Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cytotechnology ; 76(3): 291-300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736725

RESUMO

Pulmonary fibrosis (PF) is a chronic lung disease that has a poor prognosis and a serious impact on the quality of life of patients. Here, we investigated the potential role of miR-92a-3p in PF. The mRNA level of miR-92a-3p was significantly increased in both the lung tissues of bleomycin (BLM)--treated mice and pulmonary microvascular endothelial cells (PMVECs). Overexpressing miR-92a-3p increased the mRNA and protein levels of α­SMA, vimentin, and Col-1 but downregulated E-cadherin. Additionally, the protein and mRNA expression levels of KLF2 were significantly decreased in the lung tissues of BLM-treated mice, suggesting that KLF2 participated in the progression of BLM-induced PF. Downregulating miR-92a-3p upregulated the expression of KLF2 and inhibited the endothelial-to-mesenchymal transition (EndoMT) process, thus alleviating PF in vivo. Altogether, a miR-92a-3p deficiency could significantly reduce the development of myofibroblasts and ameliorate PF progression.

2.
Front Pharmacol ; 15: 1376638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659583

RESUMO

Introduction: One of the primary obstacles faced by individuals with advanced colorectal cancer (CRC) is the potential development of acquired chemoresistance as the disease advances. Studies have indicated a direct association between elevated levels of miR-92a-3p and the progression, metastasis, and chemoresistance observed in CRC. We proposed that miR-92a-3p impairs FOLFOX (fluorouracil/oxaliplatin) chemotherapy response by upregulating the expression of chemoresistance biomarker genes through the activation of ß-catenin and epithelial-mesenchymal transition (EMT). These FOLFOX biomarker genes include the pyrimidine biosynthesis pathway genes dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), and the genes encoding the DNA repair complexes subunits ERCC1 and ERCC2, and XRCC1. Methods: To assess this, we transfected SW480 and SW620 colon cancer cell lines with miR-92a-3p mimics and then quantified the expression of DPYD, TYMS, MTHFR, ERCC1, ERCC2, and XRCC1, the expression of EMT markers and transcription factors, and activation of ß-catenin. Results and discussion: Our results reveal that miR-92a-3p does not affect the expression of DPYD, TYMS, MTHFR, and ERCC1. Furthermore, even though miR-92a-3p affects ERCC2, XRCC1, E-cadherin, and ß-catenin mRNA levels, it has no influence on their protein expression. Conclusion: We found that miR-92a-3p does not upregulate the expression of proteins of DNA-repair pathways and other genes involved in FOLFOX chemotherapy resistance.

3.
Cell Stress Chaperones ; 29(3): 381-391, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582327

RESUMO

The role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes remains unclear. In this study, we explored the role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes and identified its target genes and signaling pathways. H9c2 cells were cultured with or without 100 mM ethanol for 24 h. The differential expression of miR-92a-3p was verified in H9c2 cells through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To manipulate the expression of miR-92a-3p, both a mimic and an inhibitor were transfected into H9c2 cells. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and apoptosis-related antibodies were used for apoptosis detection through flow cytometry and Western blotting, respectively. Target genes were verified through RT-qPCR, Western blotting, and double luciferase reporter gene assays. miR-92a-3p was significantly overexpressed in ethanol-stimulated H9c2 cardiomyocytes (P < 0.001). After ethanol stimulation, H9c2 myocardial cells exhibited increased apoptosis. The apoptosis rate was higher in the miR-92a-3p mimic group than in the control group. However, the apoptosis rate was lower in the miR-92a-3p inhibitor group than in the control group, indicating that miR-92a-3p promotes the ethanol-induced apoptosis of H9c2 myocardial cells. RT-qPCR and Western blotting revealed that the miR-92a-3p mimic and inhibitor significantly regulated the mRNA and protein expression levels of mitogen- and stress-activated protein kinase 2 and cyclic AMP-responsive element-binding protein 3-like protein 2 (CREB3L2), suggesting that miR-92a-3p promotes the apoptosis of H9c2 cardiomyocytes by inhibiting the MSK2/CREB/Bcl-2 pathway. Therefore, the apoptosis of H9c2 cardiomyocytes increases after ethanol stimulation, and miR-92a-3p can directly target MSK2 and CREB3L2, thereby promoting the ethanol-induced apoptosis of H9c2 myocardial cells.

4.
J. physiol. biochem ; 80(1): 189-204, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-EMG-576

RESUMO

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling. (AU)


Assuntos
Exossomos , Cicatrização , Proliferação de Células
5.
J. physiol. biochem ; 80(1): 189-204, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-229950

RESUMO

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling. (AU)


Assuntos
Exossomos , Cicatrização , Proliferação de Células
6.
Artigo em Inglês | MEDLINE | ID: mdl-38173217

RESUMO

OBJECTIVE: Cardiocerebrovascular disease is a severe threat to human health. Quercetin has a wide range of pharmacological effects such as antitumor and antioxidant. In this study, we aimed to determine how quercetin regulates mitochondrial function in H9c2 cells. METHODS: An H9c2 cell oxygen glucose deprivation/reoxygenation (OGD/R) model was constructed. The expression of miR-92a-3p and mitofusin 1 (Mfn1) mRNA in the cells was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the mitochondrial membrane potential of cells were examined by JC-1 staining. ATP production in the cells was detected using a biochemical assay. Mitochondrial morphological changes were observed using transmission electron microscopy. Detection of miR-92a-3p binding to Mfn1 was done using dual luciferase. Western blotting was used to detect the protein expression of Mfn1 in the cells. RESULTS: miR-92a-3p is essential in regulating cell viability, apoptosis, and tumor cell metastasis. OGD/R induced miR-92a-3p expression, decreased mitochondrial membrane potential and mitochondrial ATP production, and increased mitochondrial damage. Mitochondria are the most critical site for ATP production. Continued opening of the mitochondrial permeability transition pore results in an abnormal mitochondrial transmembrane potential. Both quercetin and inhibition of miR-29a-3p were able to downregulate miR-29a-3p levels, increase cell viability, mitochondrial membrane potential, and ATP levels, and improve mitochondrial damage morphology. Furthermore, we found that downregulation of miR-29a-3p upregulated the protein expression of Mfn1 in cells. Additionally, miR-92a-3p was found to bind to Mfn1 in a luciferase assay. miR- 29a-3p overexpression significantly inhibited the protein expression level of Mfn1. Quercetin treatment partially reversed the effects of miR-29a-3p overexpression in H9c2 cells. CONCLUSION: Quercetin promoted the recovery of mitochondrial damage in H9c2 cells through the miR-92a-3p/Mfn1 axis.

7.
J Bone Miner Metab ; 42(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38055109

RESUMO

INTRODUCTION: Osteoarthritis (OA) compromises patients' quality of life and requires further study. Although miR-92a-3p was reported to possess chondroprotective effects, the underlying mechanism requires further clarification. The objectives of this study were to elucidate the mechanism by which miR-92a-3p alleviates OA and to examine the efficacy of shRNA-92a-3p, which was designed based on mature miR-92a-3p. MATERIALS AND METHODS: TargetScan and luciferase reporter assay were used to predict the target of miR-92a-3p. Adipose-derived stem cells (ADSCs) were transfected with miR-92a-3p/miR-NC mimic for the analysis of chondrogenic biomarkers and SMAD proteins. ADSCs and osteoarthritic chondrocytes were transduced with shRNA-92a-3p for the analysis of chondrogenic biomarkers and SMAD proteins. OA was surgically induced in C57BL/6JJcl mice, and ADSCs with/without shRNA-92a-3p transduction were intra-articularly injected for the assessment of cartilage damage. RESULTS: SMAD6 and SMAD7 were predicted as direct targets of miR-92a-3p by TargetScan and luciferase reporter assay. Transfection of the miR-92a-3p mimic resulted in a decrease in SMAD6 and SMAD7 levels and an increase in phospho-SMAD2/3, phospho-SMAD1/5/9, SOX9, collagen type II, and aggrecan levels in ADSCs. Furthermore, shRNA-92a-3p decreased SMAD6 and SMAD7 levels, and increased phospho-SMAD2/3, phospho-SMAD1/5/9, SOX9, collagen type II, and aggrecan levels in ADSCs and osteoarthritic chondrocytes. Additionally, ADSC-shRNA-92a-3p-EVs reduced the rate of decrease of SOX9, collagen type II, and aggrecan in osteoarthritic chondrocytes. In mice with surgically induced OA, shRNA-92a-3p-treated ADSCs alleviated cartilage damage more effectively than nontreated ADSCs. CONCLUSIONS: miR-92a-3p and shRNA-92a-3p exhibit therapeutic effects in treating OA by targeting SMAD6 and SMAD7, thereby enhancing TGF-ß signaling.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Animais , Camundongos , Condrócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Colágeno Tipo II/metabolismo , Agrecanas/metabolismo , Qualidade de Vida , Camundongos Endogâmicos C57BL , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , Proteínas Smad/metabolismo , Biomarcadores/metabolismo , Luciferases/metabolismo , Luciferases/farmacologia , Proteína Smad6/metabolismo , Proteína Smad6/farmacologia
8.
J Physiol Biochem ; 80(1): 189-204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041784

RESUMO

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling.


Assuntos
Exossomos , MicroRNAs , Humanos , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Cicatrização , Queratinócitos/metabolismo , Proliferação de Células , Tecido Adiposo/metabolismo , Colágeno/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética
9.
Int J Nanomedicine ; 18: 7583-7603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106447

RESUMO

Introduction: Osteoporosis is a common bone disease in which the bone loses density and strength and is prone to fracture. Bone marrow mesenchymal stem cells (BMSCs) are important in bone-related diseases. Exosomes, as mediators of cell communication, have potential in cell processes. Previous studies have focused on muscle factors' regulation of bone remodeling, but research on exosomes is lacking. Methods:  In order to confirm the therapeutic effect of mechanically stimulated myocytes (C2C12) derived exosomes (Exosome-MS) on the Glucocorticoid-induced osteoporosis(GIOP) compared with unmechanically stimulated myocytes (C2C12) derived exosomes (Exosomes), we established a dexamethasone-induced osteoporosis model in vivo and in vitro. Cell viability and proliferation were assessed using CCK8 and EDU assays. Osteogenic potential was evaluated through Western blotting, real-time PCR, alkaline phosphatase activity assay, and alizarin red staining. Differential expression of miRNAs was determined by high-throughput sequencing. The regulatory mechanism of miR-92a-3p on cell proliferation and osteogenic differentiation via the PTEN/AKT pathway was investigated using real-time PCR, luciferase reporter gene assay, Western blotting, and immunofluorescence. The therapeutic effects of exosomes were evaluated in vivo using microCT, HE staining, Masson staining, and immunohistochemistry. Results:  In this study, we found that exosomes derived from mechanical stress had a positive impact on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs). Importantly, we demonstrated that miR-92a-3p mimics could reverse dexamethasone-induced osteoporosis in vitro and in vivo, indicating that mechanical stress-induced mouse myoblast-derived exosomes could promote osteogenesis and prevent the occurrence and progression of osteoporosis in mice through miR-92a-3p/PTEN/AKT signaling pathway. Conclusion:  Exosomes derived from mechanical stress-induced myoblasts can promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells through miR-92a-3p/PTEN/AKT signaling pathway, and can have a therapeutic effect on glucocorticoid-induced osteoporosis in mice in vivo.


Assuntos
Exossomos , MicroRNAs , Osteoporose , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glucocorticoides , Osteogênese , Exossomos/metabolismo , Estresse Mecânico , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/genética , Dexametasona/farmacologia
11.
J Pers Med ; 13(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511774

RESUMO

Circulating serum miRNA are increasingly used as biomarkers and potential treatment targets in several clinical scenarios, including cardiovascular diseases. However, the current data on circulating miRNA in thoracic aorta aneurism (TAA) patients are inconclusive. The aim of the present study is to compare the levels of several circulating miRNA in patients with degenerative TAA, coronary artery disease (CAD), and controls for special profile identification. We have identified several candidates for the role of new biomarkers: miR-143-3p, miR-181-5p, miR-126-3p, miR-126-5p, miR-145-5p, miR-150-5p, and miR-195-5p. MATERIALS AND METHODS: Serum samples of 100 patients were analyzed, including 388 TAA patients scheduled for elective surgery, 67 patients with stable CAD and 17 controls, were used for miRNA isolation and identification. RESULTS: More specific for TAA with very high predictive ability in ROC analysis was an increase in the levels of miR-21-5p, miR-29b-5p, miR-126-5p/-3p, miR-181b-5p, and miR-92a-3p, with the latter microRNA being investigated as a novel potential marker of TAA for the first time. CONCLUSION: TAA and CAD patients demonstrated a significant increase in the levels of circulating miR-126-5p/-3p, miR-181b-5p, and miR-29b-3p. More specific for TAA with very high predictive ability in ROC analysis was an increase in the levels of miR-21-5p, -29b-5p, -126-5p/-3p, 181b-5p, and -92a-3p, with the latter microRNA being investigated as a potential marker of TAA for the first time.

12.
Immun Inflamm Dis ; 11(4): e819, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37102653

RESUMO

BACKGROUND: Acute pancreatitis (AP) is an inflammatory disease with high mortality. Previous study has suggested that circular RNAs are dysregulated and involved in the regulation of inflammatory responses in AP. This study aimed to investigate the function and regulatory mechanism underlying mmu_circ_0000037 in caerulein-induced AP cellular model. METHODS: Caerulein-treated MPC-83 cells were used as an in vitro cellular model for AP. The expression levels of mmu_circ_0000037, microRNA (miR)-92a-3p, and protein inhibitor of activated STAT1 (Pias1) were detected by quantitative real-time polymerase chain reaction. Cell viability, amylase activity, apoptosis, and inflammatory response were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Amylase Assay Kit, flow cytometry, and enzyme-linked immunosorbent assays. The protein level was quantified by western blot analysis. The target interaction between miR-92a-3p and mmu_circ_0000037 or Pias1 were predicted by StarbaseV3.0 and validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS: Mmu_circ_0000037 and Pias1 levels were decreased, whereas miR-92a-3p expression was elevated in caerulein-induced MPC-83 cells. Overexpression of mmu_circ_0000037 protected MPC-83 cells from caerulein-induced the decrease of cell viability, as well as the promotion of amylase activity, apoptosis and inflammation. MiR-92a-3p was targeted by mmu_circ_0000037, and miR-92a-3p overexpression rescued the effect of mmu_circ_0000037 on caerulein-induced MPC-83 cell injury. Pias1 was confirmed as a target of miR-92a-3p and mmu_circ_0000037 regulated the expression of Pias1 by sponging miR-92a-3p. CONCLUSION: Mmu_circ_0000037 relieves caerulein-induced inflammatory injury in MPC-83 cells by targeting miR-92a-3p/Pias1 axis, providing a theoretical basis for the treatment of AP.


Assuntos
MicroRNAs , Pancreatite , Proteínas Inibidoras de STAT Ativados , RNA Circular , Humanos , Doença Aguda , Amilases , Ceruletídeo/toxicidade , MicroRNAs/genética , Pancreatite/induzido quimicamente , Pancreatite/genética , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , RNA Circular/genética
13.
Environ Toxicol ; 38(6): 1420-1430, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988267

RESUMO

Hydroquinone (HQ), one of the metabolites of benzene in humans, has significant hepatotoxic properties. Chronic exposure to HQ can lead to leukemia. In a previous study by this group, we constructed a model of malignant transformation of human lymphoblastoid cells (TK6) induced by chronic exposure to HQ with significant subcutaneous tumorigenic capacity in nude mice. miR-92a-3p is a tumor factor whose role in HQ-induced malignant transformation is not yet clear. In the present study, raw signal analysis and dual-luciferase reporter gene results suggested that miR-92a-3p could target and regulate TOB1, and the expression level of miR-92a-3p was significantly upregulated in the long-term HQ-induced TK6 malignant transformation model, while the anti-proliferative factor TOB1 was significantly downregulated. To investigate the mechanism behind this, we inhibited miR-92a-3p in a malignant transformation model and found a decrease in cell viability, a decrease in MMP-9 protein levels, a G2/M phase block in the cell cycle, and an upregulation of the expression of G2/M phase-related proteins cyclinB1 and CDK1. Inhibition of miR-92a-3p in combination with si-TOB1 restored cell viability, inhibited cyclin B1 and CDK1 protein levels, and attenuated the G2/M phase block. Taken together, miR-92a-3p reduced the cell proliferation rate of HQ19 and caused cell cycle arrest by targeting TOB1, which in turn contributed to the altered malignant phenotype of the cells. This study suggests that miR-92a-3p is likely to be a biomarker for long-term HQ-induced malignant transformation of TK6 and could be a potential therapeutic target for leukemia caused by long-term exposure to HQ.


Assuntos
Leucemia , MicroRNAs , Animais , Camundongos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Hidroquinonas/toxicidade , Camundongos Nus , Divisão Celular , Apoptose/genética
14.
Funct Integr Genomics ; 23(2): 93, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941394

RESUMO

Based on the recently added high throughput analysis data on small noncoding RNAs in modulating disease pathophysiology of malaria, we performed an integrative computational analysis for exploring the role of human-host erythrocytic microRNAs (miRNAs) and their influence on parasite survival and host homeostasis. An in silico analysis was performed on transcriptomic datasets accessed from PlasmoDB and Gene Expression Omnibus (GEO) repositories analyzed using miRanda, miRTarBase, mirDIP, and miRDB to identify the candidate miRNAs that were further subjected to network analysis using MCODE and DAVID. This was followed by immune infiltration analysis and screening for RNA degradation mechanisms. Seven erythrocytic miRNAs, miR-451a, miR-92a-3p, miR-16-5p, miR-142-3p, miR-15b-5p, miR-19b-3p, and miR-223-3p showed favourable interactions with parasite genes expressed during blood stage infection. The miR-92a-3p that targeted the virulence gene PfEMP1 showed drastic reduction during infection. Performing pathway analysis for the human-host gene targets for the miRNA identified TOB1, TOB2, CNOT4, and XRN1 genes that are associated to RNA degradation processes, with the exoribonuclease XRN1, highly enriched in the malarial samples. On evaluating the role of exoribonucleases in miRNA degradation further, the pattern of Plasmodium falciparum_XRN1 showed increased levels during infection thus suggesting a defensive role for parasite survival. This study identifies miR-92a-3p, a member of C13orf25/ miR-17-92 cluster, as a novel miRNA inhibitor of the crucial parasite genes responsible for symptomatic malaria. Evidence for a plausible link to chromosome 13q31.3 loci controlling the epigenetic disease regulation is also suggested.


Assuntos
Malária , MicroRNAs , Proteínas de Protozoários , Humanos , Eritrócitos/metabolismo , Perfilação da Expressão Gênica , Malária/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma , Proteínas de Protozoários/metabolismo , Plasmodium falciparum
15.
J Cell Mol Med ; 27(6): 788-802, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36811277

RESUMO

Pancreatic cancer (PAAD) is a highly malignant tumour characterized of high mortality and poor prognosis. Huntingtin-interacting protein 1-related (HIP1R) has been recognized as a tumour suppressor in gastric cancer, while its biological function in PAAD remains to be elucidated. In this study, we reported the downregulation of HIP1R in PAAD tissues and cell lines, and the overexpression of HIP1R suppressed the proliferation, migration and invasion of PAAD cells, while silencing HIP1R showed the opposite effects. DNA methylation analysis revealed that the promoter region of HIP1R was heavily methylated in PAAD cell lines when compared to the normal pancreatic duct epithelial cells. A DNA methylation inhibitor 5-AZA increased the expression of HIP1R in PAAD cells. 5-AZA treatment also inhibited the proliferation, migration and invasion, and induced apoptosis in PAAD cell lines, which could be attenuated by HIP1R silencing. We further demonstrated that HIP1R was negatively regulated by miR-92a-3p, which modulates the malignant phenotype of PAAD cells in vitro and the tumorigenesis in vivo. The miR-92a-3p/HIP1R axis could regulate PI3K/AKT pathway in PAAD cells. Taken together, our data suggest that targeting DNA methylation and miR-92a-3p-mediated repression of HIP1R could serve as novel therapeutic strategies for PAAD treatment.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Metilação de DNA , Fosfatidilinositol 3-Quinases/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas dos Microfilamentos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Pancreáticas
16.
Reprod Sci ; 30(7): 2188-2197, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36650372

RESUMO

Endometriosis (EMS) is an estrogen-dependent disease. However, little is known about the regulation of estrogen, a potential therapeutic target, in EMS, which remains very poorly managed in the clinic. We hypothesized that microRNAs (miRNAs) can be exploited therapeutically to regulate transcription factor 21 (TCF21) and steroidogenic factor-1 (SF-1) gene expression. In our study, paired eutopic and ectopic endometrial samples were obtained from women with EMS and processed by a standard protocol to obtain human endometrial stromal cells (EMs) for in vitro studies. We found that miR-92a-3p levels were decreased in ectopic endometrium and ectopic stromal cells (ESCs) compared with paired eutopic lesions. miR-92a-3p overexpression significantly suppressed the proliferation and migration of ESCs, whereas a decreased level of miR-92a-3p generated the opposite results. Next, we identified TCF21 as a candidate target gene of miR-92a-3p. In vitro cell experiments showed that miR-92a-3p negatively regulated the expression of TCF21 and its downstream target gene SF-1. Moreover, cell proliferation and invasion ability decreased after the silencing of SF-1 and increased after SF-1 overexpression. We also observed that silencing SF-1 while inhibiting miR-92a-3p partially blocked the increase in cell proliferation and invasion ability caused by miR-92a-3p knockdown while overexpressing both SF-1 and miR-92a-3p mitigated the impairment in cell proliferation and invasion ability caused by miR-92a-3p overexpression. Our results may provide a novel potential therapeutic target for the treatment of EMS.


Assuntos
Endometriose , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Endometriose/metabolismo , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Proliferação de Células/genética , Estrogênios , Fatores de Transcrição Hélice-Alça-Hélice Básicos
17.
Brain Res Bull ; 195: 14-24, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36638871

RESUMO

BACKGROUND: Silencing of miR-92a-3p may be beneficial in relieving depression of chronically stressed rats. The level of kruppel-like factor 2 (KLF2) was increased in the striatum of depressed rats after ketamine treatment. Enriched environment (EE) ameliorated depression-like behaviors in rats. However, the specific mechanism of EE treatment on depression induced by chronic unpredictable mild stress (CUMS) remains unclear. METHODS: After CUMS-induced male Sprague Dawley rats were treated under EE or/and Adeno-Associated Virus (AAV)-miR-92a-3p, depression-like behaviors, cognitive ability, dendritic spine density, as well as levels of miR-92a-3p and KLF2 were detected by the behavioral tests, morris water maze test, Golgi staining, and quantitative real-time polymerase chain reaction (qRT-PCR) as needed. The body weight of rats was also measured. Next, primary hippocampal neurons were cultivated. The targeting relationship between miR-92a-3p and KLF2 was analyzed by TargetScan v7.2 and dual-luciferase reporter assay. After hippocampal neurons were transfected with miR-92a-3p mimic or/and overexpressed KLF2 vector, the cell viability, and apoptosis, together with the levels of KLF2, brain-derived neurotrophic factor (BDNF), phosphorylated (p)-tropomysin related kinase B (p-TrkB) and TrkB were determined by MTT assay, flow cytometry, qRT-PCR, and western blot as needed. RESULTS: EE ameliorated CUMS-induced depression-like behaviors and cognitive ability, and elevated the neuronal dendritic spine density and KLF2 level, but reduced miR-92a-3p level in hippocampal tissues, while the above effects were reversed by AAV-miR-92a-3p. MiR-92a-3p mimic restrained cell viability, along with p-TrkB/ TrkB and BDNF levels, but promoted apoptosis in hippocampal neurons, which were reversed by overexpressed KLF2. CONCLUSION: EE ameliorates CUMS-induced depression-like symptoms in rats via regulating the miR-92a-3p/KLF2 pathway.


Assuntos
MicroRNAs , Ratos , Masculino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fatores de Transcrição , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
18.
Physiol Genomics ; 55(1): 1-15, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314369

RESUMO

Long noncoding RNA (lncRNA) cardiac mesoderm enhancer-associated noncoding RNA (CARMN) is a newly discovered tumor-suppressor lncRNA in cancers. However, its role in cervical cancer (CC) remains elusive. This study was conducted to analyze the molecular mechanism of CARMN in CC cell growth and provide a novel theoretical basis for CC treatment. RT-qPCR and clinical analysis revealed that CARMN and B-cell translocation gene 2 (BTG2) were downregulated, whereas miR-92a-3p was upregulated in CC tissues and cells and their expressions were correlated with clinicopathological characteristics and prognosis. MTT assay, flow cytometry, and Transwell assays revealed that CARMN overexpression reduced proliferation, migration, and invasion and increased apoptosis rate in CC cells. Mechanically, CARMN repressed miR-92a-3p to promote BTG2 transcription. Functional rescue assays revealed that miR-92a-3p overexpression or BTG2 downregulation reversed the inhibitory role of CARMN overexpression in CC cell growth. Western blot analysis elicited that Wnt3a and ß-catenin were elevated in CC cells and CARMN blocked the Wnt/ß-catenin signaling pathway via the miR-92a-3p/BTG2 axis. Overall, our findings demonstrated that CARMN repressed miR-92a-3p to upregulate BTG2 transcription and then blocked the Wnt/ß-catenin signaling pathway, thereby suppressing CC cell growth.


Assuntos
Proteínas Imediatamente Precoces , MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Via de Sinalização Wnt , Feminino , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Imediatamente Precoces/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Supressoras de Tumor/genética , Neoplasias do Colo do Útero/genética , Via de Sinalização Wnt/genética
19.
Genes (Basel) ; 15(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38254947

RESUMO

The quality of lamb meat is positively correlated with intramuscular fat content. In recent years, a large number of studies have shown that miRNAs play an important role in the proliferation and differentiation of adipocytes. In this study, we aimed to explore the effect of miR-92a-3p on the differentiation of goat intramuscular preadipocytes. The results showed that the expression level of miR-92a-3p was low in the early stage of differentiation, reached the highest level on the third day of differentiation, and then decreased. And miR-92a-3p can inhibit the accumulation of lipid droplets and down-regulate the determinants of adipogenic differentiation. Mechanistically, by predicting target genes, we found that miR-92a-3p affects the differentiation of goat intramuscular preadipocytes and the accumulation of lipid droplets by regulating the expression of goat gene APOL6. This study provides important new information to better understand the relationship between miRNAs and the differentiation of goat intramuscular preadipocytes, thus providing a new reference for goat intramuscular adipogenesis.


Assuntos
Cabras , MicroRNAs , Animais , Adipócitos , Adipogenia/genética , Cabras/genética , Gotículas Lipídicas , MicroRNAs/genética
20.
Thorac Cancer ; 13(21): 2992-3000, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36100919

RESUMO

BACKGROUND: Breast cancer remains the most common malignancy in females around the world. Recently, a growing number of studies have focused on gene dysregulation. In our previous study, Krüppel-like factors (KLFs) were found to play essential roles in breast cancer development, among which KLF2 could function as a tumor suppressor. Nevertheless, the underlying molecular mechanism remains unclear. METHODS: miR-92a-3p was identified as the upstream regulator of KLF2 by starBase v.3.0. The regulation of KLF2 by miR-92a-3p was verified by a series of in vitro and in vivo assays. Further exploration revealed that Baculoviral IAP Repeat Containing 5 (BIRC5) was the target of KLF2. ChIP assay, dual-luciferase reporter analysis, quantitative real-time PCR, and western blot were performed for verification. RESULTS: miR-92a-3p functioned as a tumor promoter by inhibiting KLF2 by binding to its 3'-untranslated region (3'-UTR). In addition, KLF2 could transcriptionally suppress the expression of BIRC5. CONCLUSION: Collectively, our results uncovered the miR-92a-3p/KLF2/BIRC5 axis in breast cancer and provided a potential mechanism for breast cancer development, which may serve as promising strategies for breast cancer therapy.


Assuntos
Neoplasias da Mama , Fatores de Transcrição Kruppel-Like , MicroRNAs , Survivina , Feminino , Humanos , Regiões 3' não Traduzidas , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Survivina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...