Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
World J Microbiol Biotechnol ; 40(7): 205, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755302

RESUMO

Jojoba shrubs are wild plants cultivated in arid and semiarid lands and characterized by tolerance to drought, salinity, and high temperatures. Fungi associated with such plants may be attributed to the tolerance of host plants against biotic stress in addition to the promotion of plant growth. Previous studies showed the importance of jojoba as jojoba oil in the agricultural field; however, no prior study discussed the role of jojoba-associated fungi (JAF) in reflecting plant health and the possibility of using JAF in biocontrol. Here, the culture-independent and culture-dependent approaches were performed to study the diversity of the jojoba-associated fungi. Then, the cultivable fungi were evaluated for in-vitro antagonistic activity and in vitro plant growth promotion assays. The metagenome analysis revealed the existence of four fungal phyla: Ascomycota, Aphelidiomycota, Basidiomycota, and Mortierellomycota. The phylum Ascomycota was the most common and had the highest relative abundance in soil, root, branch, and fruit samples (59.7%, 50.7%, 49.8%, and 52.4%, respectively). Alternaria was the most abundant genus in aboveground tissues: branch (43.7%) and fruit (32.1%), while the genus Discosia had the highest abundance in the underground samples: soil (24%) and root (30.7%). For the culture-dependent method, a total of 14 fungi were isolated, identified, and screened for their chitinolytic and antagonist activity against three phytopathogenic fungi (Fusarium oxysporum, Alternaria alternata and Rhizoctonia solani) as well as their in vitro plant growth promotion (PGP) activity. Based on ITS sequence analysis, the selected potent isolates were identified as Aspergillus stellatusEJ-JFF3, Aspergillus flavus EJ-JFF4, Stilbocrea sp. EJ-JLF1, Fusarium solani EJ-JRF3, and Amesia atrobrunneaEJ-JSF4. The endophyte strain A. flavus EJ-JFF4 exhibited the highest chitinolytic activity (9 Enzyme Index) and antagonistic potential against Fusarium oxysporum, Alternaria alternata, and Rhizoctonia solani phytopathogens with inhibitory percentages of 72, 70, and 80 respectively. Also, A. flavus EJ-JFF4 had significant multiple PGP properties, including siderophore production (69.3%), phosphate solubilization (95.4 µg ml-1). The greatest production of Indol-3-Acetic Acid was belonged to A. atrobrunnea EJ-JSF4 (114.5 µg ml-1). The analysis of FUNGuild revealed the abundance of symbiotrophs over other trophic modes, and the guild of endophytes was commonly assigned in all samples. For the first time, this study uncovered fungal diversity associated with jojoba plants using a culture-independent approach and in-vitro assessed the roles of cultivable fungal strains in promoting plant growth and biocontrol. The present study indicated the significance of jojoba shrubs as a potential source of diverse fungi with high biocontrol and PGP activities.


Assuntos
Alternaria , Fungos , Microbiologia do Solo , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Alternaria/genética , Alternaria/crescimento & desenvolvimento , Metagenoma , Rhizoctonia/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Antibiose , Raízes de Plantas/microbiologia , Biodiversidade , Agentes de Controle Biológico , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Desenvolvimento Vegetal
2.
Microb Pathog ; 190: 106604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490458

RESUMO

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Assuntos
Alternaria , Bacillus subtilis , Fungicidas Industriais , Lipopeptídeos , Nitrilas , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Nitrilas/farmacologia , Lipopeptídeos/farmacologia , RNA Ribossômico 16S/genética , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Peptídeos Cíclicos/farmacologia
3.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2732-2738, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282933

RESUMO

In Zherong county, Fujian province, the black spot of Pseudostellaria heterophylla often breaks out in the rainy season from April to June every year. As one of the main leaf diseases of P. heterophylla, black spot seriously affects the yield and quality of the medicinal material. To identify and characterize the pathogens causing black spot, we isolated the pathogens, identified them as a species of Alternaria according to Koch's postulates, and then tested their pathogenicity and biological characteristics. The results showed that the pathogens causing P. heterophylla black spot were A. gaisen, as evidenced by the similar colony morphology, spore characteristics, sporulation phenotype, and the same clade with A. gaisen on the phylogenetic tree(the maximum likelihood support rate of 100% and the Bayesian posterior probability of 1.00) built based on the tandem sequences of ITS, tef1, gapdh, endoPG, Alta1, OPA10-2, and KOG1077. The optimum conditions for mycelial growth of the pathogen were 25 ℃, pH 5-8, and 24 h dark culture. The lethal conditions for mycelia and spores were both treatment at 50 ℃ for 10 min. We reported for the first time the A. gaisen-caused black spot of P. heterophylla. The results could provide a theoretical basis for the diagnosis and control of P. heterophylla leaf spot diseases.


Assuntos
Alternaria , Caryophyllaceae , Doenças das Plantas , Alternaria/classificação , Alternaria/genética , Alternaria/crescimento & desenvolvimento , Alternaria/patogenicidade , Caryophyllaceae/microbiologia , DNA Fúngico/genética , Micélio/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , China
4.
Appl Biochem Biotechnol ; 194(1): 1-17, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34586599

RESUMO

A novel strain of Bacillus isolated from rhizosphere has shown to be an excellent biocontrol agent against various plant pathogens. In this study, a first report of a Bacillus strain NKMV-3 which effectively controls Alternaria solani, which cause the early blight disease in tomato. Based on the cultural and molecular sequencing of 16S rRNA gene sequence, the identity of the strain was confirmed as Bacillus velezensis NKMV-3. The presence of the lipopeptide which are antibiotic synthesis genes, namely iturin C, surfactin A and fengycin B and D, was confirmed through gene amplification. In addition, lipopeptides were also confirmed through liquid chromatography. The extract showed inhibitory effect against A. solani in vitro and detached tomato leaf assays. Bacillus velezensis strain NKMV-3-based formulations may provide an effective solution in controlling early blight disease in tomato and other crops.


Assuntos
Alternaria/crescimento & desenvolvimento , Bacillus , Agentes de Controle Biológico/metabolismo , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Rizosfera , Solanum lycopersicum/microbiologia , Bacillus/classificação , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Doenças das Plantas/prevenção & controle
5.
Sci Rep ; 11(1): 22998, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836995

RESUMO

Fungicides are extensively used in agriculture to control fungal pathogens which are responsible for significant economic impact on plant yield and quality. The conventional antifungal screening techniques, such as water agar and 96-well plates, are based on laborious protocols and bulk analysis, restricting the analysis at the single spore level and are time consuming. In this study, we present a droplet-based microfluidic platform that enables antifungal analysis of single spores of filamentous fungus Alternaria alternata. A droplet-based viability assay was developed, allowing the germination and hyphal growth of single A. alternata spores within droplets. The viability was demonstrated over a period of 24 h and the antifungal screening was achieved using Kunshi/Tezuma as antifungal agent. The efficacy results of the droplet-based antifungal analysis were compared and validated with the results obtained from conventional protocols. The percentage inhibitions assessed by the droplet-based platform were equivalent with those obtained by the other two methods, and the Pearson correlation analysis showed high correlation between the three assays. Taken together, this droplet-based microfluidic platform provides a wide range of potential applications for the analysis of fungicide resistance development as well as combinatorial screening of other antimicrobial agents and even antagonistic fungi.


Assuntos
Alternaria/crescimento & desenvolvimento , Antifúngicos/farmacologia , Bioensaio/métodos , Ensaios de Triagem em Larga Escala/métodos , Microfluídica/instrumentação , Microfluídica/métodos , Alternaria/efeitos dos fármacos
6.
Exp Parasitol ; 230: 108176, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34740586

RESUMO

Foliar spray of silicon dioxide (SiO2 NPs), zinc oxide (ZnO NPs) and titanium dioxide (TiO2 NPs) nanoparticles were used for the management of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot. Foliar spray of SiO2 NPs/ZnO NPs or TiO2 NPs increased plant growth attributes, chlorophyll and carotenoid of carrot. Foliar spray of 0.10 mg ml-1 SiO2 NPs caused the highest increase in plant growth, chlorophyll and carotenoid content of leaves followed by spray of 0.10 mg ml-1 ZnO NPs, 0.05 mg ml-1 SiO2 NPs, 0.05 mg ml-1 ZnO NPs, 0.10 mg ml-1 TiO2 NPs and 0.05 mg ml-1 TiO2 NPs. Use of SiO2 NPs caused a higher reduction in root galling, nematode multiplication and disease indices followed by ZnO NPs and TiO2 NPs. Two principal components analysis showed a total of 97.84% overall data variance in plants inoculated with single pathogen and 97.20% in plants inoculated with two or more pathogens. Therefore, foliar spray of SiO2 NPs appears interesting for the management of disease complex of carrot.


Assuntos
Alternaria/efeitos dos fármacos , Daucus carota , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Rhizoctonia/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Aerossóis , Alternaria/crescimento & desenvolvimento , Alternaria/patogenicidade , Animais , Carotenoides/análise , Clorofila/análise , Daucus carota/crescimento & desenvolvimento , Daucus carota/microbiologia , Daucus carota/parasitologia , Microscopia de Fluorescência , Nanopartículas/administração & dosagem , Folhas de Planta/química , Análise de Componente Principal , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/patogenicidade , Dióxido de Silício/farmacologia , Titânio/farmacologia , Tylenchoidea/patogenicidade , Óxido de Zinco/farmacologia
7.
Toxins (Basel) ; 13(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34564660

RESUMO

The yellow peach (Amygdalus persica), an important fruit in China, is highly susceptible to infection by Alternaria sp., leading to potential health risks and economic losses. In the current study, firstly, yellow peaches were artificially inoculated with Alternariaalternate. Then, the fruits were stored at 4 °C and 28 °C to simulate the current storage conditions that consumers use, and the Alternaria toxins (ATs) contents from different parts of the fruits were analyzed via ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The results showed that the growth of A. alternate and the ATs production were dramatically affected by the storage temperature. At 28 °C, the fungi grew rapidly and the lesion diameter reached about 4.0 cm within 15 days of inoculation, while, at 4 °C, the fungal growth was noticeably inhibited, with no significant change in the lesion diameter. To our surprise, high contents of ATs were produced under both storage conditions even though the fungal growth was suppressed. With an increase in the incubation time, the amounts of ATs showed a steady tendency to increase in most cases. Remarkably, alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) were detected in the rotten tissue and also in the surrounding tissue, while a large amount of TeA could also be found in the healthy tissue. To the best of our knowledge, this is the first report regarding the production of ATs by the infection of Alternaria sp. in yellow peach fruits via artificial inoculation under regulated conditions, and, based on the evidence herein, it is recommended that ATs be included in monitoring and control programs of yellow peach management and food safety administration.


Assuntos
Alternaria/química , Alternaria/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Frutas/química , Prunus persica/microbiologia , Ácido Tenuazônico/biossíntese , Ácido Tenuazônico/toxicidade , China , Microbiologia de Alimentos , Micotoxinas/biossíntese , Micotoxinas/toxicidade
8.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198771

RESUMO

This study investigated within-plant variability of the main bioactive compounds in rosemary (Rosmarinus officinalis L.). Volatile terpenes, including the enantiomeric distribution of monoterpenes, and phenols were analyzed in young and mature foliar, cortical and xylem tissues. In addition, antimicrobial activity of rosmarinic acid and selected terpenes was evaluated against two rosemary pathogens, Alternaria alternata and Pseudomonas viridiflava. Data showed that total concentration and relative contents of terpenes changed in relation to tissue source and age. Their highest total concentration was observed in the young leaves, followed by mature leaves, cortical and xylem tissues. Rosmarinic acid and carnosic acid contents did not show significant differences between leaf tissues of different ages, while young and mature samples showed variations in the content of four flavonoids. These results are useful for a more targeted harvesting of rosemary plants, in order to produce high-quality essential oils and phenolic extracts. Microbial tests showed that several terpenes and rosmarinic acid significantly inhibited the growth of typical rosemary pathogens. Overall, results on antimicrobial activity suggest the potential application of these natural compounds as biochemical markers in breeding programs aimed to select new chemotypes less susceptible to pathogen attacks, and as eco-friendly chemical alternatives to synthetic pesticides.


Assuntos
Anti-Infecciosos/farmacologia , Fenóis/farmacologia , Rosmarinus/química , Terpenos/farmacologia , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Anti-Infecciosos/química , Cinamatos/farmacologia , Depsídeos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Especificidade de Órgãos , Fenóis/química , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Rosmarinus/microbiologia , Terpenos/química , Ácido Rosmarínico
9.
Mol Biotechnol ; 63(9): 792-806, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34037929

RESUMO

We have constructed two intra-molecularly shuffled promoters, namely S100 and D100. The S100 recombinant promoter (621 bp) was generated by ligation of 250 bp long upstream activation sequence (UAS) of Strawberry vein banding virus (SV10UAS; - 352 to - 102 relative to TSS) with its 371 bp long TATA containing core promoter domain (SV10CP; - 352 to + 19). Likewise, 726 bp long D100 promoter was constructed by fusion of 170 bp long UAS of Dahlia mosaic virus (DaMV14UAS; - 203 to - 33) with its 556 bp long core promoter domain (DaMV4CP; - 474 to + 82). S100 and D100 promoters showed 1.8 and 2.2 times stronger activities than that of the CaMV35S promoter. The activity of the promoters is comparable to that of the CaMV35S2 promoter. Transcript analysis employing qRT-PCR and histochemical assays supported the above findings. Abscisic acid and salicylic acid induce the activity of the D100 promoter. Leaf protein obtained from Nicotiana tabacum plant expressing NSD2 gene (Nigella sativa L. defensin 2) driven by the D100 promoter showed antifungal activity against Alternaria alternata and Phoma exigua var. exigua and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Strong S100 and D100 promoters have potential to become efficient candidates for plant metabolic engineering and molecular pharming.


Assuntos
Caulimovirus/genética , Defensinas/genética , Nicotiana/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Proteínas Virais/genética , Ácido Abscísico/farmacologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/virologia , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Caulimovirus/metabolismo , Defensinas/metabolismo , Defensinas/farmacologia , Expressão Gênica , Humanos , Testes de Sensibilidade Microbiana , Agricultura Molecular/métodos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ácido Salicílico/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Nicotiana/virologia , Transformação Genética , Transgenes , Proteínas Virais/metabolismo
10.
Chem Biodivers ; 18(5): e2100079, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33821531

RESUMO

Eight natural biphenyl-type phytoalexins exhibiting antifungal effect were isolated from the leaves of Sorbus pohuashanensis, which invaded by Alternaria tenuissi, and their growth inhibition rate towards A. tenuissi were 50.3 %, 54.0 %, 66.4 %, 58.8 %, 48.5 %, 51.0 %, 33.3 %, and 37.0 %, respectively. In vivo activity assay verified the protective effect of these natural biphenyls on tobacco leaves. The observation of mycelial morphology revealed that these compounds possessed adverse effects on mycelial growth of A. tenuissi. Subsequently, the most potent active compounds, 3',4',5'-trimethoxy[1,1'-biphenyl]-4-ol (3) and 3,4,4',5-tetramethoxy-1,1'-biphenyl (4), were conducted to the further antifungal evaluation and showed significant activity against the other four crop pathogens, Fusarium graminearum, Helminthosporium maydis, Sclerotinia sclerotiorum, and Exserohilum turcicum. Further, the structure-activity relationships and biosynthesis of these compounds were speculated in this work.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Compostos de Bifenilo/farmacologia , Sorbus/química , Alternaria/crescimento & desenvolvimento , Alternaria/patogenicidade , Antifúngicos/química , Antifúngicos/isolamento & purificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Compostos de Bifenilo/química , Compostos de Bifenilo/isolamento & purificação , Bipolaris/efeitos dos fármacos , Bipolaris/patogenicidade , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais , Folhas de Planta/química
11.
Int J Food Microbiol ; 344: 109111, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33676331

RESUMO

Currants are prone to contamination by ochratoxin during cultivation, processing and storage conditions. Saccharomyces cerevisiae is considered to be among the main species of grape yeast flora able to control antagonistic fungi. In this study, the potential of S. cerevisiae Y33 was investigated to inhibit the growth of several fungal species indigenous to the microbiota of grapes. Moreover, the efficacy of this yeast species was investigated to inhibit OTA by toxin producing fungi both in vitro and in situ. For this purpose thirty-five different fungal species, belonging to the genera Aspergillus, Penicillium, Cladosporium, Fusarium and Alternaria interacted in vitro with S. cerevisiae on Malt Extract agar plates, stored at 25 °C for 14 days. Results showed that the highest OTA producer A. carbonarius F71 was inhibited more than 99% from day 7, in contrast to A. niger strains that presented enhanced OTA production at day 14 due to interaction with S. cerevisiae Y33. Additionally, the antifungal potential of the selected yeast was also studied in situ on currants subjected to different treatments and stored at 25 °C for 28 days. Microbiological analysis was undertaken for the enumeration of the bacterial and fungal flora, together with OTA determination at 7 and 21 days. To quantify A. carbonarius on all treated currant samples, molecular analysis with Real Time PCR was employed. A standard curve was prepared with A. carbonarius DNA. The efficiency of the curve was estimated to 10.416, the slope to -3.312 and the range of haploid genome that could be estimated was from 1.05 to 105∙105. The amount of A. carbonarius DNA in all treated currants samples, where the fungus was positively detected, ranged from as low as 0.08 to 562 ng DNA/g currants. The antifungal activity of S. cerevisiae Y33 was observed in all studied cases, causing inhibition of fungal growth and OTA production.


Assuntos
Antibiose/fisiologia , Ocratoxinas/biossíntese , Ribes/microbiologia , Saccharomyces cerevisiae/patogenicidade , Alternaria/crescimento & desenvolvimento , Alternaria/metabolismo , Antifúngicos/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Cladosporium/crescimento & desenvolvimento , Cladosporium/metabolismo , Frutas/microbiologia , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/genética , Fermento Seco
12.
Sci Rep ; 11(1): 6092, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731746

RESUMO

The individual role of biochar, compost and PGPR has been widely studied in increasing the productivity of plants by inducing resistance against phyto-pathogens. However, the knowledge on combined effect of biochar and PGPR on plant health and management of foliar pathogens is still at juvenile stage. The effect of green waste biochar (GWB) and wood biochar (WB), together with compost (Comp) and plant growth promoting rhizobacteria (PGPR; Bacillus subtilis) was examined on tomato (Solanum lycopersicum L.) physiology and Alternaria solani development both in vivo and in vitro. Tomato plants were raised in potting mixture modified with only compost (Comp) at application rate of 20% (v/v), and along with WB and GWB at application rate of 3 and 6% (v/v), each separately, in combination with or without B. subtilis. In comparison with WB amended soil substrate, percentage disease index was significantly reduced in GWB amended treatments (Comp + 6%GWB and Comp + 3%GWB; 48.21 and 35.6%, respectively). Whereas, in the presence of B. subtilis disease suppression was also maximum (up to 80%) in the substrate containing GWB. Tomato plant growth and physiological parameters were significantly higher in treatment containing GWB (6%) alone as well as in combination with PGPR. Alternaria solani mycelial growth inhibition was less than 50% in comp, WB and GWB amended growth media, whereas B. subtilis induced maximum inhibition (55.75%). Conclusively, the variable impact of WB, GWB and subsequently their concentrations in the soil substrate was evident on early blight development and plant physiology. To our knowledge, this is the first report implying biochar in synergism with PGPR to hinder the early blight development in tomatoes.


Assuntos
Alternaria/crescimento & desenvolvimento , Bacillus subtilis/crescimento & desenvolvimento , Carvão Vegetal/farmacologia , Compostagem , Doenças das Plantas/microbiologia , Rizoma/microbiologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento
13.
Food Microbiol ; 97: 103741, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653520

RESUMO

Tomato fruit is susceptible to Alternaria spp. spoilage, which poses a health risk due to their mycotoxin production. Biopreservation relies on the use of whole microorganisms or their metabolites to manage spoilage microorganisms including filamentous fungi. However, the use of treatments at fungistatic level might activate intracellular pathways, which can cause an increment in mycotoxin accumulation. The objective of this work was to evaluate the effect of two strains of Debaryomyces hansenii and the antifungal protein PgAFP at 10 and 40 µg/mL. Both growth and production of two of the most common mycotoxins (tenuazonic acid and alternariol monomethyl ether) by Alternaria tenuissima sp.-grp. and Alternaria arborescens sp.-grp. on a tomato-based matrix, were analysed at 12 °C. Additionally, the impact of these biocontrol agents on the stress-related RHO1 gene expression was assessed. All treatments reduced mycotoxin accumulation (from 27 to 92% of inhibition). Their mode of action against Alternaria spp. in tomato seems unrelated to damages to fungal cell wall integrity at the genomic level. Therefore, the two D. hansenii strains (CECT 10352 and CECT 10353) and the antifungal protein PgAFP at 10 µg/mL are suggested as biocontrol strategies in tomato fruit at postharvest stage.


Assuntos
Alternaria/efeitos dos fármacos , Alternaria/metabolismo , Debaryomyces/metabolismo , Proteínas Fúngicas/metabolismo , Micotoxinas/biossíntese , Doenças das Plantas/microbiologia , Alternaria/genética , Alternaria/crescimento & desenvolvimento , Debaryomyces/química , Debaryomyces/genética , Frutas/microbiologia , Proteínas Fúngicas/genética , Fungicidas Industriais
14.
Sci Rep ; 11(1): 1243, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441827

RESUMO

Spikelet rot disease (SRD) is an emerging disease of the grain surface of naked oat in China that affects both grain yield and quality. The typical symptom is discoloration from the black structures of the causal fungi. Here, we investigated the fungal communities on the grain surfaces of cultivar Bayou 13 grown in ten ecological oat-producing regions of China, to identify the main pathogens of naked oat SRD. Our results showed that the growth of Alternaria spp. and Davidiella spp. exhibited a competitive relationship and was mainly affected by the elevations of all 10 ecological regions. The dominant pathogens were Davidiella spp. in Shannan Prefecture in Tibet and Haidong Prefecture in Qinghai Province and Alternaria spp. in the other eight regions. The ratios of black pathogens of interest to all pathogens in Shannan Prefecture and Haidong Prefecture were significantly lower than those of the other eight regions, thus indicating that SRD mainly occurred in regions below 2000 m (elevation). We isolated black fungal pathogens from grain surfaces and deduced that they were Alternaria spp. by sequence comparison. The blackened appearance of the grain surfaces was more evident under spray inoculation with a spore suspension of Alternaria than under the control in greenhouse experiments. The recovered pathogen was the same as the pathogen used for inoculation. We thus concluded that Alternaria alone causes naked oat SRD and mainly infects naked oat in regions below 2000 m, which provides a basis for the recognition and management of SRD of naked oat.


Assuntos
Alternaria/crescimento & desenvolvimento , Ascomicetos/crescimento & desenvolvimento , Avena/microbiologia , Micobioma , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , China , Tibet
15.
Res Microbiol ; 172(1): 103788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33049328

RESUMO

Aureobasidium pullulans is a yeast-like fungus that produces volatile organic compounds (VOCs) with antifungal properties. VOCs have the potential to trigger the production of intracellular reactive oxygen species (ROS), lipid peroxidation and electrolyte loss in microorganisms. The relationship among A. pullulans VOCs, induced ROS accumulation and electrolyte leakage was investigated in Botrytis cinerea and Alternaria alternata in vitro. Exposure to a mixture of A. pullulans VOCs: ethanol, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-phenylethanol, resulted in electrolyte leakage in both B. cinerea and A. alternata. Fluorescence microscopy using 2',7'-dichlorofluorescein diacetate indicated triggered ROS accumulation in exposed fungal mycelia and the presence of the superoxide radical was evident by intense red fluorescence with dihydroethidium. Partial inhibition of enzymes of the mitochondrial respiratory chain complex I of B. cinerea and A. alternata by pre-treatment with rotenone reduced ROS accumulation in hypha exposed to A. pullulans VOCs and reversed the VOCs inhibition of fungal growth. Scanning electron micrographs revealed that B. cinerea and A. alternata hypha exposed to A. pullulans VOCs had altered cell wall structures. Our findings give insights into the potential mechanisms involved in the antifungal properties of A. pullulans in the suppression of B. cinerea and A. alternata growth in vitro.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Aureobasidium/metabolismo , Botrytis/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Alternaria/crescimento & desenvolvimento , Antifúngicos/metabolismo , Agentes de Controle Biológico/farmacologia , Botrytis/crescimento & desenvolvimento , Eletrólitos/análise , Transporte de Elétrons/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Compostos Orgânicos Voláteis/metabolismo
16.
Mar Drugs ; 18(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233849

RESUMO

One new meroterpenoid-type alkaloid, oxalicine C (1), and two new erythritol derivatives, penicierythritols A (6) and B (7), together with four known meroterpenoids (2-5), were isolated from the marine algal-derived endophytic fungus Penicillium chrysogenum XNM-12. Their planar structures were determined by means of spectroscopic analyses, including UV, 1D and 2D NMR, and HRESIMS spectra. Their stereochemical configurations were established by comparing the experimental and calculated electronic circular dichroism (ECD) spectra for compound 1, as well as by comparison of the optical rotations with literature data for compounds 6 and 7. Notably, oxalicine C (1) represents the first example of an oxalicine alkaloid with a cleaved α-pyrone ring, whereas penicierythritols A (6) and B (7) are the first reported from the Penicillium species. The antimicrobial activities of compounds 1-7 were evaluated. Compounds 1 and 6 exhibited moderate antibacterial effects against the plant pathogen Ralstonia solanacearum with minimum inhibitory concentration (MIC) values of 8 and 4 µg/mL, respectively. Compound 6 also possesses moderate antifungal properties against the plant pathogen Alternaria alternata with a MIC value of 8 µg/mL.


Assuntos
Alternaria/efeitos dos fármacos , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Eritritol/farmacologia , Penicillium chrysogenum/metabolismo , Ralstonia solanacearum/efeitos dos fármacos , Estramenópilas/microbiologia , Terpenos/farmacologia , Alternaria/crescimento & desenvolvimento , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Eritritol/análogos & derivados , Eritritol/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ralstonia solanacearum/crescimento & desenvolvimento , Metabolismo Secundário , Relação Estrutura-Atividade , Terpenos/isolamento & purificação
17.
Pharm Res ; 37(12): 246, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215292

RESUMO

PURPOSE: The present study made an attempt to develop copper nanoparticles (Cu-NP) with antifungal property using green synthesis method. Copper oxide nanoparticles (CuO-NPs) botanically synthesized using Neem leaf extract (Azadirachta indica A. Juss) were characterized by using different techniques like; UV-visible spectrophotometry, FTIR, XRD, SEM and TEM. METHODS: Materials were chosen the disease free and fresh Azadirachta indica A. Juss were collected and identified at Center of Biodiversity and Taxonomy. The plant samples were vigorously washed with distilled water then shade dried followed by sterilization with 0.1% mercuric chloride for 20 s and again it was washed with distilled water. 15 g powder form of plant material was added to 200 ml double distilled, CO2 free and deionized water and kept in shaker at 80°C and 1500 rpm for six hours. After agitation, the extract was separated by regular centrifugation at 10,000 rpm followed by filtration by using whatmann filter paper. The final volume of 100 ml of supernatant was collected as pure extract and stored in cool place for further use. RESULTS: The final results confirm a significant inhibition of CuO-NPs for the test fungi. Additionally, CuO-NPs demonstrated an enhanced effect when combined with Neem leaf extract. A total of 20-30% improvement in activity was noticed after combination, which correlates with commonly used synthetic fungicides. The toxicity results reveal that A. indica extract and their combined fractions with CuO-NP were less toxic to the test seeds of experimental plant while as bulk Cu followed by biosynthesized CuO-NPs influenced the germination rate as compared to control pots. CONCLUSIONS: The study drops a concern of research and offers a promising route of developing Copper based green fungicides that can help to combat with modern issues of synthetic fungicides. An average size of 80 ± 15 nm monoclinic cupric oxide (CuO) and cubic cuprous oxides (Cu2O) nanocrystals that existed in mixed form were successfully developed.


Assuntos
Azadirachta/metabolismo , Cobre/metabolismo , Frutas/microbiologia , Fungicidas Industriais/metabolismo , Química Verde , Malus/microbiologia , Nanopartículas Metálicas , Extratos Vegetais/metabolismo , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Cobre/farmacologia , Fungicidas Industriais/farmacologia , Folhas de Planta/metabolismo
18.
Toxins (Basel) ; 12(10)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092244

RESUMO

Alternaria alternata is an important phytopathogen causing fruit black rot and also producing a variety of mycotoxins, such as alternariol (AOH) and alternariol monomethyl ether (AME) as two main contaminants. This could lead to economic losses of agricultural products as well as human health risks. In this study, magnolol extracted from the traditional Chinese herb, Mangnoliaofficinalis, exhibited an obvious antifungal property and could completely suppress the mycelial growth at 100 µM. Morphological differences of A. alternata were observed to be significantly shrunk and wrinkled after the exposure to magnolol. Furthermore, AOH and AME were no longer produced in response to 50 µM of magnolol. To uncover the antifungal and antimycotoxigenic mechanisms, the transcriptomic profiles of A. alternata-treated with or without magnolol-were evaluated. The clustered genes responsible for AOH and AME biosynthesis were obviously less transcribed under magnolol stress and this was further confirmed by qRT-PCR. The global regulators of carbon and nitrogen utilization, such as CreA and NmrA, were significantly down-regulated and this possibly caused the reduction in mycotoxins. In addition, fatty acid ß-oxidation was regarded to contribute to polyketide mycotoxin production for the supply of precursor acetyl-CoA while the expression of these related genes was inhibited. The response to magnolol led to the marked alteration of oxidative stress and the down-expression of the mitogen-activated protein kinase (MAPK) signaling pathway from the transcriptome data and the determination of peroxidase (POD), superoxide dismutase (SOD) and glutathione (GSH) assays. This above might be the very reason for the growth supression and mycotoxin production of A. alternata by magnolol. This study provides new insights into its potential as an important active ingredient for the control of A. alternata and its mycotoxins in fruits and their products.


Assuntos
Alternaria/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Lignanas/farmacologia , Micotoxinas/metabolismo , Transcriptoma/efeitos dos fármacos , Alternaria/genética , Alternaria/crescimento & desenvolvimento , Alternaria/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Lactonas/metabolismo
19.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316699

RESUMO

Rutaceae are widely used in ethnomedicine to treat infectious diseases in humans and plants. In this study, the antifungal activity of the Vepris macrophylla leaf essential oil (VEO) and its main components, citral and citronellol, was evaluated against six phytopathogenic fungi. In addition, the possible action of VEO on the synthesis of mycotoxins was evaluated as well. To determine the antifungal activity of VEO we used the agar dilution method and VEO showed inhibitory activity against all the tested fungi. In particular, VEO resulted to be fungicidal against Phytophthora cryptogea and Fusarium avenaceum. For all other fungi VEO exhibited fungistatic activity and the weakest effect was observed on Alternaria solani. Citral was very effective against P. cryptogea, F. avenaceum, F. poae and F. graminearum. On the other hand, citronellol showed good activity towards P. cryptogea and F. avenaceum and weaker activity towards F. poae and F. graminearum. It can be concluded that VEO can be considered a promising antifungal agent, especially against P. cryptogea and F. avenaceum, suggesting a possible use in the formulation of new selective and natural fungicides.


Assuntos
Fungos/crescimento & desenvolvimento , Fungicidas Industriais/farmacocinética , Micotoxinas/metabolismo , Óleos Voláteis/farmacologia , Rutaceae/química , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacologia , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Fungos/classificação , Fungos/efeitos dos fármacos , Fungicidas Industriais/química , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Óleos Voláteis/química , Phytophthora/efeitos dos fármacos , Phytophthora/crescimento & desenvolvimento , Folhas de Planta/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia
20.
Fungal Genet Biol ; 139: 103384, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278718

RESUMO

The siderophore-mediated iron uptake machinery is required by the tangerine pathotype of Alternaria alternata to colonize host plants. The present study reports the functions of the GATA-type transcription regulator SreA by analyzing loss- and gain-of-function mutants. The expression of sreA is transiently upregulated by excess iron. The sreA deficiency mutant (ΔsreA) shows severe growth defect but produces ACT toxin and incites necrotic lesions on citrus leaves as efficiently as wild type. SreA suppresses the expression of genes encoding polypeptides required for siderophore biosynthesis and transport under iron-replete conditions. Under iron-replete conditions, SreA impacts the expression of the genes encoding the NADPH oxidase complex involved in H2O2 production. SreA negatively impacts H2O2 resistance as ΔsreA increases resistance to H2O2. However, sreA deficiency has no effects on the expression of genes encoding several key factors (Yap1, Hog1, and Skn7) involved in oxidative stress resistance. ΔsreA increases resistance to calcofluor white and Congo red, which may suggest a role of SreA in the maintenance of cell wall integrity. Those are novel phenotypes associated with fungal sreA. Overall, our results indicate that SreA is required to protect fungal cells from cytotoxicity caused by excess iron. The results also highlight the regulatory functions of SreA and provide insights into the critical role of siderophore-mediated iron homeostasis in resistance to oxidative stress in A. alternata.


Assuntos
Alternaria/genética , Parede Celular/efeitos dos fármacos , Proteínas Repressoras/genética , Sideróforos/genética , Alternaria/crescimento & desenvolvimento , Parede Celular/genética , Proteínas Fúngicas/genética , Fatores de Transcrição GATA , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Ferro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...