Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
2.
BMC Genomics ; 25(1): 418, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679745

RESUMO

BACKGROUND: Plant specialized (or secondary) metabolites (PSM), also known as phytochemicals, natural products, or plant constituents, play essential roles in interactions between plants and environment. Although many research efforts have focused on discovering novel metabolites and their biosynthetic genes, the resolution of metabolic pathways and identified biosynthetic genes was limited by rudimentary analysis approaches and enormous number of candidate genes. RESULTS: Here we integrated state-of-the-art automated machine learning (ML) frame AutoGluon-Tabular and multi-omics data from Arabidopsis to predict genes encoding enzymes involved in biosynthesis of plant specialized metabolite (PSM), focusing on the three main PSM categories: terpenoids, alkaloids, and phenolics. We found that the related features of genomics and proteomics were the top two crucial categories of features contributing to the model performance. Using only these key features, we built a new model in Arabidopsis, which performed better than models built with more features including those related with transcriptomics and epigenomics. Finally, the built models were validated in maize and tomato, and models tested for maize and trained with data from two other species exhibited either equivalent or superior performance to intraspecies predictions. CONCLUSIONS: Our external validation results in grape and poppy on the one hand implied the applicability of our model to the other species, and on the other hand showed enormous potential to improve the prediction of enzymes synthesizing PSM with the inclusion of valid data from a wider range of species.


Assuntos
Arabidopsis , Genômica , Aprendizado de Máquina , Arabidopsis/genética , Arabidopsis/metabolismo , Genômica/métodos , Alcaloides/biossíntese , Alcaloides/metabolismo , Terpenos/metabolismo , Proteômica/métodos , Metabolômica/métodos , Genes de Plantas , Plantas/genética , Plantas/metabolismo , Fenóis/metabolismo , Multiômica
3.
Angew Chem Int Ed Engl ; 63(20): e202401324, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38499463

RESUMO

We report the discovery and biosynthesis of new piperazine alkaloids-arizonamides, and their derived compounds-arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non-heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3-alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG.


Assuntos
Alcaloides , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/biossíntese , Piperazinas/química , Piperazinas/metabolismo , Ferro/química , Ferro/metabolismo , Ciclização , Biocatálise , Estrutura Molecular , Compostos de Espiro/química , Compostos de Espiro/metabolismo , Oxirredução , Piperazina/química , Piperazina/metabolismo
4.
Science ; 383(6683): 622-629, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271490

RESUMO

Paclitaxel is a well known anticancer compound. Its biosynthesis involves the formation of a highly functionalized diterpenoid core skeleton (baccatin III) and the subsequent assembly of a phenylisoserinoyl side chain. Despite intensive investigation for half a century, the complete biosynthetic pathway of baccatin III remains unknown. In this work, we identified a bifunctional cytochrome P450 enzyme [taxane oxetanase 1 (TOT1)] in Taxus mairei that catalyzes an oxidative rearrangement in paclitaxel oxetane formation, which represents a previously unknown enzyme mechanism for oxetane ring formation. We created a screening strategy based on the taxusin biosynthesis pathway and uncovered the enzyme responsible for the taxane oxidation of the C9 position (T9αH1). Finally, we artificially reconstituted a biosynthetic pathway for the production of baccatin III in tobacco.


Assuntos
Alcaloides , Sistema Enzimático do Citocromo P-450 , Engenharia Metabólica , Paclitaxel , Proteínas de Plantas , Taxoides , Taxus , Alcaloides/biossíntese , Alcaloides/genética , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Paclitaxel/biossíntese , Taxoides/metabolismo , Taxus/enzimologia , Taxus/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética
5.
Nature ; 624(7990): 182-191, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938780

RESUMO

Plants synthesize numerous alkaloids that mimic animal neurotransmitters1. The diversity of alkaloid structures is achieved through the generation and tailoring of unique carbon scaffolds2,3, yet many neuroactive alkaloids belong to a scaffold class for which no biosynthetic route or enzyme catalyst is known. By studying highly coordinated, tissue-specific gene expression in plants that produce neuroactive Lycopodium alkaloids4, we identified an unexpected enzyme class for alkaloid biosynthesis: neofunctionalized α-carbonic anhydrases (CAHs). We show that three CAH-like (CAL) proteins are required in the biosynthetic route to a key precursor of the Lycopodium alkaloids by catalysing a stereospecific Mannich-like condensation and subsequent bicyclic scaffold generation. Also, we describe a series of scaffold tailoring steps that generate the optimized acetylcholinesterase inhibition activity of huperzine A5. Our findings suggest a broader involvement of CAH-like enzymes in specialized metabolism and demonstrate how successive scaffold tailoring can drive potency against a neurological protein target.


Assuntos
Alcaloides , Anidrases Carbônicas , Modelos Neurológicos , Plantas , Animais , Acetilcolinesterase/metabolismo , Alcaloides/biossíntese , Alcaloides/síntese química , Alcaloides/metabolismo , Alcaloides/farmacologia , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Regulação da Expressão Gênica de Plantas , Neurotransmissores/metabolismo , Plantas/enzimologia , Plantas/genética , Plantas/metabolismo , Sesquiterpenos/síntese química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Lycopodium/química , Lycopodium/metabolismo
6.
Nat Prod Rep ; 40(5): 964-971, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36648485

RESUMO

Covering: up to 2023The marine environment represents a rich yet challenging source of novel therapeutics. These challenges are best exemplified by the manzamine class of alkaloids, featuring potent bioactivities, difficult procurement, and a biosynthetic pathway that has eluded characterization for over three decades. This review highlights postulated biogenic pathways toward the manzamines, evaluated in terms of current biosynthetic knowledge and metabolic precedent.


Assuntos
Alcaloides , Produtos Biológicos , Alcaloides/biossíntese
7.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209167

RESUMO

Benzophenanthridines belong to the benzylisoquinolic alkaloids, representing one of the main groups of this class. These alkaloids include over 120 different compounds, mostly in plants from the Fumariaceae, Papaveraceae, and Rutaceae families, which confer chemical protection against pathogens and herbivores. Industrial uses of BZD include the production of environmentally friendly agrochemicals and livestock food supplements. However, although mainly considered toxic compounds, plants bearing them have been used in traditional medicine and their medical applications as antimicrobials, antiprotozoals, and cytotoxic agents have been envisioned. The biosynthetic pathways for some BZD have been established in different species, allowing for the isolation of the genes and enzymes involved. This knowledge has resulted in a better understanding of the process controlling their synthesis and an opening of the gates towards their exploitation by applying modern biotechnological approaches, such as synthetic biology. This review presents the new advances on BDZ biosynthesis and physiological roles. Industrial applications, mainly with pharmacological approaches, are also revised.


Assuntos
Benzofenantridinas/biossíntese , Alcaloides/biossíntese , Alcaloides/química , Alcaloides/farmacologia , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Vias Biossintéticas , Desenvolvimento de Medicamentos , Isoquinolinas/química , Isoquinolinas/farmacologia , Medicina Tradicional , Fenômenos Fisiológicos Vegetais , Relação Estrutura-Atividade
8.
Chembiochem ; 23(3): e202100517, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34767291

RESUMO

Indolizidine alkaloids, which have versatile bioactivities, are produced by various organisms. Although the biosynthesis of some indolizidine alkaloids has been studied, the enzymatic machinery for their biosynthesis in Streptomyces remains elusive. Here, we report the identification and analysis of the biosynthetic gene cluster for iminimycin, an indolizidine alkaloid with a 6-5-3 tricyclic system containing an iminium cation from Streptomyces griseus. The gene cluster has 22 genes, including four genes encoding polyketide synthases (PKSs), which consist of eight modules in total. In vitro analysis of the first module revealed that its acyltransferase domain selects malonyl-CoA, although predicted to select methylmalonyl-CoA. Inactivation of seven tailoring enzyme-encoding genes and structural elucidation of four compounds accumulated in mutants provided important insights into iminimycin biosynthesis, although some of these compounds appeared to be shunt products. This study expands our knowledge of the biosynthetic machinery of indolizidine alkaloids and the enzymatic chemistry of PKS.


Assuntos
Alcaloides/biossíntese , Família Multigênica , Streptomyces griseus/química , Streptomyces griseus/genética , Alcaloides/química , Indolizidinas/química , Conformação Molecular , Streptomyces griseus/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903659

RESUMO

Benzylisoquinoline alkaloids (BIAs) are a diverse class of medicinal plant natural products. Nearly 500 dimeric bisbenzylisoquinoline alkaloids (bisBIAs), produced by the coupling of two BIA monomers, have been characterized and display a range of pharmacological properties, including anti-inflammatory, antitumor, and antiarrhythmic activities. In recent years, microbial platforms have been engineered to produce several classes of BIAs, which are rare or difficult to obtain from natural plant hosts, including protoberberines, morphinans, and phthalideisoquinolines. However, the heterologous biosyntheses of bisBIAs have thus far been largely unexplored. Here, we describe the engineering of yeast strains that produce the Type I bisBIAs guattegaumerine and berbamunine de novo. Through strain engineering, protein engineering, and optimization of growth conditions, a 10,000-fold improvement in the production of guattegaumerine, the major bisBIA pathway product, was observed. By replacing the cytochrome P450 used in the final coupling reaction with a chimeric variant, the product profile was inverted to instead produce solely berbamunine. Our highest titer engineered yeast strains produced 108 and 25 mg/L of guattegaumerine and berbamunine, respectively. Finally, the inclusion of two additional putative BIA biosynthesis enzymes, SiCNMT2 and NnOMT5, into our bisBIA biosynthetic strains enabled the production of two derivatives of bisBIA pathway intermediates de novo: magnocurarine and armepavine. The de novo heterologous biosyntheses of bisBIAs presented here provide the foundation for the production of additional medicinal bisBIAs in yeast.


Assuntos
Benzilisoquinolinas/metabolismo , Isoquinolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides/biossíntese , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fermentação , Engenharia Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Engenharia de Proteínas , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/metabolismo
10.
Chin J Nat Med ; 19(8): 591-607, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34419259

RESUMO

Terpenoid indole (TIAs) and ß-carboline alkaloids (BCAs), such as suppressant reserpine, vasodilatory yohimbine, and antimalarial quinine, are natural compounds derived from strictosidine. These compounds can exert powerful pharmacological effects but be obtained from limited source in nature. the whole biosynthetic pathway of TIAs and BCAs, The Pictet-Spengler reaction catalyzed by strictosidine synthase (STR; EC: 4.3.3.2) is the rate-limiting step. Therefore, it is necessary to investigate their biosynthesis pathways, especially the role of STR, and related findings will support the biosynthetic generation of natural and unnatural compounds. This review summarizes the latest studies concerning the function of STR in TIA and BCA biosynthesis, and illustrates the compounds derived from strictosidine. The substrate specificity of STR based on its structure is also summarized. Proteins that contain six-bladed four-stranded ß-propeller folds in many organisms, other than plants, are listed. The presence of these folds may lead to similar functions among organisms. The expression of STR gene can greatly influence the production of many compounds. STR is mainly applied to product various valuable drugs in plant cell suspension culture and biosynthesis in other carriers.


Assuntos
Alcaloides , Carbolinas/metabolismo , Carbono-Nitrogênio Liases , Indóis/metabolismo , Terpenos , Alcaloides/biossíntese , Terpenos/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34112718

RESUMO

Plants synthesize many diverse small molecules that affect function of the mammalian central nervous system, making them crucial sources of therapeutics for neurological disorders. A notable portion of neuroactive phytochemicals are lysine-derived alkaloids, but the mechanisms by which plants produce these compounds have remained largely unexplored. To better understand how plants synthesize these metabolites, we focused on biosynthesis of the Lycopodium alkaloids that are produced by club mosses, a clade of plants used traditionally as herbal medicines. Hundreds of Lycopodium alkaloids have been described, including huperzine A (HupA), an acetylcholine esterase inhibitor that has generated interest as a treatment for the symptoms of Alzheimer's disease. Through combined metabolomic profiling and transcriptomics, we have identified a developmentally controlled set of biosynthetic genes, or potential regulon, for the Lycopodium alkaloids. The discovery of this putative regulon facilitated the biosynthetic reconstitution and functional characterization of six enzymes that act in the initiation and conclusion of HupA biosynthesis. This includes a type III polyketide synthase that catalyzes a crucial imine-polyketide condensation, as well as three Fe(II)/2-oxoglutarate-dependent dioxygenase (2OGD) enzymes that catalyze transformations (pyridone ring-forming desaturation, piperidine ring cleavage, and redox-neutral isomerization) within downstream HupA biosynthesis. Our results expand the diversity of known chemical transformations catalyzed by 2OGDs and provide mechanistic insight into the function of noncanonical type III PKS enzymes that generate plant alkaloid scaffolds. These data offer insight into the chemical logic of Lys-derived alkaloid biosynthesis and demonstrate the tightly coordinated coexpression of secondary metabolic genes for the biosynthesis of medicinal alkaloids.


Assuntos
Alcaloides/biossíntese , Lycopodium/enzimologia , Lycopodium/metabolismo , Regulon/genética , Alcaloides/química , Vias Biossintéticas , Metabolômica , Oxigenases de Função Mista/metabolismo , Oxirredução , Piperidinas/metabolismo , Sesquiterpenos/química , Transcriptoma/genética
12.
Commun Biol ; 4(1): 445, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833371

RESUMO

Black pepper (Piper nigrum L.) is the world's most popular spice and is also used as an ingredient in traditional medicine. Its pungent perception is due to the interaction of its major compound, piperine (1-piperoyl-piperidine) with the human TRPV-1 or vanilloid receptor. We now identify the hitherto concealed enzymatic formation of piperine from piperoyl coenzyme A and piperidine based on a differential RNA-Seq approach from developing black pepper fruits. This enzyme is described as piperine synthase (piperoyl-CoA:piperidine piperoyl transferase) and is a member of the BAHD-type of acyltransferases encoded by a gene that is preferentially expressed in immature fruits. A second BAHD-type enzyme, also highly expressed in immature black pepper fruits, has a rather promiscuous substrate specificity, combining diverse CoA-esters with aliphatic and aromatic amines with similar efficiencies, and was termed piperamide synthase. Recombinant piperine and piperamide synthases are members of a small gene family in black pepper. They can be used to facilitate the microbial production of a broad range of medicinally relevant aliphatic and aromatic piperamides based on a wide array of CoA-donors and amine-derived acceptors, offering widespread applications.


Assuntos
Aciltransferases/genética , Piper nigrum/enzimologia , Proteínas de Plantas/genética , Aciltransferases/química , Aciltransferases/metabolismo , Alcaloides/biossíntese , Benzodioxóis , Piperidinas , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alcamidas Poli-Insaturadas
13.
Nat Commun ; 12(1): 1760, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741955

RESUMO

Plant natural products (PNPs) and their derivatives are important but underexplored sources of pharmaceutical molecules. To access this untapped potential, the reconstitution of heterologous PNP biosynthesis pathways in engineered microbes provides a valuable starting point to explore and produce novel PNP derivatives. Here, we introduce a computational workflow to systematically screen the biochemical vicinity of a biosynthetic pathway for pharmaceutical compounds that could be produced by derivatizing pathway intermediates. We apply our workflow to the biosynthetic pathway of noscapine, a benzylisoquinoline alkaloid (BIA) with a long history of medicinal use. Our workflow identifies pathways and enzyme candidates for the production of (S)-tetrahydropalmatine, a known analgesic and anxiolytic, and three additional derivatives. We then construct pathways for these compounds in yeast, resulting in platforms for de novo biosynthesis of BIA derivatives and demonstrating the value of cheminformatic tools to predict reactions, pathways, and enzymes in synthetic biology and metabolic engineering.


Assuntos
Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Biologia Computacional/métodos , Engenharia Metabólica/métodos , Noscapina/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides/biossíntese , Benzilisoquinolinas/metabolismo , Noscapina/química , Plantas/genética , Plantas/metabolismo , Saccharomyces cerevisiae/genética , Software
14.
Biosci Biotechnol Biochem ; 85(6): 1332-1340, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33713113

RESUMO

Owing to the high degree of diversity of metabolite pools and complexity of spatial and temporal distributions within biological tissues, currently available methods for metabolite characterization face large challenges. In this study, the temporal and spatial distributions of the alkaloid components of the medicinal plant lotus (Nelumbo nucifera) were investigated over various growth phases. The results showed that alkaloid biosynthesis in lotus leaf is regulated by development and that there is maximum accumulation of alkaloids when the lotus leaf was completely expanded. Furthermore, alkaloid content tended to be stable in mature lotus leaves. However, there was significant variation in the alkaloid content of lotus leaves with different genotypes, suggesting that genetic background is an important factor that affects the temporal and spatial distributions of alkaloids in sacred lotus leaves. The dynamic contents of alkaloids during the growth and development of lotus leaves provide insight into basic biological differences when sampling.


Assuntos
Alcaloides/metabolismo , Nelumbo/metabolismo , Alcaloides/biossíntese , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Análise Espaço-Temporal
15.
Nat Prod Rep ; 38(10): 1775-1793, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33650608

RESUMO

Covering: up to July 2020Fungal metabolites with diverse and novel scaffolds can be assembled from well-known biosynthetic precursors through various mechanisms. Recent examples of novel alkaloids (e.g., cytochalasans and diketopiperazine derivatives), terpenes (e.g., sesterterpenes and diterpenes) and polyketides produced by fungi are presented through case studies. We show that large-scale culture is a complementary and practical method for genome mining and OSMAC approaches to discover natural products of unprecedented skeletal classes from fungi. We also summarize the discovery strategies and challenges for characterizing these compounds.


Assuntos
Alcaloides/biossíntese , Produtos Biológicos/metabolismo , Fungos/metabolismo , Policetídeos/metabolismo , Terpenos/metabolismo , Alcaloides/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Vias Biossintéticas , Fungos/crescimento & desenvolvimento , Genoma Fúngico
16.
Bioorg Chem ; 110: 104822, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33770672

RESUMO

Thirteen alkaloids, which include three new diketopiperazines, namely, 3-hydroxyprotuboxepin K (4), 3,15-dehydroprotuboxepin K (5), and versiamide A (6), together with ten known alkaloid derivatives (1-3 and 7-13), were isolated from the marine red algal-derived fungus Aspergillus creber EN-602. Versiamide A (6) represents the first example of a naturally occurring quinazolinone alkaloid with a diketopiperazine ring that is derived from phenylalanine (Phe) and leucine (Leu). The structures of these compounds were elucidated by detailed interpretation of their 1D/2D NMR spectroscopic and mass spectrometric data, while the absolute configurations of compounds 1-6 were established on the basis of X-ray crystallographic analysis and time-dependent density functional (TDDFT) calculations of the ECD spectra. Compounds 1, 2, and 4 exhibited inhibitory activity against the angiotensin converting enzyme (ACE) with IC50 values of 11.2, 16.0, and 22.4 µM, respectively, and compounds 5 and 6 inhibited various aquatic bacteria with MIC values that ranged from 8 to 64 µg/mL. The intermolecular interactions and potential binding sites between compounds 1-6 and ACE were investigated via molecular docking simulations.


Assuntos
Alcaloides/farmacologia , Aspergillus/química , Inibidores Enzimáticos/farmacologia , Peptidil Dipeptidase A/metabolismo , Rodófitas/microbiologia , Alcaloides/biossíntese , Alcaloides/química , Aspergillus/metabolismo , Cristalografia por Raios X , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
17.
Biosci Biotechnol Biochem ; 85(4): 851-859, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33589920

RESUMO

Genome characterization of California poppy (Eschscholzia californica cv. "Hitoezaki"), which produces pharmaceutically important benzylisoquinoline alkaloids (BIAs), was carried out using the draft genome sequence. The numbers of tRNA and rRNA genes were close to those of the other plant species tested, whereas the frequency of repetitive sequences was distinct from those species. Comparison of the predicted genes with those of Amborella trichopoda, Nelumbo nucifera, Solanum lycopersicum, and Arabidopsis thaliana, and analyses of gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway indicated that the enzyme genes involved in BIA biosynthesis were highly enriched in the California poppy genome. Further comparative analysis using the genome information of Papaver somniferum and Aquilegia coerulea, both BIA-producing plants, revealed that many genes encoding BIA biosynthetic enzymes, transcription factors, transporters, and candidate proteins, possibly related to BIA biosynthesis, were specifically distributed in these plant species.


Assuntos
Alcaloides/biossíntese , Benzilisoquinolinas/metabolismo , Eschscholzia/genética , Genoma de Planta , Regulação da Expressão Gênica de Plantas , RNA Ribossômico/genética , RNA de Transferência/genética
18.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563828

RESUMO

Penicillium digitatum is the most aggressive pathogen of citrus fruits. Tryptoquialanines are major indole alkaloids produced by P. digitatum It is unknown if tryptoquialanines are involved in the damage of citrus fruits caused by P. digitatum. To investigate the pathogenic roles of tryptoquialanines, we initially asked if tryptoquialanines could affect the germination of Citrus sinensis seeds. Exposure of the citrus seeds to tryptoquialanine A resulted in a complete inhibition of germination and an altered metabolic response. Since this phytotoxic effect requires the extracellular export of tryptoquialanine A, we investigated the mechanisms of extracellular delivery of this alkaloid in P. digitatum We detected extracellular vesicles (EVs) released by P. digitatum both in culture and during infection of citrus fruits. Compositional analysis of EVs produced during infection revealed the presence of a complex cargo, which included tryptoquialanines and the mycotoxin fungisporin. The EVs also presented phytotoxicity activity in vitro and caused damage to the tissues of citrus seeds. Through molecular networking, it was observed that the metabolites present in the P. digitatum EVs are produced in all of its possible hosts. Our results reveal a novel phytopathogenic role of P. digitatum EVs and tryptoquialanine A, implying that this alkaloid is exported in EVs during plant infection.IMPORTANCE During the postharvest period, citrus fruits can be affected by phytopathogens such as Penicillium digitatum, which causes green mold disease and is responsible for up to 90% of total citrus losses. Chemical fungicides are widely used to prevent green mold disease, leading to concerns about environmental and health risks. To develop safer alternatives to control phytopathogens, it is necessary to understand the molecular basis of infection during the host-pathogen interaction. In the P. digitatum model, the virulence strategies are poorly known. Here, we describe the production of phytotoxic extracellular vesicles (EVs) by P. digitatum during the infection of citrus fruits. We also characterized the secondary metabolites in the cargo of EVs and found in this set of molecules an inhibitor of seed germination. Since EVs and secondary metabolites have been related to virulence mechanisms in other host-pathogen interactions, our data are important for the comprehension of how P. digitatum causes damage to its primary hosts.


Assuntos
Alcaloides/metabolismo , Alcaloides/farmacologia , Citrus/microbiologia , Vesículas Extracelulares/química , Penicillium/patogenicidade , Sementes/crescimento & desenvolvimento , Alcaloides/biossíntese , Frutas/microbiologia , Fungicidas Industriais/farmacologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Metabolismo Secundário , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/microbiologia
19.
Nat Prod Rep ; 38(9): 1634-1658, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-33533391

RESUMO

Covering: 1917 to 2020Tropane alkaloids (TAs) are a remarkable class of plant secondary metabolites, which are characterized by an 8-azabicyclo[3.2.1]octane (nortropane) ring. Members of this class, such as hyoscyamine, scopolamine, and cocaine, are well known for their long history as poisons, hallucinogens, and anaesthetic agents. Since the structure of the tropane ring system was first elucidated in 1901, organic chemists and biochemists have been interested in how these mysterious tropane alkaloids are assembled in vitro and in vivo. However, it was only in 2020 that the complete biosynthetic route of hyoscyamine and scopolamine was clarified, and their de novo production in yeast was also achieved. The aim of this review is to present the innovative ideas and results in exploring the story of tropane alkaloid biosynthesis in plants from 1917 to 2020. This review also highlights that Robinson's classic synthesis of tropinone, which is one hundred years old, is biomimetic, and underscores the importance of total synthesis in the study of natural product biosynthesis.


Assuntos
Alcaloides/biossíntese , Tropanos/metabolismo , Alcaloides/química , Produtos Biológicos/metabolismo , Estrutura Molecular , Tropanos/química
20.
Molecules ; 26(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567664

RESUMO

As the population ages globally, there seem to be more people with Alzheimer's disease. Unfortunately, there is currently no specific treatment for the disease. At present, Huperzine A (HupA) is one of the best drugs used for the treatment of Alzheimer's disease and has been used in clinical trials for several years in China. HupA was first separated from Huperzia serrata, a traditional medicinal herb that is used to cure fever, contusions, strains, hematuria, schizophrenia, and snakebite for several hundreds of years in China, and has been confirmed to have acetylcholinesterase inhibitory activity. With the very slow growth of H. serrata, resources are becoming too scarce to meet the need for clinical treatment. Some endophytic fungal strains that produce HupA were isolated from H. serrate in previous studies. In this article, the diversity of the endophytic fungal community within H. serrata was observed and the relevance to the production of HupA by the host plant was further analyzed. A total of 1167 strains were obtained from the leaves of H. serrata followed by the stems (1045) and roots (824). The richness as well as diversity of endophytic fungi within the leaf and stem were higher than in the root. The endophytic fungal community was similar within stems as well as in leaves at all taxonomic levels. The 11 genera (Derxomyces, Lophiostoma, Cyphellophora, Devriesia, Serendipita, Kurtzmanomyces, Mycosphaerella, Conoideocrella, Brevicellicium, Piskurozyma, and Trichomerium) were positively correlated with HupA content. The correlation index of Derxomyces with HupA contents displayed the highest value (CI = 0.92), whereas Trichomerium showed the lowest value (CI = 0.02). Through electrospray ionization mass spectrometry (ESI-MS), it was confirmed that the HS7-1 strain could produce HupA and the total alkaloid concentration was 3.7 ug/g. This study will enable us to screen and isolate the strain that can produce HupA and to figure out the correlation between endophytic fungal diversity with HupA content in different plant organs. This can provide new insights into the screening of strains that can produce HupA more effectively.


Assuntos
Alcaloides/biossíntese , Biodiversidade , Endófitos/classificação , Endófitos/metabolismo , Fungos/classificação , Fungos/metabolismo , Huperzia/microbiologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fungos/isolamento & purificação , Fungos/fisiologia , Sesquiterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...