Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 570
Filtrar
1.
PLoS One ; 19(4): e0301086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662719

RESUMO

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Assuntos
Antivirais , Iridoides , Simulação de Acoplamento Molecular , Olea , Extratos Vegetais , Folhas de Planta , Polifenóis , SARS-CoV-2 , Olea/química , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Iridoides/farmacologia , Iridoides/química , Humanos , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/química , Glucosídeos/farmacologia , Glucosídeos/química , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Simulação por Computador , Tratamento Farmacológico da COVID-19 , Luteolina/farmacologia , Luteolina/química , RNA Helicases/metabolismo , RNA Helicases/antagonistas & inibidores , Apigenina/farmacologia , Apigenina/química
2.
J Asian Nat Prod Res ; 26(6): 739-746, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38329008

RESUMO

A new flavonolignan, sonyamandin (1), along with other known compounds was isolated from the aerial parts and seeds extracts of Silybum marianum (milk thistle) collected from Jordan. The known ones are ursolic acid (2), oleanolic acid (3), maslinic acid (4), oleic acid (5), ß-sitosterol (6), ß-, sitosteryl glucoside (7), apigenin (8), kaempferol-3-O-rhamnoside (9), apigenin-7-O-ß-D-glycoside (10), isosylibin A (11), isosylibin B (12), and silybin B (13). The absolute stereochemistry of 1 was confirmed by 2D NMR and CD analysis.


Assuntos
Flavonolignanos , Silybum marianum , Silybum marianum/química , Estrutura Molecular , Flavonolignanos/química , Flavonolignanos/isolamento & purificação , Jordânia , Sementes/química , Ressonância Magnética Nuclear Biomolecular , Sitosteroides/química , Ácido Oleanólico/química , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/isolamento & purificação , Apigenina/química , Triterpenos/química , Triterpenos/isolamento & purificação
3.
Front Biosci (Landmark Ed) ; 28(10): 237, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37919082

RESUMO

Several antiviral drugs are clinically approved to treat influenza that is a highly prevalent acute respiratory disease. However, emerging drug-resistant virus strains undermine treatment efficacy, highlighting the exigency for novel antiviral drugs to counter these drug-resistant strains. Plants and their derivates have been historically utilized as medicinal remedies, and extensive studies have evidenced the antiviral potential of phytochemicals. Notably, apigenin is a predominant flavonoid with minimal toxicity and substantial therapeutic effects in various disease models. Despite its many anti-inflammatory, anti-oxidant, anti-cancer, anti-bacterial, and other beneficial bioactivities, existing reviews have yet to focus on apigenin's antiviral effects. Therefore, this review elucidates apigenin's therapeutic and antiviral properties in vitro and in vivo, discussing its mode of action and future prospects. Apigenin's remarkable inhibition by modulating multiple mechanisms against viruses has promising potential for novel plant-derived antiviral drugs and further clinical study developments.


Assuntos
Neoplasias , Viroses , Humanos , Apigenina/farmacologia , Apigenina/uso terapêutico , Apigenina/química , Viroses/tratamento farmacológico , Neoplasias/tratamento farmacológico , Flavonoides , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
J Nat Prod ; 86(5): 1179-1188, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37115657

RESUMO

Apigenin (APG) is a well-known dietary flavonoid with multiple bioactivities, but its poor aqueous solubility may result in low oral bioavailability and thus compromised therapeutic effects. In the present study, APG was complexed with oxymatrine (OMT), a natural quinolizidine alkaloid, for enhanced anti-inflammatory activity, and the related mechanisms in the interaction of APG with OMT were investigated. Fourier transform-infrared spectroscopy, fluorescence spectroscopy, Raman spectroscopy, and proton nuclear magnetic resonance spectroscopy characterizations demonstrated the occurrence of an APG-OMT complex formed at a molar ratio of 1:2. Then, molecular dynamics simulations and quantum chemical calculations were utilized to elucidate that hydrogen bonding, van der Waals forces, and hydrophobic effects were the main forces acting in the formation of the APG-OMT complex. Pharmacokinetic studies in rats demonstrated that the oral bioavailability of APG in the APG-OMT complex was significantly higher than that of APG alone. Finally, bioactivity evaluation in the lipopolysaccharide-induced acute inflammatory injury mouse models showed that the APG-OMT complex exhibited more potent anti-inflammatory effects than APG alone. This study confirmed that APG and OMT exerted enhanced anti-inflammatory effects through self-complexation, which may provide a novel strategy for improving the bioavailability and bioactivity of natural product mixtures.


Assuntos
Alcaloides , Apigenina , Camundongos , Ratos , Animais , Apigenina/farmacologia , Apigenina/química , Alcaloides/farmacocinética , Matrinas , Anti-Inflamatórios/farmacologia , Quinolizinas/farmacocinética
5.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985836

RESUMO

Flavones such as 7,8-dihydroxyflavone (tropoflavin), 5,6,7-trihydroxyflavone (baicalein), 3',4',5,6-tetrahydroxyflavone (luteolin), 3,3',4',5,5',7-hexahydroxyflavone (myricetin), 4',5,7-trihydroxyflavone (apigenin), and 5,7-dihydroxyflavone (chrysin) are important both for their presence in natural products and for their pharmacological applications. However, due to their chemical characteristics and their metabolic processes, they have low solubility and low bioavailability. Knowledge about the physicochemical properties of nanocarriers and the possible mechanisms of covalent and non-covalent interaction between nanoparticles (NPs) and drugs is essential for the design of nanocarriers to improve the bioavailability of molecules with pharmacological potential, such as tropoflavin, baicalein, luteolin, myricetin, apigenin, and chrysin. The parameters of characterization of some NPs of these flavones, such as size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE), and % release/time, utilized in biomedical applications and the covalent and non-covalent interactions existing between the polymeric NPs and the drug were analyzed. Similarly, the presence of functional groups in the functionalized carbon nanotubes (CNTs), as well as the effect of pH on the % adsorption of flavonoids on functionalized multi-walled carbon nanotubes (MWCNT-COOH), were analyzed. Non-covalent interaction mechanisms between polymeric NPs and flavones, and covalent interaction mechanisms that could exist between the NPs and the amino and hydroxyl functional groups, are proposed.


Assuntos
Flavonas , Nanotubos de Carbono , Flavonas/química , Apigenina/química , Luteolina/química , Flavonoides/química
6.
Food Chem ; 414: 135738, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841103

RESUMO

In this work, the potential of soy protein isolate (SPI)-luteolin (Lut)/apigenin (Ap)/chrysin (Chr) complexes as natural preservatives for food and cosmetics was evaluated by comparing their interactional and functional properties with structure-activity relationship. The results of spectrometry and molecular docking indicated that the B-ring hydroxylation of flavonoids affected their binding constants with SPI, which were determined as Lut (1.45 × 106 L/mol) > Ap (2.04 × 105 L/mol) > Chr (3.81 × 104 L/mol) at 298.15 K. It demonstrated that the hydrogen bonding force played an important role in binding flavonoids to SPI. Moreover, the anti-oxidation ability, antimicrobial effect, and foaming properties were positively correlated with increase in number of hydroxyl groups on the B-ring, but the amount and type of the preservative should be adjusted aimed at the nutrition components. This study provides a theoretical basis for the use of flavonoids and SPI-flavonoid complexes as natural preservatives for food and cosmetics.


Assuntos
Apigenina , Luteolina , Apigenina/química , Luteolina/química , Proteínas de Soja/química , Simulação de Acoplamento Molecular , Flavonoides/química , Conservantes Farmacêuticos
7.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677592

RESUMO

Apigenin is a natural flavonoid with significant biological activity, but poor solubility in water and low bioavailability limits its use in the food and pharmaceutical industries. In this paper, apigenin-7-O-ß-(6″-O)-d-glucoside (AG) and apigenin-7-O-ß-(6″-O-succinyl)-d-glucoside (SAG), rare apigenin glycosyl and succinyl derivatives formed by the organic solvent-tolerant bacteria Bacillus licheniformis WNJ02 were used in a 10.0% DMSO (v/v) system. The water solubility of SAG was 174 times that of apigenin, which solved the application problem. In the biotransformation reaction, the conversion rate of apigenin (1.0 g/L) was 100% at 24 h, and the yield of SAG was 94.2%. Molecular docking showed that the hypoglycemic activity of apigenin, apigenin-7-glucosides (AG), and SAG was mediated by binding with amino acids of α-glucosidase. The molecular docking results were verified by an in vitro anti-α-glucosidase assay and glucose consumption assay of active compounds. SAG had significant anti-α-glucosidase activity, with an IC50 of 0.485 mM and enhanced glucose consumption in HepG2 cells, which make it an excellent α-glucosidase inhibitor.


Assuntos
Apigenina , Hipoglicemiantes , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Glicosilação , Apigenina/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Glucose , Glucosídeos/química
8.
J Biomol Struct Dyn ; 41(20): 11247-11254, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36571489

RESUMO

The interaction of three flavonoids, apigenin, fisetin and quercetin with yeast aldehyde dehydrogenase, ALDH was studied by spectroscopic and molecular docking methods. A combination of both static and dynamic processes interaction mechanism for the binding of flavonoids with ALDH was found. The interaction takes place with moderate binding and the interaction was driven by hydrophobic contacts. The microenvironments of the fluorescent amino acids changed upon flavonoids binding. The distances between ALDH and flavonoids determined by Förster Resonant Energy Transfer (FRET) confirmed the results obtained by fluorescence. The structure of ALDH against thermal denaturation was stabilized by apigenin and destabilized by fisetin and quercetin. Molecular docking simulation showed that all flavonoids bind to the same site of ALDH and confirmed the moderate binding straight found in fluorescence.Communicated by Ramaswamy H. Sarma.


Assuntos
Flavonoides , Quercetina , Flavonoides/química , Quercetina/química , Saccharomyces cerevisiae , Simulação de Acoplamento Molecular , Apigenina/química , Aldeído Desidrogenase/metabolismo , Sítios de Ligação , Ligação Proteica , Termodinâmica , Espectrometria de Fluorescência
9.
J Biomol Struct Dyn ; 41(5): 1553-1560, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34974817

RESUMO

In silico methods such as molecular docking and molecular dynamic (MD) simulations have significant interest due to their ability to identify the protein-ligand interactions at the atomic level. In this work, different computational methods were used to elucidate the ability of some olive oil components to act as Neisseria adhesion A Regulatory protein (NadR) inhibitors. The frontier molecular orbitals (FMOs) and the global properties such as global hardness, electronegativity, and global softness of ten olive oil components (α-Tocopherol, Erythrodiol, Hydroxytyrosol, Linoleic acid, Apigenin, Luteolin, Oleic acid, Oleocanthal, Palmitic acid, and Tyrosol) were reported using Density Functional Theory (DFT) methods. Among all investigated compounds, Erythrodiol, Apigenin, and Luteolin demonstrated the highest binding affinities (-8.72, -7.12, and -8.24 kcal/mol, respectively) against NadR, compared to -8.21 kcal/mol of the native ligand based on molecular docking calculations. ADMET properties and physicochemical features showed that Erythrodiol, Apigenin, and Luteolin have good physicochemical features and can act as drugs candidate. Molecular dynamics (MD) simulations demonstrated that Erythrodiol, Apigenin, and Luteolin show stable binding affinity and molecular interaction with NadR. Further Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analyses using the MD trajectories also demonstrated the higher binding affinity of Erythrodiol, Apigenin and Luteolin inside NadR protein. The overall study provides a rationale to use Erythrodiol, Apigenin, and Luteolin in the drug development as anti-adhesive drugs lead. Communicated by Ramaswamy H. Sarma.


Assuntos
Apigenina , Luteolina , Simulação de Acoplamento Molecular , Azeite de Oliva , Apigenina/farmacologia , Apigenina/química , Luteolina/farmacologia , Luteolina/química , Ligantes , Simulação de Dinâmica Molecular
10.
Food Res Int ; 161: 111871, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192907

RESUMO

Maojian tea (MJT) is a traditional Chinese herbal tea beverage manufactured from the leaves of the Dracocephalum rupestre Hance plant. In this study, a nontargeted metabolomics approach combined with absolute quantifications was applied to comprehensively investigate the chemical compositions of MJT and to determine the effects of the processing methods on compounds. Flavones (apigenin and luteolin, 0.06-1.35 mg/g), flavanones (eriodictyol and naringenin, 0.1-2.3 mg/g), flavone 7-O-glycosides (0.15-5.98 mg/g), flavanone 7-O-glycosides (0.28-19.41 mg/g), and triterpenoids were presumed to be characteristic components of MJT. Applying imitative green and black tea processing methods to MJT led to increases in flavone/flavanone aglycones, lipids, and triterpenoids and decreases in flavone/flavanone glycosides, amino acids, organic acids, and most phenolic acids. This study offers novel insights into the chemical compositions and the influences of processing methods on MJT and will be utilized for the quality control of MJT.


Assuntos
Flavanonas , Flavonas , Lamiaceae , Chás de Ervas , Triterpenos , Aminoácidos , Apigenina/química , Flavanonas/química , Glicosídeos/química , Lipídeos , Luteolina , Chá/metabolismo
11.
Int J Pharm ; 624: 121981, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35792228

RESUMO

Flavonoids have many positive pharmacological properties, such as antioxidant, antitumor, and anti-inflammatory activities. However, factors such as low water solubility and low dissolution rate limit their use. To overcome their poor solubility, carrier-free apigenin (API) microparticles and nanoparticles were prepared using three types of antisolvent precipitation technologies: supercritical antisolvent (SCF) technology, ultrasonic-assisted liquid antisolvent (UAL) technology, and high-pressure homogenization (HPH) technology. All three technologies can produce uniform tiny particles. However, the API particles obtained using these different techniques show subtle differences in terms of physical and chemical properties and biological activity. The preparation, characterization, and potential use of API microparticles and nanoparticles to improve in vitro release were studied. The resulting API particles were investigated and compared using Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. We determined the optimum conditions for SCF, UAL, and HPH technologies to produce API microparticles and nanoparticles. The antioxidant and antitumor properties of the API particles were also investigated. The results demonstrated that the reduced particle size of the APIs prepared via SCF, UAL, and HPH technologies contributed to the enhanced dissolution rate, which in turn enhanced API bioactivity.


Assuntos
Apigenina , Nanopartículas , Antioxidantes , Apigenina/química , Varredura Diferencial de Calorimetria , Cristalização/métodos , Microscopia Eletrônica de Varredura , Nanopartículas/química , Tamanho da Partícula , Solubilidade , Solventes/química , Tecnologia , Ultrassom
12.
Bioengineered ; 13(1): 1013-1024, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974800

RESUMO

The present research aimed to elucidate a convenient, safe and economic approach to induce the growth of endogenous bone tissue and bone regeneration. S-UNL-E was prepared using reverse-phase evaporation, and scutellarin encapsulation was subsequently compared. Meanwhile, the optimal preparation scheme was developed using an orthogonal method, and the particle size was determined using laser light scattering. In osteoblasts cultured in vitro, methyl thiazolyl tetrazolium (MTT), alkaline phosphatase (ALP) staining and alizarin red staining were used to detect the osteogenic effects of S-UNL-E. The results indicated that the optimal process conditions for S-UNL-E included mass ratios of phospholipid-cholesterol, phospholipid-breviscapine, phospholipid-sodium cholate, and phospholipid-stearamide were 2:1, 15:1, 7:1 and 7:1, respectively, and the mass of ethylenediamine tetramethylphosphonic acid (EDTMP) was 30 mg. The average particle size of S-UNL-E was 156.67 ± 1.76 nm, and Zeta potential was -28.77 ± 0.66 mv. S-UNL-E substantially increased the expression of ALP osteoblasts, elevated the content of osteocalcin protein and promoted the formation of mineralized nodules. Cells in the S-UNL-E group were densely distributed with integrated cell structure, and the actin filaments were clear and obvious. The findings demonstrated that S-UNL-E greatly promoted the differentiation and maturation of osteoblasts, and S-UNL-E (2.5 × 108) produced the most favorable effect in differentiation promotion. In conclusion, the present study successfully constructed an S-UNL-E material characterized by high encapsulation and high stability, which could effectively promote osteogenic differentiation and bone formation.


Assuntos
Citoesqueleto de Actina/metabolismo , Fosfatase Alcalina/metabolismo , Apigenina/farmacologia , Glucuronatos/farmacologia , Osteoblastos/citologia , Osteocalcina/metabolismo , Animais , Apigenina/química , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Composição de Medicamentos , Glucuronatos/química , Lipossomos , Nanopartículas , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese , Tamanho da Partícula , Cultura Primária de Células , Ratos
13.
Bioengineered ; 13(2): 3350-3361, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048792

RESUMO

The COVID-19 new variants spread rapidly all over the world, and until now scientists strive to find virus-specific antivirals for its treatment. The main protease of SARS-CoV-2 (Mpro) exhibits high structural and sequence homology to main protease of SARS-CoV (93.23% sequence identity), and their sequence alignment indicated 12 mutated/variant residues. The sequence alignment of SARS-CoV-2 main protease led to identification of only one mutated/variant residue with no significant role in its enzymatic process. Therefore, Mpro was considered as a high-profile drug target in anti-SARS-CoV-2 drug discovery. Apigenin analogues to COVID-19 main protease binding were evaluated. The detailed interactions between the analogues of Apigenin and SARS-CoV-2 Mpro inhibitors were determined as hydrogen bonds, electronic bonds and hydrophobic interactions. The binding energies obtained from the molecular docking of Mpro with Boceprevir, Apigenin, Apigenin 7-glucoside-4'-p-coumarate, Apigenin 7-glucoside-4'-trans-caffeate and Apigenin 7-O-beta-d-glucoside (Cosmosiin) were found to be -6.6, -7.2, -8.8, -8.7 and -8.0 kcal/mol, respectively. Pharmacokinetic parameters and toxicological characteristics obtained by computational techniques and Virtual ADME studies of the Apigenin analogues confirmed that the Apigenin 7-glucoside-4'-p-coumarate is the best candidate for SARS-CoV-2 Mpro inhibition.


Assuntos
Antivirais/farmacologia , Apigenina/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Sequência de Aminoácidos , Antivirais/química , Antivirais/farmacocinética , Apigenina/química , Apigenina/farmacocinética , Bioengenharia , COVID-19/virologia , Simulação por Computador , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Glucosídeos/química , Glucosídeos/farmacocinética , Glucosídeos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Fitoterapia , Domínios Proteicos , SARS-CoV-2/genética
14.
J Biomol Struct Dyn ; 40(21): 10962-10977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34296655

RESUMO

Worldwide disease burden of colorectal cancer (CRC) increasing alarmingly, but a suitable therapeutic strategy is not available yet. Abnormal activation of the PI3K/Akt/mTOR signalling because of mutation in the PIK3CA gene is a driving force behind CRC development. Therefore, this study aimed to comprehensively characterise the potential of phenolic compounds from Olea europaea against the PI3K/Akt/mTOR axis by using in silico methodologies. Molecular docking was utilised to study key interactions between phenolic compounds of O. europaea and target proteins PI3K, Akt, mTOR with reference to known inhibitor of target. Drug likeness and ADME/T properties of selected phenols were explored by online tools. Dynamic properties and binding free energy of target-ligand interactions were studied by molecular dynamic simulation and MM-PBSA method respectively. Molecular docking revealed apigenin, luteolin, pinoresinol, oleuropein, and oleuropein aglycone as the top five phenolic compounds which showed comparable/better binding affinity than the known inhibitor of the respective target protein. Drug likeness and ADME/T properties were employed to select the top three phenols namely, apigenin, luteolin, and pinoresinol which shown to bind stably to the catalytic cleft of target proteins as confirmed by molecular dynamics simulations. Therefore, Apigenin, luteolin, and pinoresinol have the potential to be used as the non-toxic alternative to synthetic chemical inhibitors generally used in CRC treatment as they can target PI3K/Akt/mTOR axis. Particularly, pinoresinol showed great potential as dual PI3K/mTOR inhibitor. However, this study needs to be complemented with future in vitro and in vivo studies to provide an alternative way of CRC treatment. Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias Colorretais , Olea , Humanos , Olea/química , Fosfatidilinositol 3-Quinases/genética , Fenóis/farmacologia , Fenóis/química , Proteínas Proto-Oncogênicas c-akt , Apigenina/química , Luteolina , Simulação de Acoplamento Molecular , Classe I de Fosfatidilinositol 3-Quinases/genética , Serina-Treonina Quinases TOR , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
15.
Fitoterapia ; 156: 105083, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785238

RESUMO

Since glucolipid metabolism disorders is often the mono-target therapy fails in managing blood glucose and lipid levels and the other complications, it is urgent and necessary to seek for the new potential drugs or functional food acting on multi-targets. The hypoglycemic and hypolipidemic dual activities of the root, stems and leaves of Desmodium caudatum, which is used for traditional Chinese medicine, was evaluated. Twelve extracts with different extraction conditions were prepared and extract 9 was find to exhibit potential inhibitory activities of fructose-1, 6-bisphosphatase (FBPase), α-glucosidase, and pancrelipase, as well as promote cellular glucose consumption and reduce cellular content of lipid. Five flavonoids were isolated and identified from extract 9, among which 8-prenylquercetin exhibited potent α-glucosidase (IC50 = 4.38 µM) and FBPase (IC50 = 3.62 µM) dual inhibitory activity, which were 75-fold higher than acarbose (IC50 = 330.10 µM) and comparable with AMP (IC50 = 2.92 µM). In addition, 8-prenylquercetin was able to promote glucose consumption and reduce lipid content. Besides, an efficient synthesis of the most potent 8-prenylquercetin was developed from inexpensive and commercially available rutin in 21% overall yield by 6 steps, which lay the foundation of preparation sufficient amount for follow-up study.


Assuntos
Fabaceae/química , Flavonoides/metabolismo , Extratos Vegetais/metabolismo , Quercetina/biossíntese , Apigenina/química , Apigenina/isolamento & purificação , Western Blotting , Flavanonas/química , Flavanonas/isolamento & purificação , Flavonoides/isolamento & purificação , Glucose/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Lipase/antagonistas & inibidores , Extratos Vegetais/isolamento & purificação , Quercetina/química , alfa-Glucosidases/efeitos dos fármacos , alfa-Glucosidases/metabolismo
16.
J Ethnopharmacol ; 285: 114854, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808301

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tsantan Sumtang (TS), a traditional Tibetan medicine, has been used in the clinic for the treatment of myocardial ischemia (MI) for ages, however, the bioactive ingredients that are responsible for improving MI remain unknown. AIM OF THE STUDY: This study investigated the chemical components of TS and their medicinal efficacies at cell levels, in order to expound the bioactive ingredients in TS. MATERIALS AND METHODS: First, a response-surface methodology was employed to determine the optimum ethanol reflux extraction process of polyphenols in TS (PTS) due to their close correlation with MI improvement. Second, a serum pharmacochemistry technique was used to analyze the compounds of PTS absorbed into the blood of rats. Third, hypoxia-, H2O2-, and adriamycin (ADM)-induced H9c2 cell injury models were used to investigate the cardioprotective effects of these compounds in vitro. Fourth, protective effects of isovitexin, quercitrin, and isoeugenol on mitochondrial function were further tested. RESULTS: The optimum extraction conditions for obtaining PTS were an ethanol concentration of 78.22%, an extraction time of 67.4 min, and a material-liquid ratio of 1:72.60 mL/g. Serum pharmacochemistry analysis detected 21 compounds, of which 11 compounds were always present in the blood within 5 h. Cytotoxicity and the protective effect of 11 compounds in hypoxia-, H2O2-, and ADM-induced H9c2 cell injury models shown that isovitexin, quercitrin, and isoeugenol had almost no cytotoxicity, and they could elevate the survival rate in injured H9c2 cells. Furthermore, isovitexin, quercitrin, and isoeugenol could decrease mitochondrial reactive oxygen species (ROS) releasion, inhibite mitochondrial permeability transition pore (mPTP) opening, ameliorate the change of mitochondrial membrane potential (MMP) to exert mitochondrial protection effect. CONCLUSION: Isovitexin, quercitrin, and isoeugenol exhibited cardioprotective effect at cell levles, these three compounds might be the bioactive ingredients in TS. These findings elucidate the pharmacodynamic substances and mechanisms of TS, guiding its clinical use.


Assuntos
Medicina Tradicional Tibetana , Mioblastos/efeitos dos fármacos , Isquemia Miocárdica/tratamento farmacológico , Polifenóis/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Apigenina/administração & dosagem , Apigenina/química , Apigenina/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Doxorrubicina/toxicidade , Eugenol/administração & dosagem , Eugenol/análogos & derivados , Eugenol/química , Eugenol/farmacologia , Peróxido de Hidrogênio/toxicidade , Mioblastos/fisiologia , Fitoterapia , Polifenóis/sangue , Polifenóis/química , Polifenóis/farmacocinética , Quercetina/administração & dosagem , Quercetina/análogos & derivados , Quercetina/química , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley
17.
Medicine (Baltimore) ; 100(50): e28228, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34918685

RESUMO

ABSTRACT: Vitexin is a natural active ingredient in hawthorn leaves, which has a wide range of anti-tumor effects. This study was conducted to assess the protective effect of hawthorn vitexin on the ethanol-injured DNA of hepatocytes in vitro and to explore its mechanism. The effect of different concentrations of hawthorn vitexin on ethanol-injured hepatocytes was detected via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method to study the protective effect of hawthorn vitexin on ethanol-injured DNA damage in hepatocytes. Single-cell gel electrophoresis was used to observe the effect of hawthorn vitexin on ethanol-induced DNA damage in hepatocytes, and the Olive tail moment was measured. Cell physiological and biochemical indexes, such as superoxide dismutase activity, malonaldehyde content, and glutathione peroxidase activity, were detected with kits. The mRNA expression of the superoxide dismutase gene was measured via real-time quantitative polymerase chain reaction. It was showed that 0.2, 0.4, and 0.8 mg mL-1 hawthorn vitexin could significantly repair hepatocyte growth and ethanol-induced DNA damage. This effect was closely related to the improvement in superoxide dismutase, malonaldehyde, and glutathione peroxidase. Hawthorn vitexin could be used to repair ethanol-injured hepatocytes through antioxidation effects, and showed potential for the treatment of liver injury.


Assuntos
Apigenina/química , Crataegus , DNA/efeitos dos fármacos , Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatopatias/prevenção & controle , Extratos Vegetais , Dano ao DNA/efeitos dos fármacos , Glutationa Peroxidase , Hepatócitos/patologia , Malondialdeído , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase
18.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834059

RESUMO

A flavonoid is a versatile core structure with various cellular, immunological, and pharmacological effects. Recently, flavones have shown anti-dengue activities by interfering with viral translation and replication. However, the molecular target is still elusive. Here we chemically modified apigenin by adding an alkyne moiety into the B-ring hydroxyl group. The alkyne serves as a chemical tag for the alkyne-azide cycloaddition reaction for subcellular visualization. The compound located at the perinuclear region at 1 and 6 h after infection. Interestingly, the compound signal started shifting to vesicle-like structures at 6 h and accumulated at 24 and 48 h after infection. Moreover, the compound treatment in dengue-infected cells showed that the compound restricted the viral protein inside the vesicles, especially at 48 h. As a result, the dengue envelope proteins spread throughout the cells. The alkyne-tagged apigenin showed a more potent efficacy at the EC50 of 2.36 ± 0.22, and 10.55 ± 3.37 µM, respectively, while the cytotoxicities were similar to the original apigenin at the CC50 of 70.34 ± 11.79, and 82.82 ± 11.68 µM, respectively. Molecular docking confirmed the apigenin binding to the previously reported target, ribosomal protein S9, at two binding sites. The network analysis, homopharma, and molecular docking revealed that the estrogen receptor 1 and viral NS1 were potential targets at the late infection stage. The interactions could attenuate dengue productivity by interfering with viral translation and suppressing the viral proteins from trafficking to the cell surface.


Assuntos
Antivirais/química , Antivirais/farmacologia , Apigenina/química , Apigenina/farmacologia , Vírus da Dengue/efeitos dos fármacos , Alcinos/química , Alcinos/farmacologia , Animais , Linhagem Celular , Reação de Cicloadição , Dengue/tratamento farmacológico , Descoberta de Drogas , Humanos , Modelos Moleculares
19.
Int Immunopharmacol ; 101(Pt A): 108047, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619499

RESUMO

Antiviral agents based on natural products have attracted substantial attention in clinical applications for their distinct biological activities,molecular structuralmultiformities, and low biotoxicities. Ferulic acid (FA) with apigenin propaneto form an esterified FA derivative (FAAP).Herein, we designed a CsPbBr3-modified chitosan oligosaccharide, a biomimetic nanoplatform that could load with FAAP. After self-assembly by combining FAAP with CsPbBr3-modified chitosan oligosaccharide (FAAP NPs), the resulting nanoparticles (FAAP NPs) showed high antioxidant and anti-inflammatory activities for enhancing the inhibition of porcineparvovirus.FAAP NPs exhibited no signs of acute toxicity in vitro or in vivo. DPPH and ABST are widely used for quantitative determination of antioxidant capacity. FAAP NPs exhibited excellent DPPH and ABTS radical scavenging abilities. In addition, we found that FAAP NPs inhibited PPV infection-induced PK-15 cell apoptosis, which was associated with regulating antioxidant and anti-inflammatory signaling pathways. Importantly, we showed that FAAP NPs blocked PPV infection-induced mitochondrial apoptosis in PK-15 cells via a p53/BH3 domain molecular-dependent mechanism.


Assuntos
Antivirais/farmacologia , Nanopartículas/química , Infecções por Parvoviridae/veterinária , Parvovirus Suíno/efeitos dos fármacos , Animais , Antivirais/síntese química , Apigenina/química , Compostos de Cálcio/química , Linhagem Celular , Quitosana/química , Ácidos Cumáricos/química , Concentração Inibidora 50 , Óxidos/química , Tamanho da Partícula , Infecções por Parvoviridae/tratamento farmacológico , Infecções por Parvoviridae/virologia , Sus scrofa , Titânio/química
20.
Int J Biol Macromol ; 193(Pt A): 702-712, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34717976

RESUMO

Dietary polyphenols are potential anti-inflammatory agents, and their combinations with enhanced biological activities may lower toxicity and side effects. The objective of this work was to investigate the potential synergistic anti-inflammatory activities of apigenin and curcumin co-nanoencapsulated in sodium caseinate, with comparison to unencapsulated polyphenol combinations. Non-toxic concentrations of apigenin, curcumin, and their combinations in the free and co-encapsulated forms were studied in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Combinations of free polyphenols produced stronger inhibition of nitric oxide (NO) production, more significant at a higher proportion of curcumin, which was further enhanced after co-encapsulation. The enhanced reduction of NO was concomitant with the decreased expression of iNOS, the enhanced inhibition of pro-inflammatory cytokines of IL-6 and TNF-α, and the reduced production of intracellular reactive oxygen species. The potential multi-target effects and the enhanced solubility, proximity, and bioavailability of AP and CUR after co-encapsulation contributed to the synergistic activities. These results demonstrated that co-nanoencapsulation of apigenin and curcumin may enable the practical application utilizing the synergistic anti-inflammation effects to improve health.


Assuntos
Anti-Inflamatórios/farmacologia , Apigenina/farmacologia , Curcumina/farmacologia , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Apigenina/química , Disponibilidade Biológica , Caseínas , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Interleucina-6 , Camundongos , Óxido Nítrico/metabolismo , Tamanho da Partícula , Polifenóis/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...