Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
Toxicology ; 450: 152686, 2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33486071

RESUMO

6-Hydroxydopamine (6-OHDA) is a neurotoxin that destroy dopaminergic neurons and widely used to establish animal models of Parkinson's disease. Prostaglandins (PGs) are involved in various cellular processes, including the damage and repair of neuronal cells. However, the function of PGF2α in neuronal cells remains unclear. In this study, we investigated the effects of PGF2α against 6-OHDA-mediated toxicity in human neuroblastoma SH-SY5Y cells and elucidated its underlying molecular mechanism. When the cells were treated with 6-OHDA (50 µM) for 6 h, the expression levels of PGF2α synthetic enzymes; cyclooxygenase-2 and aldo-keto reductase 1C3 as PGF2α synthase were enhanced in an incubation-time-dependent manner. In addition, the production of PGF2α was increased in 6-OHDA-treated cells. Fluprostenol, a PGF2α receptor (FP) agonist (500 nM), suppressed 6-OHDA-induced cell death by decreasing the production of reactive oxygen species (ROS) and increasing the expression of the anti-oxidant genes. These fluprostenol-mediated effects were inhibited by co-treatment with AL8810, an FP receptor antagonist (1 µM) or transfection with FP siRNA (20 nM). Moreover, 6-OHDA-induced phosphorylation of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase family, was inhibited by co-incubation with AL8810. Furthermore, fluprostenol itself enhanced ERK phosphorylation and further elevated the 6-OHDA-induced phosphorylation of ERK. In addition, 6-OHDA induced nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), activating anti-oxidant gene expression, was repressed by co-culturing with AL8810. These results indicate that PGF2α suppressed 6-OHDA-induced neuronal cell death by enhancing anti-oxidant gene expression via the FP receptor-ERK-Nrf2 signaling. Thus, FP receptor is a potential target for inhibition of ROS-mediated neuronal cell death.


Assuntos
Dinoprosta/biossíntese , Sistema de Sinalização das MAP Quinases/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Neuroproteção/fisiologia , Oxidopamina/toxicidade , Receptores de Prostaglandina/metabolismo , Adrenérgicos/toxicidade , Linhagem Celular Tumoral , Dinoprosta/agonistas , Relação Dose-Resposta a Droga , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Prostaglandinas F Sintéticas/farmacologia
2.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585871

RESUMO

The movement disorder Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and is associated with aging, the environment, and genetic factors. The intracellular aggregation of α-synuclein and the loss of dopaminergic neurons in the substantia nigra pars compacta are the pathological hallmark of PD. At present, there is no successful treatment for PD. Maackiain (MK) is a flavonoid extracted from dried roots of Sophora flavescens Aiton. MK has emerged as a novel agent for PD treatment that acts by inhibiting monoamine oxidase B. In this study, we assessed the neuroprotective potential of MK in Caenorhabditis elegans and investigated possible mechanism of this neuroprotection in the human SH-SY5Y cell line. We found that MK significantly reduced dopaminergic neuron damage in 6-hydroxydopamine (6-OHDA)-exposed worms of the BZ555 strain, with corresponding improvements in food-sensing behavior and life-span. In transgenic worms of strain NL5901 treated with 0.25 mM MK, the accumulation of α-synuclein was diminished by 27% (p < 0.01) compared with that in untreated worms. Moreover, in worms and the SH-SY5Y cell line, we confirmed that the mechanism of MK-mediated protection against PD pathology may include blocking apoptosis, enhancing the ubiquitin-proteasome system, and augmenting autophagy by increasing PINK1/parkin expression. The use of small interfering RNA to downregulate parkin expression in vivo and in vitro could reverse the benefits of MK in PD models. MK may have considerable therapeutic applications in PD.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Proteínas Quinases/metabolismo , Pterocarpanos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/toxicidade , Adrenérgicos/toxicidade , Animais , Apoptose , Autofagia , Caenorhabditis elegans/crescimento & desenvolvimento , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/etiologia , Neuroblastoma/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
3.
J Physiol Sci ; 70(1): 16, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32160868

RESUMO

Respiratory disturbances present in Parkinson's disease (PD) are not well understood. Thus, studies in animal models aimed to link brain dopamine (DA) deficits with respiratory impairment are needed. Adult Wistar rats were lesioned with injection of 6-hydroxydopamine (6-OHDA) into the third cerebral ventricle. Two weeks after hypoxic test was performed in whole-body plethysmography chamber, phrenic (PHR) and hypoglossal (HG) nerve activities were recorded in normoxic and hypoxic conditions in anesthetized, vagotomized, paralyzed and mechanically ventilated rats. The effects of activation and blockade of dopaminergic carotid body receptors were investigated during normoxia in anesthetized spontaneously breathing rats. 6-OHDA injection affected resting respiratory pattern in awake animals: an increase in tidal volume and a decrease in respiratory rate had no effect on minute ventilation. Hypoxia magnified the amplitude and minute activity of the PHR and HG nerve of 6-OHDA rats. The ratio of pre-inspiratory to inspiratory HG burst amplitude was reduced in normoxic breathing. Yet, the ratio of pre-inspiratory time to total time of the respiratory cycle was increased during normoxia. 6-OHDA lesion had no impact on DA and domperidone effects on the respiratory pattern, which indicate that peripheral DA receptors are not affected in this model. Analysis of monoamines confirmed substantial striatal depletion of dopamine, serotonin and noradrenaline (NA) and reduction of NA content in the brainstem. In bilateral 6-OHDA model changes in activity of both nerves: HG (linked with increased apnea episodes) and PHR are present. Demonstrated respiratory effects could be related to specific depletion of DA and NA.


Assuntos
Encéfalo/fisiopatologia , Nervo Hipoglosso/fisiopatologia , Hipóxia/fisiopatologia , Doença de Parkinson Secundária/fisiopatologia , Doença de Parkinson/fisiopatologia , Nervo Frênico/fisiopatologia , Adrenérgicos/toxicidade , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Hipóxia/metabolismo , Masculino , Norepinefrina/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Ratos , Ratos Wistar , Respiração
4.
Neuropharmacology ; 162: 107829, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31666199

RESUMO

Parkinson's disease (PD) is characterized by progressive loss of midbrain dopaminergic neurons and treated with the dopamine precursor, 3,4-dihydroxy-l-phenylalanine (L-DOPA). Prolonged L-DOPA treatment is however associated with waning efficacy and the induction of L-DOPA induced dyskinesia (LID). GPR88 is an orphan G-protein Coupled Receptor (GPCR) expressed in dopaminoceptive striatal medium spiny neurons (MSNs) and their afferent corticostriatal glutamatergic neurons. Here, we studied the role of GPR88 in experimental parkinsonism and LID. Chronic L-DOPA administration to male GPR88 KO mice, subjected to unilateral 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle, resulted in more rotations than in their WT counterparts. Conversely, GPR88 KO mice had a lower abnormal involuntary movements (AIMs) score. These behavioral responses were accompanied by altered transcription of L-DOPA upregulated genes in lesioned GPR88 KO compared to WT striata. In accordance with a role for serotonin neurons in LID development, WT but not GPR88 KO striata exhibited 5-hydroxytryptamine displacement upon repeated L-DOPA treatment. Intact male GPR88 KO mice showed diminished tacrine-induced PD-like tremor and spontaneous hyperlocomotion. Dopamine and its metabolites were not increased in male GPR88 KO mice, but biosensor recordings revealed increased spontaneous/basal and evoked glutamate release in striata of male GPR88 KO mice. In conclusion, genetic deletion of GPR88 promotes l-DOPA-induced rotation and spontaneous locomotion yet suppresses the induction of LIDs and also reduces tremor. These data provide behavioral, neurochemical and molecular support that GPR88 antagonism may favour motor relief in PD patients without aggravating the induction of motor side effects.


Assuntos
Antiparkinsonianos/farmacologia , Corpo Estriado/metabolismo , Discinesia Induzida por Medicamentos/genética , Levodopa/farmacologia , Locomoção/efeitos dos fármacos , Movimento/efeitos dos fármacos , Transtornos Parkinsonianos/genética , Receptores Acoplados a Proteínas G/genética , Adrenérgicos/toxicidade , Animais , Inibidores da Colinesterase/toxicidade , Corpo Estriado/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/metabolismo , Discinesia Induzida por Medicamentos/fisiopatologia , Neurônios GABAérgicos , Ácido Glutâmico/metabolismo , Locomoção/genética , Masculino , Feixe Prosencefálico Mediano , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Serotonina/metabolismo , Tacrina/toxicidade , Tremor
5.
Neurosci Lett ; 714: 134567, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629033

RESUMO

Emerging evidence continues to demonstrate that disrupted insulin signaling and altered energy metabolism may play a key role underpinning pathology in neurodegenerative conditions. Intranasally administered insulin has already shown promise as a memory-enhancing therapy in patients with Alzheimer's and animal models of the disease. Intranasal drug delivery allows for direct targeting of insulin to the brain, bypassing the blood brain barrier and minimizing systemic adverse effects. In this study, we sought to expand upon previous results that show intranasal insulin may also have promise as a Parkinson's therapy. We treated 6-OHDA parkinsonian rats with a low dose (3 IU/day) of insulin and assessed apomorphine induced rotational turns, motor deficits via a horizontal ladder test, and dopaminergic cell survival via stereological counting. We found that insulin therapy substantially reduced motor dysfunction and dopaminergic cell death induced by unilateral injection of 6-OHDA. These results confirm insulin's efficacy within this model, and do so over a longer period after model induction which more closely resembles Parkinson's disease. This study also employed a lower dose than previous studies and utilizes a delivery device, which could lead to an easier transition into human clinical trials as a therapeutic for Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/fisiopatologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Administração Intranasal , Adrenérgicos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Movimento/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/patologia , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Oxid Med Cell Longev ; 2019: 8169125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827703

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and there is no cure for it at present. We have previously reported that the tetramethylpyrazine (TMP) derivative T-006 exhibited beneficial effects in Alzheimer's disease (AD) models. However, its effect on PD remains unclear. In the present study, we investigated the neuroprotective effects and underlying mechanisms of T-006 against 6-hydroxydopamine- (6-OHDA-) induced lesions in in vivo and in vitro PD models. Our results demonstrated that T-006 alleviated mitochondrial membrane potential loss and restored the energy metabolism and mitochondrial biogenesis that were induced by 6-OHDA in PC12 cells. In addition, animal experiments showed that administration of T-006 significantly attenuated the 6-OHDA-induced loss of tyrosine hydroxylase- (TH-) positive neurons in the SNpc, as well as dopaminergic nerve fibers in the striatum, and also increased the concentration of dopamine and its metabolites (DOPAC, HVA) in the striatum. Functional deficits were restored following T-006 treatment in 6-OHDA-lesioned mice, as demonstrated by improved motor coordination and rotational behavior. In addition, we found that the neuroprotective effects of T-006 were mediated, at least in part, by the activation of both the PKA/Akt/GSK-3ß and CREB/PGC-1α/NRF-1/TFAM pathways. In summary, our findings demonstrate that T-006 could be developed as a novel neuroprotective agent for PD, and the two pathways might be promising therapeutic targets for PD.


Assuntos
Adrenérgicos/toxicidade , Modelos Animais de Doenças , Hidrazonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Doença de Parkinson/prevenção & controle , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Biogênese de Organelas , Consumo de Oxigênio/efeitos dos fármacos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
7.
Exp Neurol ; 322: 113036, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31425688

RESUMO

The pathophysiology of Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) is associated with aberrant neuronal activity and abnormal high levels of oscillatory activity and synchronization in several basal ganglia nuclei and the cortex. Previously, we have shown that the firing activity of neurons in the substantia nigra pars reticulata (SNr) is relevant in dyskinesia and may be driven by subthalamic nucleus (STN) hyperactivity. Conversely, low frequency oscillatory activity and synchronization in these structures seem to be more important in PD because they are not influenced by prolonged L-DOPA administration. The aim of the present study was to assess (through single-unit extracellular recording techniques under urethane anaesthesia) the neuronal activity of the entopeduncular nucleus (EPN) and its relationship with LID and STN hyperactivity, together with the oscillatory activity and synchronization between these nuclei and the cerebral cortex in 6-OHDA-lesioned rats that received long term L-DOPA treatment (or not). Twenty-four hours after the last L-DOPA injection the firing activity of EPN neurons in long term L-DOPA treated 6-OHDA-lesioned rats was more irregular and bursting compared to sham rats, being those alterations partially reversed by the acute challenge of L-DOPA. No correlation between EPN neurons firing activity and abnormal involuntary movements score was found. However, there was a significant correlation between the firing activity parameters of EPN and STN neurons recorded from long term L-DOPA treated 6-OHDA-lesioned rats. Low frequency oscillatory activity and synchronization both within the EPN and with the cerebral cortex were enhanced in 6-OHDA-lesioned animals. These changes were reversed by the acute L-DOPA challenge only in long term L-DOPA treated 6-OHDA-lesioned rats. Altogether, these results obtained from long term L-DOPA treated 6-OHDA-lesioned rats suggest (1) a likely relationship between STN and EPN firing patterns and spiking phases induced by changes after prolonged L-DOPA administration and (2) that the effect of L-DOPA on the firing pattern, low frequency oscillatory activity and synchronization in the EPN may have a relevant role in LID.


Assuntos
Discinesia Induzida por Medicamentos/fisiopatologia , Núcleo Entopeduncular/efeitos dos fármacos , Núcleo Entopeduncular/fisiopatologia , Levodopa/farmacologia , Transtornos Parkinsonianos/fisiopatologia , Adrenérgicos/toxicidade , Animais , Antiparkinsonianos/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/fisiopatologia
8.
Neuropharmacology ; 158: 107725, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31351976

RESUMO

Selective blockade of serotonin 2A (5-HT2A) receptors is a promising strategy to reduce L-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia and has shown efficacy in a Phase III clinical trial for dopaminergic psychosis in Parkinson's disease (PD). However, pre-clinical and clinical evidence suggest that, while this approach may be effective and well tolerated, there might be a ceiling beyond which no further therapeutic benefit might be achieved. There is mounting evidence that 5-HT2A receptors form a functional hetero-complex with metabotropic glutamate 2 (mGlu2) receptors, with antagonism of 5-HT2A receptors and activation of mGlu2 receptors producing similar effects on the Gi/Gq signalling ratio at the intra-cellular level. Based on this interaction between 5-HT2A and mGlu2 receptors, we hypothesised that activation of mGlu2 receptors would alleviate dyskinesia and psychosis in PD. LY-354,740 is a selective mGlu2/3 orthosteric agonist that was previously tested in the clinic. In experiments conducted in the 6-hydroxydopamine (6-OHDA)-lesioned rat and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset, we found that mGlu2/3 activation with LY-354,740 significantly reduced the expression of dyskinesia and psychosis-like behaviours, while simultaneously enhancing l-DOPA therapeutic benefit. Moreover, mGlu2/3 activation with LY-354,740 attenuated the development of dyskinesia. These data indicate that activation of mGlu2/3 receptors is a therapeutic strategy that may provide relief for both motor and-non-motor treatment-related complications in PD.


Assuntos
Antiparkinsonianos/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos com Pontes/farmacologia , Discinesia Induzida por Medicamentos/etiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Levodopa/efeitos adversos , Transtornos Parkinsonianos/tratamento farmacológico , Psicoses Induzidas por Substâncias/etiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Adrenérgicos/toxicidade , Animais , Compostos Bicíclicos com Pontes/uso terapêutico , Callithrix , Dopaminérgicos/toxicidade , Discinesia Induzida por Medicamentos/tratamento farmacológico , Agonistas de Aminoácidos Excitatórios/uso terapêutico , Intoxicação por MPTP/tratamento farmacológico , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Psicoses Induzidas por Substâncias/tratamento farmacológico , Ratos , Receptores de Glutamato Metabotrópico/agonistas
9.
Toxicol In Vitro ; 60: 400-411, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31247335

RESUMO

Neuronal exposure to 6-hydroxydopamine (6-OHDA), a hydroxylated analog of dopamine, constitutes a very useful strategy for studying the molecular events associated with neuronal death in Parkinson's disease. 6-OHDA increases oxidant levels and impairs mitochondrial respiratory chain, thus promoting neuronal injury and death. Despite the extensive use of 6-OHDA in animal models, the exact molecular events triggered by this neurotoxicant at the neuronal level have not been yet fully understood. Human IMR-32 neuroblastoma cells exposed to increasing concentrations of 6-OHDA displayed high levels of reactive oxygen species and increased plasma membrane permeability with concomitant cell viability diminution. As part of the neuronal response to 6-OHDA exposure, the nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) p65 subunit was observed. NFκB nuclear localization was also accompanied by an increase of IκB phosphorylation as well as a rise in cyclooxygenase-2 (COX-2) and the prostaglandin receptor, EP4, mRNA levels. Even though the canonical pathways participating in the modulation of NFκB have been extensively described, here we tested the hypothesis that 6-OHDA-induced injury can activate lipid signaling and, in turn, modulate the transcriptional response. 6-OHDA challenge triggered the activation of lipid signaling pathways and increased phosphatidic acid (PA), diacylglycerol and free fatty acid levels in human neuroblastoma cells. The inhibition of PA production was able to prevent the decrease in cell viability triggered by 6-OHDA, the nuclear translocation of NFκB p65 subunit and the rise in COX-2 mRNA expression. Our results indicate that the onset of the inflammatory process triggered by 6-OHDA involves the activation of PA signaling that, in turn, governs NFκB subcellular localization and COX-2 expression.


Assuntos
Adrenérgicos/toxicidade , NF-kappa B/metabolismo , Oxidopamina/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Dopamina/metabolismo , Humanos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas , Receptores de Prostaglandina E Subtipo EP4/genética
10.
Neuropharmacology ; 151: 98-111, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959019

RESUMO

Noradrenergic degeneration in the locus coeruleus (LC) seems a convergent neuropathological marker of different neurodegenerative diseases. Herein, we investigated the temporal development of apoptotic signaling activation in the LC, noradrenergic dysfunction and behavioral impairments in rats following the noradrenergic lesion of the LC. For this purpose, the dopamine reuptake inhibitor nomifensine was administered 1 h before the stereotaxic bilateral injections of 6-hydroxydopamine (6-OHDA; 5, 10 or 20 µg/hem) into the LC. The behavioral and neurochemical analyses were performed at 7, 21 and 42 days after 6-OHDA injections. All doses of 6-OHDA induced neuronal death in LC, but only the highest dose (20 µg/hem) disrupted the motor function. 6-OHDA (5 µg/hem) injection induced short-term memory deficits in all periods, olfactory discrimination and long-term memory impairments at 7 days, and depressive-like behaviors at 21 and 42 days after injection. Moreover, 6-OHDA infusion increased Bax/Bcl2 ratio and caspase 3 levels, and decreased the dopamine ß-hydroxylase immunocontent in the LC. Noradrenergic neurotransmission dysfunction was observed in the LC, olfactory bulb, prefrontal cortex, hippocampus and striatum. The intranasal (i.n.) noradrenaline (NA) infusion restored the impairments in the olfactory discrimination, short-term memory and depressive-like behavior of 6-OHDA-lesioned rats. In addition, these effects were blocked by the prior i.n. infusion of the ß3-adrenergic receptor antagonist SR59230A. These findings indicate that the 6-OHDA injection into the LC induced the apoptosis signaling activation, noradrenergic neurotransmission dysfunction and behavioral impairments that were restored via ß3-adrenergic receptors activation mediated by the i.n. NA administration.


Assuntos
Adrenérgicos/toxicidade , Neurônios Adrenérgicos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Oxidopamina/toxicidade , Receptores Adrenérgicos beta 3/metabolismo , Animais , Discriminação Psicológica/efeitos dos fármacos , Modelos Animais de Doenças , Locus Cerúleo/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Fatores de Tempo
11.
Mov Disord ; 34(5): 697-707, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31002755

RESUMO

BACKGROUND: Levodopa-induced dyskinesias are an often debilitating side effect of levodopa therapy in Parkinson's disease. Although up to 90% of individuals with PD develop this side effect, uniformly effective and well-tolerated antidyskinetic treatment remains a significant unmet need. The pathognomonic loss of striatal dopamine in PD results in dysregulation and disinhibition of striatal CaV1.3 calcium channels, leading to synaptopathology that appears to be involved in levodopa-induced dyskinesias. Although there are clinically available drugs that can inhibit CaV1.3 channels, they are not adequately potent and have only partial and transient impact on levodopa-induced dyskinesias. METHODS: To provide unequivocal target validation, free of pharmacological limitations, we developed a CaV1.3 shRNA to provide high-potency, target-selective, mRNA-level silencing of striatal CaV1.3 channels and examined its ability to impact levodopa-induced dyskinesias in severely parkinsonian rats. RESULTS: We demonstrate that vector-mediated silencing of striatal CaV1.3 expression in severely parkinsonian rats prior to the introduction of levodopa can uniformly and completely prevent induction of levodopa-induced dyskinesias, and this antidyskinetic benefit persists long term and with high-dose levodopa. In addition, this approach is capable of ameliorating preexisting severe levodopa-induced dyskinesias. Importantly, motoric responses to low-dose levodopa remained intact in the presence of striatal CaV1.3 silencing, indicating preservation of levodopa benefit without dyskinesia liability. DISCUSSION: The current data provide some of the most profound antidyskinetic benefit reported to date and suggest that genetic silencing of striatal CaV1.3 channels has the potential to transform treatment of individuals with PD by allowing maintenance of motor benefit of levodopa in the absence of the debilitating levodopa-induced dyskinesia side effect. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/efeitos adversos , Canais de Cálcio/genética , Discinesia Induzida por Medicamentos/prevenção & controle , Levodopa/efeitos adversos , Neostriado/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Adrenérgicos/toxicidade , Animais , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/terapia , Proteínas de Fluorescência Verde , Substâncias Luminescentes , Feixe Prosencefálico Mediano , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Interferência de RNA , RNA Interferente Pequeno , Ratos , Substância Negra , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Neurobiol Dis ; 125: 55-66, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677495

RESUMO

Parkinson's disease (PD) presents with a constellation of non-motor symptoms, notably increased anxiety, which are currently poorly treated and underrepresented in animal models of the disease. Human post-mortem studies report loss of catecholaminergic neurons in the pre-symptomatic phases of PD when anxiety symptoms emerge, and a large literature from rodent and human studies indicate that catecholamines are important mediators of anxiety via their modulatory effects on limbic regions such as the amygdala. On the basis of these observations, we hypothesized that anxiety in PD could result from an early loss of catecholaminergic inputs to the amygdala and/or other limbic structures. To interrogate this hypothesis, we bilaterally injected the neurotoxin 6-OHDA in the mouse basolateral amygdala (BL). This produced a restricted pattern of catecholaminergic (tyrosine-hydroxylase-labeled) denervation in the BL, intercalated cell masses and ventral hippocampus, but not the central amygdala or prefrontal cortex. We found that this circuit-specific lesion did not compromise performance on multiple measures of motor function (home cage, accelerating rotarod, beam balance, pole climbing), but did increase anxiety-like behavior in the elevated plus-maze and light-dark exploration tests. Fear behavior in the pavlovian cued conditioning and passive avoidance assays was, by contrast, unaffected; possibly due to preservation of catecholamine innervation of the central amygdala from the periaqueductal gray. These data provide some of the first evidence implicating loss of catecholaminergic neurotransmission in midbrain-amygdala circuits to increased anxiety-like behavior. Our findings offer an initial step towards identifying the neural substrates for pre-motor anxiety symptoms in PD.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Ansiedade/fisiopatologia , Catecolaminas/antagonistas & inibidores , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/psicologia , Adrenérgicos/toxicidade , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxidopamina/toxicidade
13.
Behav Pharmacol ; 30(1): 89-94, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29847340

RESUMO

The development of Parkinson's disease (PD) involves the degeneration of dopaminergic neurons caused by oxidative stress. Accumulating clinical evidence indicates that high blood levels of uric acid (UA), an intrinsic antioxidative substance, are associated with reduced risk of PD. However, this hypothesis has not been confirmed by in-vivo experiments. The present study investigated the effects of UA on behavioral abnormalities in the development of PD. We used unilateral 6-hydroxydopamine-lesioned mice, which were fed on a diet containing 1% UA and 2.5% potassium oxonate (an uricase inhibitor) to induce hyperuricemia. A significant elevation in UA levels was found in groups that were fed a UA diet. The 6-hydroxydopamine-lesioned mice showed impaired rotarod performance and increased apomorphine-induced contralateral rotations. These behavioral abnormalities were significantly reversed by feeding a UA diet for 1 week before and 5 weeks after surgery (subchronic hyperuricemia). These behavioral improvements occurred in parallel with recovery of tyrosine hydroxylase protein levels in the lesioned striatal side. The present study with a dietary hyperuricemia mice model confirms that UA exerts a neuroprotective effect on dopaminergic neuronal loss, improving motor dysfunction and ameliorating PD development.


Assuntos
Transtornos Mentais/sangue , Transtornos Mentais/etiologia , Doença de Parkinson Secundária/complicações , Ácido Úrico/sangue , Adrenérgicos/toxicidade , Animais , Apomorfina/farmacologia , Modelos Animais de Doenças , Hiperuricemia/sangue , Hiperuricemia/etiologia , Masculino , Transtornos Mentais/dietoterapia , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Oxidopamina/toxicidade , Ácido Oxônico/administração & dosagem , Doença de Parkinson Secundária/induzido quimicamente , Teste de Desempenho do Rota-Rod , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Exp Brain Res ; 237(1): 29-36, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30298296

RESUMO

L-3,4-Dihydroxyphenylalanine (L-DOPA) is the most effective therapy for motor symptoms of Parkinson's disease (PD); however, with repeated administration, as many as 94% of PD patients develop complications such as L-DOPA-induced dyskinesia. We previously demonstrated that EMD-281,014, a highly selective serotonin 2A (5-HT2A) receptor antagonist, reduces the severity of dyskinesia in the parkinsonian marmoset, without interfering with L-DOPA anti-parkinsonian benefit. Here, we assessed the effects of EMD-281,014 on L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat. We first determined the pharmacokinetic profile of EMD-281,014, to administer doses leading to clinically relevant plasma levels in the behavioural experiments. Dyskinetic 6-OHDA-lesioned rats were then administered EMD-281,014 (0.01, 0.03 and 0.1 mg/kg) or vehicle in combination with L-DOPA and AIMs severity was evaluated. We also assessed the effect of EMD-281,014 on L-DOPA anti-parkinsonian action with the cylinder test. We found that the addition of EMD-281,014 (0.01, 0.03 and 0.1 mg/kg) to L-DOPA did not reduce AIMs severity (P > 0.05), when compared to vehicle. EMD-281,014 did not compromise L-DOPA anti-parkinsonian action. Our results suggest that the highly selective 5-HT2A receptor antagonist EMD-281,014 is well-tolerated by parkinsonian rats, but does not attenuate L-DOPA-induced AIMs. Our results highlight differences between rodent and primate models of PD when it comes to determining the anti-dyskinetic action of 5-HT2A receptor antagonists.


Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , Indóis/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Piperazinas/uso terapêutico , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Adrenérgicos/toxicidade , Animais , Antiparkinsonianos/efeitos adversos , Área Sob a Curva , Monoaminas Biogênicas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/etiologia , Feminino , Lateralidade Funcional/efeitos dos fármacos , Indóis/sangue , Levodopa/efeitos adversos , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Piperazinas/sangue , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT2 de Serotonina/sangue
15.
Neurotoxicology ; 70: 1-11, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359634

RESUMO

Mitochondrial dysfunction has been demonstrated to have a central role in Parkinson Disease (PD) pathophysiology. Some studies have indicated that PD causes an impairment in mitochondrial bioenergetics; however, the effects of PD on brain-region specific bioenergetics was never investigated before. This study aimed to evaluate mitochondrial bioenergetics in different rat brain structures in an in vitro model of PD using 6-OHDA. Rat brain slices of hippocampus, striatum, and cortex were exposed to 6-OHDA (100 µM) for 1 h and mitochondrial bioenergetic parameters, peroxide production, lactate dehydrogenase (LDH) and citrate synthase (CS) activities were analyzed. Hippocampus slices exposed to 6-OHDA presented increased peroxide production but, no mitochondrial adaptive response against 6-OHDA damage. Cortex slices exposed to 6-OHDA presented increased oxygen flux related to oxidative phosphorylation and energetic pathways exchange demonstrated by the increase in LDH activity, suggesting a mitochondrial compensatory response. Striatum slices exposed to 6-OHDA presented a decrease of oxidative phosphorylation and decrease of oxygen flux related to ATP-synthase indicating an impairment in the respiratory chain. The co-incubation of 6-OHDA with n-acetylcysteine (NAC) abolished the effects of 6-OHDA on mitochondrial function in all brain regions tested, indicating that the increased reactive oxygen species (ROS) production is responsible for the alterations observed in mitochondrial bioenergetics. The present results indicate a brain-region specific response against 6-OHDA, providing new insights into brain mitochondrial bioenergetic function in PD. These findings may contribute to the development of future therapies with a target on energy metabolism.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Oxidopamina/toxicidade , Consumo de Oxigênio/fisiologia , Adrenérgicos/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
16.
Oxid Med Cell Longev ; 2018: 2131895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510616

RESUMO

Parkinson's disease is a degenerative and progressive illness characterized by the degeneration of dopaminergic neurons. 6-hydroxydopamine (6-OHDA) is a widespread model for induction of molecular and behavioral alterations similar to Parkinson and has contributed for testing of compounds with neuroprotective potential. The Brazilian plant Anacardium microcarpum is used in folk medicine for treatment of several illnesses; however, the knowledge about toxicology and biological effects for this plant is very rare. The neuroprotective effect from hydroalcoholic extract and methanolic and acetate fraction of A. microcarpum on 6-OHDA-induced damage on chicken brain slices was investigated in this study. 6-OHDA decreased cellular viability measured by MTT reduction assay, induced lipid peroxidation by HPLC, stimulated Glutathione-S-Transferase and Thioredoxin Reductase activity, and decreased Glutathione Peroxidase activity and the total content of thiols containing compounds. The methanolic fraction of A. microcarpum presented the better neuroprotective effects in 6-OHDA-induced damage in relation with hydroalcoholic and acetate fraction. The presence of AKT and ERK1/2 pharmacological inhibitors blocked the protective effect of methanolic fraction suggesting the involvement of survival pathways in the neuroprotection by the plant. The plant did not prevent 6-OHDA autoxidation or 6-OHDA-induced mitochondrial dysfunction. Thus, the neuroprotective effect of the methanolic fraction of A. microcarpum appears to be attributed in part to chelating properties of extract toward reactive species and is dependent on ERK1/2 and AKT phosphorylation. This study contributes to the understanding of biochemical mechanisms implied in neuroprotective effects of the vegetal species A. microcarpum.


Assuntos
Anacardium/química , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/farmacologia , Adrenérgicos/toxicidade , Animais , Galinhas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
Exp Neurol ; 309: 79-90, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30076831

RESUMO

Gene therapy is currently an irreversible approach, without possibilities to fine-tune or halt the expression of a therapeutic gene product. Especially when expressing neurotrophic factors to treat neurodegenerative disorders, options to regulate transgene expression levels might be beneficial. We thus developed an advanced single-genome inducible AAV vector for expression of GDNF, under control of the approved small molecule drug mifepristone. In the rat brain, GDNF expression can be induced over a wide range up to three hundred-fold over endogenous background, and completely returns to baseline within 3-4 weeks. When applied with appropriate serotype and titre, the vector is absolutely free of any non-induced background expression. In the BACHD model of Huntington's disease we demonstrate that the vector can be kept in a continuous ON-state for extended periods of time. In a model of Parkinson's disease we demonstrate that repeated short-term expression of GDNF restores motor capabilities in 6-OHDA-lesioned rats. We also report on sex-dependent pharmacodynamics of mifepristone in the rodent brain. Taken together, we show that wide-range and high-level induction, background-free, fully reversible and therapeutically active GDNF expression can be achieved under tight pharmacological control by this novel AAV - "Gene Switch" vector.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Adrenérgicos/toxicidade , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácido Homovanílico/metabolismo , Antagonistas de Hormônios/uso terapêutico , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Mifepristona/uso terapêutico , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Sinucleínas/genética , Sinucleínas/metabolismo , Transdução Genética
18.
Neurosci Bull ; 34(3): 476-484, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29508251

RESUMO

Previous studies have shown that electroacupuncture (EA) promotes recovery of motor function in Parkinson's disease (PD). However the mechanisms are not completely understood. Clinically, the subthalamic nucleus (STN) is a critical target for deep brain stimulation treatment of PD, and vesicular glutamate transporter 1 (VGluT1) plays an important role in the modulation of glutamate in the STN derived from the cortex. In this study, a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was treated with 100 Hz EA for 4 weeks. Immunohistochemical analysis of tyrosine hydroxylase (TH) showed that EA treatment had no effect on TH expression in the ipsilateral striatum or substantia nigra pars compacta, though it alleviated several of the parkinsonian motor symptoms. Compared with the hemi-parkinsonian rats without EA treatment, the 100 Hz EA treatment significantly decreased apomorphine-induced rotation and increased the latency in the Rotarod test. Notably, the EA treatment reversed the 6-OHDA-induced down-regulation of VGluT1 in the STN. The results demonstrated that EA alleviated motor symptoms and up-regulated VGluT1 in the ipsilateral STN of hemi-parkinsonian rats, suggesting that up-regulation of VGluT1 in the STN may be related to the effects of EA on parkinsonian motor symptoms via restoration of function in the cortico-STN pathway.


Assuntos
Eletroacupuntura/métodos , Doença de Parkinson Secundária/terapia , Núcleo Subtalâmico/metabolismo , Regulação para Cima/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Adrenérgicos/toxicidade , Animais , Apomorfina/farmacologia , Modelos Animais de Doenças , Agonistas de Dopamina/farmacologia , Lateralidade Funcional/efeitos dos fármacos , Masculino , Feixe Prosencefálico Mediano/lesões , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Neuropharmacology ; 131: 116-127, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29197517

RESUMO

L-DOPA-induced dyskinesia (LID) remains a significant problem in the management of Parkinson's disease (PD). In rodent and macaque models of PD, delta opioid receptor agonists have anti-parkinsonian actions while mu opioid antagonists can reduce the expression of LID. DPI-289 is a novel molecule with a unique combination of opioid receptor DAMA actions: delta agonist (Ki: 0.73 nM); mu antagonist (Ki: 12 nM). We demonstrated that DPI-289 has oral bioavailability and established its pharmacokinetic profile in both rat and primate. We hypothesised that these combined DAMA actions would provide an enhancement of L-DOPA effect without an associated increase in dyskinesia. In parkinsonian 6-OHDA lesioned rats and MPTP-lesioned macaques, DPI-289 provided anti-parkinsonian actions as monotherapy and an enhancement of L-DOPA benefit. Thus, acute administration of DPI-289 (3 mg/kg, p.o.) to 6-OHDA-lesioned rats produced a significant reduction in forelimb asymmetry (by 48%) that was maintained throughout the fifteen-day repeat-treatment period. Importantly, and in contrast to L-DOPA administration (6 mg/kg, i.p.), these benefits were not compromised by the development of abnormal involuntary movements. In the macaque, as monotherapy, DPI-289 (10 and 20 mg/kg) had significant, though incomplete, anti-parkinsonian actions lasting approximately 4 h. These benefits were not associated with dyskinesia. In fact, over the 6 h period of observation, DPI-289 (20 mg/kg) decreased parkinsonism by 19% and increased activity by 67% compared to vehicle treatment. By contrast, while high-dose L-DOPA (LDh) alone alleviated parkinsonism (for 3 h) this benefit was accompanied by significant dyskinesia that was disabling in nature. LDh provided a 50% reduction in parkinsonism over 6 h and 151% increase in activity. The combination of DPI-289 (20 mg/kg) and a low-dose of L-DOPA (LDl) provided anti-parkinsonian benefits greater than LDl alone without eliciting any significant dyskinesia. Treatment with LDl alone provided only transient statistically significant anti-parkinsonian benefit. However, the combination of LDl and DPI-289 reduced parkinsonism for 6 h (duration of monitoring), with parkinsonism being reduced by 35% and activity increased by 90% but with no increase in dyskinesia over that observed with LDl alone. Thus, DPI-289 has potential to improve the benefits of dopaminergic therapy in Parkinson's disease.


Assuntos
Benzamidas/uso terapêutico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Antagonistas de Entorpecentes/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Piperazinas/uso terapêutico , Receptores Opioides delta/agonistas , Receptores Opioides mu/antagonistas & inibidores , Adrenérgicos/toxicidade , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/uso terapêutico , Animais , Benzamidas/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/etiologia , Feminino , Cobaias , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Movimento/efeitos dos fármacos , Antagonistas de Entorpecentes/farmacocinética , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/sangue , Transtornos Parkinsonianos/tratamento farmacológico , Piperazinas/farmacologia , Ratos Sprague-Dawley , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/metabolismo
20.
Brain Struct Funct ; 223(3): 1071-1089, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29081007

RESUMO

Extinction of Pavlovian conditioning is a complex process that involves brain regions such as the medial prefrontal cortex (mPFC), the amygdala and the locus coeruleus. In particular, noradrenaline (NA) coming from the locus coeruleus has been recently shown to play a different role in two subregions of the mPFC, the prelimbic (PL) and the infralimbic (IL) regions. How these regions interact in conditioning and subsequent extinction is an open issue. We studied these processes using two approaches: computational modelling and NA manipulation in a conditioned place preference paradigm (CPP) in mice. In the computational model, NA in PL and IL causes inputs arriving to these regions to be amplified, thus allowing them to modulate learning processes in amygdala. The model reproduces results from studies involving depletion of NA from PL, IL, or both in CPP. In addition, we simulated new experiments of NA manipulations in mPFC, making predictions on the possible results. We searched the parameters of the model and tested the robustness of the predictions by performing a sensitivity analysis. We also present an empirical experiment where, in accord with the model, a double depletion of NA from both PL and IL in CPP with amphetamine impairs extinction. Overall the proposed model, supported by anatomical, physiological, and behavioural data, explains the differential role of NA in PL and IL and opens up the possibility to understand extinction mechanisms more in depth and hence to aid the development of treatments for disorders such as addiction.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/fisiologia , Córtex Pré-Frontal/fisiologia , Adrenérgicos/toxicidade , Animais , Aprendizagem por Associação/fisiologia , Simulação por Computador , Condicionamento Clássico/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Norepinefrina/metabolismo , Oxidopamina/toxicidade , Piperazinas/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...