonstrate the great potential of small-molecule with structure of B2TPR for future low-cost organic photovoltaic applications.

13.
ACS Appl Mater Interfaces ; 11(8): 8337-8349, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30714358

RESUMO

Four new donor-acceptor-acceptor (D-A-A) type molecules (DTCPB, DTCTB, DTCPBO, and DTCTBO), wherein benzothiadiazole or benzoxadiazole serves as the central A bridging triarylamine (D) and cyano group (terminal A), have been synthesized and characterized. The intramolecular charge-transfer character renders these molecules with strong visible light absorption and forms antiparallel dimeric crystal packing with evident π-π intermolecular interactions. The characteristics of the vacuum-processed photovoltaic device with a bulk heterojunction active layer employing these molecules as electronic donors combining C70 as electronic acceptor were examined and a clear structure-property-performance relationship was concluded. Among them, the DTCPB-based device delivers the best power conversion efficiency (PCE) up to 6.55% under AM 1.5 G irradiation. The study of PCE dependence on the light intensity indicates the DTCPB-based device exhibits superior exciton dissociation and less propensity of geminated recombination, which was further verified by a steady photoluminescence study. The DTCPB-based device was further optimized to give an improved PCE up to 6.96% with relatively high stability under AM 1.5 G continuous light-soaking for 150 h. This device can also perform a PCE close to 16% under a TLD-840 fluorescent lamp (800 lux), indicating its promising prospect for indoor photovoltaic application.

14.
Adv Mater ; 30(27): e1706361, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29782668

RESUMO

Two medium-bandgap p-type organic small molecules H21 and H22 with an alkylsily-thienyl conjugated side chain on benzo[1,2-b:4,5-b']dithiophene central units are synthesized and used as donors in all-small-molecule organic solar cells (SM-OSCs) with a narrow-bandgap n-type small molecule 2,2'-((2Z,2'Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IDIC) as the acceptor. In comparison to H21 with 3-ethyl rhodanine as the terminal group, H22 with cyanoacetic acid esters as the terminal group shows blueshifted absorption, higher charge-carrier mobility and better 3D charge pathway in blend films. The power conversion efficiency (PCE) of the SM-OSCs based on H22:IDIC reaches 10.29% with a higher open-circuit voltage of 0.942 V and a higher fill factor of 71.15%. The PCE of 10.29% is among the top efficiencies of nonfullerene SM-OSCs reported in the literature to date.

15.
ACS Appl Mater Interfaces ; 10(11): 9587-9594, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29489322

RESUMO

Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC71BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA