Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
1.
Anim Sci J ; 95(1): e13951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38703069

RESUMO

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Assuntos
Adipócitos , Adipogenia , Búfalos , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a Ácido Graxo , PPAR gama , RNA Longo não Codificante , Animais , Búfalos/genética , Búfalos/metabolismo , Adipogenia/genética , Adipócitos/metabolismo , Adipócitos/citologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , PPAR gama/metabolismo , PPAR gama/genética , Expressão Gênica , Células Cultivadas , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Qualidade dos Alimentos
2.
Bioorg Chem ; 145: 107242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428285

RESUMO

Colostrum/Milk is a chief repertoire of antioxidant peptides. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a viable target for Parkinson's Disease (PD), as this pathway deduced to be impaired in PD. Cullin-3 is one of the crucial E3 ligase responsible for its regulation. The present study screened peptide libraries of buffalo colostrum & milk peptides for Cullin-3 inhibition, thus ensuing activation of Nrf2 to alleviate the molecular etiopathology in PD using the C. elegans as a model. The structure was modelled, binding sites analyzed and peptide-interactions analyzed by docking. Among the 55 sequences (≤1 kDa), the peptide SFVSEVPEL having the highest dock score (-16.919) was synthesized and evaluated for its effects on oxidative stress markers, antioxidant enzymes, neurochemical marker and Nrf2/Skn-1 levels. The lead peptide alleviated the oxidative pathophysiology and behavioural deficits associated with PD in C. elegans.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Feminino , Gravidez , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Antioxidantes/farmacologia , Búfalos/metabolismo , Proteínas Culina/metabolismo , Caenorhabditis elegans/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Colostro/metabolismo , Estresse Oxidativo , Peptídeos/farmacologia , Peptídeos/metabolismo , Fármacos Neuroprotetores/farmacologia
3.
Mol Biol Rep ; 51(1): 405, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457014

RESUMO

BACKGROUND: Early embryonic mortality is one of the major intriguing factors of reproductive failure that causes considerable challenge to the mammalian cell biologists. Heat stress is the major factor responsible for reduced fertility in farm animals. The present study aimed to investigate the influence of heat stress on prostaglandin production and the expression of key genes, including COX-2, PGES, PGFS, ITGAV and LGALS15, in buffalo endometrial epithelial cells. METHODS AND RESULTS: Buffalo genitalia containing ovaries with corpus luteum (CL) were collected immediately post-slaughter. The stages of the estrous cycle were determined based on macroscopic observations of the ovaries. Uterine lumens of the mid-luteal phase (days 6-10 of the estrous cycle) were washed and treated with trypsin to isolate epithelial cells, which were then cultured at control temperature (38.5 °C for 24 h) or exposed to elevated temperatures [38.5 °C for 6 h, 40.5 °C for 18 h; Heat Stressed (HS)]. The supernatant and endometrial epithelial cells were collected at various time points (0, 3, 6, 12, and 24 h) from both the control and treatment groups. Although heat stress (40.5 °C) significantly (P < 0.05) increased COX-2, PGES, and PGFS transcripts in epithelial cells but it did not affect the in vitro production of PGF2α and PGE2. The expression of ITGAV and LGALS15 mRNAs in endometrial epithelial cells remained unaltered under elevated temperature conditions. CONCLUSION: It can be concluded that elevated temperature did not directly modulate prostaglandin production but, it promoted the expression of COX-2, PGES and PGFS mRNA in buffalo endometrial epithelial cells.


Assuntos
Búfalos , Dinoprostona , Animais , Feminino , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Búfalos/genética , Búfalos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dinoprostona/metabolismo , Células Epiteliais/metabolismo
4.
J Dairy Sci ; 107(2): 992-1021, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37730179

RESUMO

Genetic and genomic analyses of longitudinal traits related to milk production efficiency are paramount for optimizing water buffaloes breeding schemes. Therefore, this study aimed to (1) compare single-trait random regression models under a single-step genomic BLUP setting based on alternative covariance functions (i.e., Wood, Wilmink, and Ali and Schaeffer) to describe milk (MY), fat (FY), protein (PY), and mozzarella (MZY) yields, fat-to-protein ratio (FPR), somatic cell score (SCS), lactation length (LL), and lactation persistency (LP) in Murrah dairy buffaloes (Bubalus bubalis); (2) combine the best functions for each trait under a multiple-trait framework; (3) estimate time-dependent SNP effects for all the studied longitudinal traits; and (4) identify the most likely candidate genes associated with the traits. A total of 323,140 test-day records from the first lactation of 4,588 Murrah buffaloes were made available for the study. The model included the average curve of the population nested within herd-year-season of calving, systematic effects of number of milkings per day, and age at first calving as linear and quadratic covariates, and additive genetic, permanent environment, and residual as random effects. The Wood model had the best goodness of fit based on the deviance information criterion and posterior model probabilities for all traits. Moderate heritabilities were estimated over time for most traits (0.30 ± 0.02 for MY; 0.26 ± 0.03 for FY; 0.45 ± 0.04 for PY; 0.28 ± 0.05 for MZY; 0.13 ± 0.02 for FPR; and 0.15 ± 0.03 for SCS). The heritability estimates for LP ranged from 0.38 ± 0.02 to 0.65 ± 0.03 depending on the trait definition used. Similarly, heritabilities estimated for LL ranged from 0.10 ± 0.01 to 0.14 ± 0.03. The genetic correlation estimates across days in milk (DIM) for all traits ranged from -0.06 (186-215 DIM for MY-SCS) to 0.78 (66-95 DIM for PY-MZY). The SNP effects calculated for the random regression model coefficients were used to estimate the SNP effects throughout the lactation curve (from 5 to 305 d). Numerous relevant genomic regions and candidate genes were identified for all traits, confirming their polygenic nature. The candidate genes identified contribute to a better understanding of the genetic background of milk-related traits in Murrah buffaloes and reinforce the value of incorporating genomic information in their breeding programs.


Assuntos
Búfalos , Leite , Feminino , Animais , Leite/metabolismo , Búfalos/genética , Búfalos/metabolismo , Estudo de Associação Genômica Ampla/veterinária , Melhoramento Vegetal , Lactação/genética , Fenótipo
5.
J Proteomics ; 290: 105023, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-37838095

RESUMO

The aim was to compare the UF proteomics of pregnant and non-pregnant buffalo during early pregnancy. Forty-four females were submitted to hormonal estrus synchronization and randomly divided into two groups: pregnant (n = 30) and non-pregnant (n = 14). The pregnant group was artificially inseminated and divided into a further two groups: P12 (n = 15) and P18 (n = 15). Conceptus and uterine fluid samples were collected during slaughter at, respectively, 12 and 18 days after insemination. Of all the inseminated females, only eight animals in each group were pregnant, which reduced the sample of the groups to P12 (n = 8) and P18 (n = 8). The non-pregnant group was also re-divided into two groups at the end of synchronization: NP12 (n = 7) and NP18 (n = 7). The UF samples were processed for proteomic analysis. The results were submitted to multivariate and univariate analysis. A total of 1068 proteins were found in the uterine fluid in both groups. Our results describe proteins involved in the conceptus elongation and maternal recognition of pregnancy, and their action was associated with cell growth, endometrial remodeling, and modulation of immune and antioxidant protection, mechanisms necessary for embryonic maintenance in the uterine environment. SIGNIFICANCE: Uterine fluid is a substance synthesized and secreted by the endometrium that plays essential roles during pregnancy in ruminants, contributing significantly to embryonic development. Understanding the functions that the proteins present in the UF perform during early pregnancy, a period marked by embryonic implantation, and maternal recognition of pregnancy is of fundamental importance to understanding the mechanisms necessary for the maintenance of pregnancy. The present study characterized and compared the UF proteome at the beginning of pregnancy in pregnant and non-pregnant buffaloes to correlate the functions of the proteins and the stage of development of the conceptus and unravel their processes in maternal recognition of pregnancy. The proteins found were involved in cell growth and endometrial remodeling, in addition to acting in the immunological protection of the conceptus and performing antioxidant actions necessary for establishing a pregnancy.


Assuntos
Búfalos , Proteômica , Animais , Feminino , Gravidez , Antioxidantes/metabolismo , Búfalos/metabolismo , Endométrio/metabolismo , Secretoma , Útero/metabolismo
6.
Reprod Domest Anim ; 58(12): 1718-1731, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917549

RESUMO

Follistatin (FST), a member of the transforming growth factor-ß (TGF-ß) superfamily, has been identified as an inhibitor of follicle-stimulating hormone. Previous studies showed that it plays an important role in animal reproduction. Therefore, this study aims to investigate its effect on the maturation of buffalo oocytes in vitro, and the underlying mechanism of FST affecting oocyte maturation was also explored in buffalo cumulus cells. Results showed that FST was enriched in the ovary and expressed at different stages of buffalo ovarian follicles as well as during oocyte maturation and early embryo development. The FST expression level was up-regulated in MII buffalo oocytes compared with the GV stage (p < .05). To study the effects of FST on buffalo oocytes' maturation and early embryonic development, we added the pcD3.1 skeleton vector and PCD3.1-EGFP-FST vector into the maturation fluid of buffalo oocytes, respectively. It was demonstrated that FST promoted the in vitro maturation rate of buffalo oocytes and the blastocyst rate of embryos cultured in vitro (p < .05). By interfering with FST expression, we discovered that FST in cumulus cells plays a crucial role in oocyte maturation. Interference with the FST expression during the buffalo oocyte maturation did not affect the first polar body rate of buffalo oocyte (p > .05). In contrast, the location of mitochondria in oocytes was abnormal, and the cumulus expansion area was reduced (p < .05). After parthenogenetic activation, the cleavage and blastocyst rates of the FST-interfered group were reduced (p < .05). Furthermore, RT-qPCR was performed to investigate further the underlying mechanism by which FST enhances oocyte maturation. We found that overexpression of FST could up-regulate the expression level of apoptosis suppressor gene Bcl-2 and TGF-ß/SMAD pathway-related genes TGF-ß, SMAD2, and SMAD3 (p < .05). In contrast, the expression levels of SMAD4 and pro-apoptotic gene BAX were significantly decreased (p < .05). The FST gene could affect buffalo oocyte maturation by regulating the oocyte mitochondria integrity, the cumulus expansion, cumulus cell apoptosis, and the expression levels of TGF-ß/SMAD pathway-related genes.


Assuntos
Búfalos , Folistatina , Feminino , Animais , Búfalos/genética , Búfalos/metabolismo , Folistatina/genética , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos , Folículo Ovariano/fisiologia , Desenvolvimento Embrionário , Blastocisto , Células do Cúmulo/fisiologia , Fator de Crescimento Transformador beta
7.
Genes (Basel) ; 14(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003015

RESUMO

During triacylglycerol synthesis, the acylglycerol-3-phosphate acyltransferase (AGPAT) family catalyzes the conversion of lysophosphatidic acid to phosphatidic acid and the acylation of sn-2 fatty acids. However, the catalytic activity of different AGPAT members is different. Therefore, this study aimed to investigate the mechanism through which different AGPATs affect the efficiency of TAG synthesis and fatty acid composition. The conservation of amino acid sequences and protein domains of the AGPAT family was analyzed, and the functions of AGPAT1, AGPAT3, and AGPAT4 genes in buffalo mammary epithelial cells (BMECs) were studied using RNA interference and gene overexpression. Prediction of the protein tertiary structure of the AGPAT family demonstrated that four conservative motifs (motif1, motif2, motif3, and motif6) formed a hydrophobic pocket in AGPAT proteins, except AGPAT6. According to cytological studies, AGPAT1, AGPAT3, and AGPAT4 were found to promote the synthesis and fatty acid compositions of triacylglycerol, especially UFA compositions of triacylglycerol, by regulating ACSL1, FASN, GPAM, DGAT2, and PPARG gene expression. This study provides new insights into the role of different AGPAT gene family members involved in TAG synthesis, and a reference for improving the fatty acid composition of milk.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , Búfalos , Animais , Búfalos/genética , Búfalos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Leite/metabolismo , Ácidos Graxos/genética , Triglicerídeos
8.
Environ Sci Pollut Res Int ; 30(60): 125510-125525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37999845

RESUMO

Buffalo plays a compelling role in reducing malnutrition and ensuring food to the people of Asian countries by its major contribution to milk and meat pool of the livestock agriculture farming system in the region. As Asia is the home for more than 90% of world buffalo population, they are also one of the largest emitters of greenhouse gasses. Eucalyptus (Eucalyptus sp.) leaves are rich sources of naturally occurring essential oils and phenolic compounds, which could modulate rumen fermentation through mitigation of methanogenesis and nitrogen excretion along with stimulation of immune system and production performances of animals. Therefore, the present study investigated the impact of dietary inclusion of eucalyptus (Eucalyptus citriodora) leaf meal (ELM) on voluntary feed intake, rumen functions, methane emission, nutrient utilization, milk yield and fatty acids profile, and immune response in lactating buffalo (Bubalus bubalis). An in vitro experiment conducted with graded dose (10-40 g/kg) inclusion of ELM into the total mixed ration to select ideal level for feeding to lactating buffaloes, an improvement (P < 0.05) in feed degradability (IVDMD), microbial biomass and ruminal volatile fatty acids concentration with reduced (P < 0.05) methane and ammonia-N production were evidenced when ELM was added at 10-20 g/kg DM, beyond which negative effects on rumen fermentation were pronounced. An in vivo experimentation was conducted with sixteen Murrah (Bubalus bubalis) buffaloes of mean live weight, 544.23 ± 10.02 kg; parity, 2-4 at initial stage (~60 days) of lactation with average milk yield of 11.43 ± 1.32 kg and were divided into two groups (CON, ELM) of eight each in a completely randomized design. All the animals were kept individually on wheat straw-based diet with required quantity of concentrate mixture and green fodder. The control group buffaloes were fed a total mixed ration; however, the treatment group (ELM) was supplemented with 10 g/kg DM diet of dry grounded eucalyptus (Eucalyptus citriodora) leaves by mixing with the concentrate mixture. The feeding experiment was conducted for 120 days, including 15 days for adaptation to the experimental diets and 105 days for data recording. The nutrient digestibility (DM, OM, CP, and EE) was improved (P < 0.05) without affecting feed intake (P > 0.05) and fiber digestibility (NDF and ADF) in ELM supplemented buffaloes. Increased (P < 0.05) milk production and rumenic acid concentration (cis 9 trans 11 C18:2 CLA) were demonstrated with comparable (P > 0.05) milk composition and major fatty acids profile of milk in the supplemented buffaloes. Dietary inclusion of ELM reduced (P < 0.05) enteric methane production and fecal excretion of nitrogen. The health status of buffaloes fed ELM improved throughout the experimental period was improved by enhancing cell mediated (P = 0.09) and humoral (P < 0.01) immune responses without affecting (P > 0.05) major blood metabolites. The study described feeding ELM at 10 g/kg diet to lactating Murrah buffaloes as a natural source of phenols and essential oils to increase milk production and CLA content, reduce methane and nitrogen emissions, and improve health status. Thus, feeding of ELM could be beneficial for climate smart buffalo production system for enhancing milk production with lesser impact on environment.


Assuntos
Eucalyptus , Óleos Voláteis , Animais , Feminino , Búfalos/metabolismo , Dieta , Suplementos Nutricionais/análise , Digestão , Eucalyptus/metabolismo , Ácidos Graxos/metabolismo , Fermentação , Lactação , Metano/metabolismo , Leite/metabolismo , Nitrogênio/metabolismo , Óleos Voláteis/farmacologia , Rúmen/metabolismo
9.
Sci Rep ; 13(1): 16703, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794118

RESUMO

In pregnant animals, communication between the mother and conceptus occurs via extracellular vesicles (EVs) that carry several biomolecules such as nucleic acids (miRNAs, mRNAs), proteins, and lipids. At the time of implantation, the endometrium undergoes several morphological and physiological changes, such as angiogenesis, apoptosis, and cell proliferation regulation at the implantation site, to attain a receptive state. This study was conducted to detect pregnancy-specific miRNAs derived from extracellular vesicles in the systemic circulation of Bubalus bubalis (water buffalo) and to assess their functional significance in the modulation of endometrial primary cells. The extracellular vesicles were isolated from the blood plasma using a precipitation-based method and further characterized by various methods such as Differential light scattering, Nanoparticle tracking assay, Western blot, and transmission electron microscopy. The relative expression of the selected extracellular vesicles associated miRNAs (EV-miRNA) at different intervals (days 15, 19, 25, and 30) post artificial insemination (AI) was analyzed using RT-qPCR, and expression of miR-195-5p was found to be significantly higher (P < 0.01) in pregnant animals on day 19 post AI (implantation window) as compared to day 15 post AI. The elevated expression might indicate the involvement of this miRNA in the maternal-conceptus cross-talk occurring during the implantation period. The KEGG pathway enrichment and Gene Ontology analyses of the miR-195-5p target genes revealed that these were mostly involved in the PI3-Akt, MAPK, cell cycle, ubiquitin-mediated proteolysis, and mTOR signaling pathways, which are related to the regulation of cell proliferation. Transfecting the in vitro cultured cells with miR-195-5p mimic significantly suppressed (P < 0.05) the expression of its target genes such as YWHAQ, CDC27, AKT-3, FGF-7, MAPK8, SGK1, VEGFA, CACAND1, CUL2, MKNK1, and CACAN2D1. Furthermore, the downregulation of the miR-195-5p target genes was positively correlated with a significant increase in the apoptotic rate and a decrease in the proliferation. In conclusion, the current findings provide vital information on the presence of EV miR-195-5p in maternal circulation during the implantation window indicating its important role in the modulation of buffalo endometrium epithelial cells via promoting cell death. Altogether, the milieu of miR-195-5p may serve as a novel and potential molecular factor facilitating the implantation of the early embryo during the establishment of pregnancy in buffaloes. Thus, miR-195-5p may be identified as a unique circulatory EV biomarker related to establishing pregnancy in buffaloes as early as day 19 post-AI.


Assuntos
Vesículas Extracelulares , MicroRNAs , Gravidez , Feminino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Búfalos/genética , Búfalos/metabolismo , Cultura Primária de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Endométrio/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Proliferação de Células/genética , Apoptose/genética
10.
Theriogenology ; 210: 214-220, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37527623

RESUMO

Granulosa cells (GCs) synthesize estrogens needed for follicular growth. However, the effects of hypoxia on steroidogenesis in buffalo GCs remain unclear. In this study, the impacts of hypoxic conditions (5% oxygen) on estrogen synthesis in buffalo GCs were examined. The results showed that hypoxia improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3ß-HSD) and the secretion levels of estradiol in buffalo GCs. Hypoxic conditions promoted the sensitivity of buffalo GCs to FSH. Furthermore, inhibition of cAMP/PKA signaling pathway (H89, a cAMP/PKA signaling pathway inhibitor) reduced both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3ß-HSD) and the secretion levels of estradiol in hypoxia-cultured buffalo GCs. Besides, inhibition of cAMP/PKA signaling pathway lowered the responsiveness of buffalo GCs to FSH under hypoxic conditions. The present study indicated that hypoxia enhanced the steroidogenic competence of buffalo GCs principal by affecting cAMP/PKA signaling pathway and subsequent sensitivity of GCs to FSH.


Assuntos
Bison , Búfalos , Feminino , Animais , Búfalos/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Células da Granulosa/fisiologia , Estradiol/farmacologia , Bison/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Estrogênios/farmacologia , Hipóxia/metabolismo , Hipóxia/veterinária , Células Cultivadas
11.
Food Chem ; 429: 136804, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490818

RESUMO

Whey protein hydrolysate from Binglangjiang buffalo, a unique genetic resource, has anti-inflammatory activity, but its anti-inflammatory composition and effects are unknown. The aim of this study was to investigate the anti-inflammatory peptides from Binglangjiang buffalo whey protein hydrolysate. A total of 1483 peptides were identified using LC-MS/MS, and 12 peptides were chosen for chemical synthesis using peptidomics, and then two novel anti-inflammatory peptides (DQPFFHYN (DN8) and YSPFSSFPR (YR9)) were screened out using LPS-stimulated RAW264.7 cells. The molecular weights of DN8 and YR9 with ß-turn conformations were 1067.458 Da and 1087.52 Da, respectively, and showed a high in-vitro safety profile and thermal stability, but were intolerant to pepsin. Furthermore, ELISA and Western blot analysis indicated that peptides DN8 and YR9 significantly suppressed the secretion of pro-inflammatory cytokines NO, TNF-α, and IL-6 and the expression of mediators iNOS, TNF-α, and IL-6 in LPS-stimulated RAW264.7 cells. The study provides insights into the development of novel food-based anti-inflammatory nutritional supplements.


Assuntos
Búfalos , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Proteínas do Soro do Leite/metabolismo , Búfalos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Hidrolisados de Proteína/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Citocinas/metabolismo , Células RAW 264.7
12.
Food Chem ; 429: 136845, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453337

RESUMO

In this study, the whey and milk fat globule membrane (MFGM) proteomes of buffalo, cow, goat, and yak milk were analyzed using label-free proteomic technology. Totally, 1,292 MFGM proteins and 686 whey proteins were identified from these four species, and GO analysis revealed there were specific proteins with different functions in both whey (376) and MFGM (982) proteomes. The principal component analysis showed that ALB, TF, CSN1S1, and GLYCAM1 are characteristic markers of the milk for each of the four species. Furthermore, the conserved and differential in the expression of whey and MFGM proteins across the four species were identified by limma, and subsequent KEGG pathway analysis showed that immune-related proteins are both conserved and species-specific in the four species. These results provide a deepening of the understanding of the characteristics of proteins in whey and MFGMs from these four common dairy animals and new insight into developing dairy production.


Assuntos
Búfalos , Soro do Leite , Animais , Feminino , Bovinos , Proteínas do Soro do Leite , Soro do Leite/metabolismo , Búfalos/metabolismo , Proteoma , Cabras/metabolismo , Proteômica/métodos , Proteínas do Leite/metabolismo , Glicolipídeos , Gotículas Lipídicas/metabolismo , Nutrientes
13.
Theriogenology ; 207: 96-109, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271105

RESUMO

Sperm membrane glycan-binding proteins (lectins) interact with the counterpart glycans in the oviduct, oocytes, and vice-versa. It has already been well known that specific glycans are present on oviductal epithelium and zona pellucida (ZP) in different mammalian species. Some of these glycans are necessary for oviductal sperm reservoir formation and gamete recognition. The specific binding phenomenon of lectin-glycans is one of the vital factors for successful fertilization in mammals. We hypothesized that buffalo sperm membrane glycan-binding proteins have specific glycan targets in the oviduct and ZP supporting the fertilization event. In the present investigation, sperm membrane proteins were extracted and assessed for their binding capacity with glycans using a high-throughput glycan microarray. The most promising glycan binding signals were evaluated to confirm the sperm putative receptors for glycan targets in the oviductal epithelial cells (OEC) and on ZP using an in-vitro competitive binding inhibition assay. Based on an array of 100 glycans, we found that N-acetyllactosamine (LacNAc), Lewis-a trisaccharide, 3'-sialyllactosamine and LacdiNAc were the most promising glycans and selected for further in-vitro validation. We established an inhibitory concentration of 12 mM Lewis-a trisaccharide and 10 µg/ml Lotus tetragonolobus (LTL) lectin for the sperm-OEC binding interaction, indicating its specificity and sensitivity. We observed that 3 mM 3'-sialyllactosamine, and LacdiNAc were the most competitive inhibitory concentration in sperm-ZP binding, suggesting a specific and abundance-dependent binding affinity. The competitive binding affinity of Maackia amurensis (MAA) lectin with Neu5Ac(α2-3)Gal(ß1-4)GlcNAc further supports the abundance of 3'-sialyllactosamine on ZP responsible for sperm binding. Our findings develop the strong evidence on buffalo sperm putative receptors underlying their locking specificities with Lewis-a trisaccharide in oviduct and 3'-sialyllactosamine on ZP. The functional interaction of buffalo sperm lectins with the target glycans in OEC and ZP appears to be accomplished in an abundance-dependent manner, facilitating the fertilization event in buffaloes.


Assuntos
Búfalos , Zona Pelúcida , Feminino , Masculino , Animais , Zona Pelúcida/metabolismo , Búfalos/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Fertilização/fisiologia , Polissacarídeos , Glicoproteínas da Zona Pelúcida , Lectinas/metabolismo , Oviductos/metabolismo , Trissacarídeos/metabolismo , Trissacarídeos/farmacologia , Epitélio/metabolismo , Interações Espermatozoide-Óvulo
14.
Mol Biol Rep ; 50(8): 6717-6727, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37378747

RESUMO

BACKGROUND: Being highly fragmented and low in concentration, isolation of good quality RNA from sperm cells is a big challenge. Attempts have been made to evaluate various sperm RNA isolation methods from purified buffalo bull sperm cells. METHODS: Both, non-membrane and membrane-based methods have been evaluated for isolating RNA from Murrah buffalo sperms and compared for their respective efficacies. The traditional TRIzol, TRIzol-heat lysed (H-TRIzol) and cocktail of TCEP-RLT lysis buffer (Qiagen RNeasy mini kit)-TRIzol (C-TRIzol) based isopropanol isolation methods have been evaluated. RESULTS: H-TRIzol yielded best results among conventional methods. The combined T-RLT RNA isolation protocol yielded best quality and quantity compared to other membrane-based methods, due to high lytic property of cocktail of lysis reagents, necessary for complete breakdown of sperm membrane and RNA binding membrane for RNA isolation. Combined lysis performed by treatment with RLT-T and T-RLT differing in order of reagents used were also evaluated. T-RLT combination giving better results compared to RLT-T due to high gDNA contamination and membrane clogging in later protocol steps. CONCLUSION: Overall, in terms of total RNA quantity and quality per million spermatozoa, the heat-lysed TRIzol method (H-TRIzol) performs best among RNA separation techniques employed and is also quite easy to perform. This comparative evaluation of sperm RNA isolation protocols can be useful in deciding the best protocol for isolation of good quality and high concentration sperm RNA from buffalo semen, for transcriptome and other downstream studies.


Assuntos
RNA , Preservação do Sêmen , Animais , Masculino , RNA/metabolismo , Búfalos/genética , Búfalos/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Preservação do Sêmen/métodos , Criopreservação/métodos
15.
Anim Biotechnol ; 34(8): 3774-3782, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37345902

RESUMO

In this study, Wingless-type MMTV (mouse mammary tumor virus) integration site family member (WNT10B) gene was sequence characterized in the Indian water buffalo. Sequence analysis revealed an open reading frame of 1176 nucleotides in buffalo, encoding 391 amino acids long protein. Nineteen nucleotide variations were observed between cattle and buffalo resulting in six amino acid changes. Phylogenetic analysis showed the clustering of ruminant species together. Real-time expression analysis of WNT10B in tissues collected from different organs of fetal and adult buffalo, revealed, the gene being abundantly expressed in the rumen and liver of the fetus. The fetal ovary, heart, kidney, lung, testis and mammary gland showed moderate expression, while in adult tissues, expression was high in the ovary, testis, brain, kidney, small intestine and liver, whereas lower expression was observed in the adult rumen. Significant differences in WNT10B expression levels were found for the brain, small intestine, testes, kidney, heart, rumen, and ovary when adult and fetal tissues were compared. A moderate level of genetic variation was found between cattle and buffalo WNT10B and expression patterns in a variety of tissues in adult buffalo implies that in addition to possible roles in adipogenesis and hematopoiesis, the WNT10B gene might be playing a significant role in other regulatory pathways as well.


Assuntos
Búfalos , Feto , Masculino , Feminino , Bovinos , Camundongos , Animais , Búfalos/genética , Búfalos/metabolismo , Sequência de Bases , Sequência de Aminoácidos , Filogenia
16.
Mol Biol Rep ; 50(6): 5255-5266, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37140692

RESUMO

BACKGROUND: Cellular metabolism is most invariant process, occurring in all living organisms, which involves mitochondrial proteins from both nuclear and mitochondrial genomes. The mitochondrial DNA (mtDNA) copy number, protein-coding genes (mtPCGs) expression, and activity vary between various tissues to fulfill specific energy demands across the tissues. METHODS AND RESULTS: In present study, we investigated the OXPHOS complexes and citrate synthase activity in isolated mitochondria from various tissues of freshly slaughtered buffaloes (n = 3). Further, the evaluation of tissue-specific diversity based on the quantification of mtDNA copy numbers was performed and also comprised an expression study of 13 mtPCGs. We found that the functional activity of individual OXPHOS complex I was significantly higher in the liver compared to muscle and brain. Additionally, OXPHOS complex III and V activities was observed significantly higher levels in liver compared to heart, ovary, and brain. Similarly, CS-specific activity differs between tissues, with the ovary, kidney, and liver having significantly greater. Furthermore, we revealed the mtDNA copy number was strictly tissue-specific, with muscle and brain tissues exhibiting the highest levels. Among 13 PCGs expression analyses, mRNA abundances in all genes were differentially expressed among the different tissue. CONCLUSIONS: Overall, our results indicate the existence of a tissue-specific variation in mitochondrial activity, bioenergetics, and mtPCGs expression among various types of buffalo tissues. This study serves as a critical first stage in gathering vital comparable data about the physiological function of mitochondria in energy metabolism in distinct tissues, laying the groundwork for future mitochondrial based diagnosis and research.


Assuntos
Búfalos , Mitocôndrias , Animais , Feminino , Búfalos/genética , Búfalos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Expressão Gênica/genética
17.
PeerJ ; 11: e15196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065703

RESUMO

Background: The orbital glands, viz. lacrimal gland, superficial and deep gland of third eyelid (LG, SGT and HG), are important for normal eye functions. These glands have different functions in various animals. The information about the enzyme histochemical nature of prenatal orbital glands in Indian buffalo seems to be unavailable. Therefore, the study was planned on orbital glands of six full term recently died fetuses from animals with dystocia. Methods: The frozen sections of all these glands were subjected to standard localization protocols for Alkaline Phosphatase (AKPase), Glucose 6 phosphatase (G-6-Pase), Lactate dehydrogenase (LDH), Succinate dehydrogenase (SDH), Glucose 6 phosphate dehydrogenase (G-6-PD), Nicotinamide Adenine Dinucleotide Hydrogen Diaphorase (NADHD), Nicotinamide Adenine Dinucleotide Phosphate Hydrogen diaphorase (NADPHD), Dihydroxy phenylalanine oxidase (DOPA-O), Tyrosinase, non-specific esterase (NSE) and Carbonic anhydrase (CAse). Results: The results revealed a mixed spectrum of reaction for the above enzymes in LG, SGT and HG which ranged from moderate (for LDH in SGT) to intense (for most of the enzymes in all three glands). However, DOPA-O, Tyrosinase and CAse did not show any reaction. From the present study, it can be postulated that the orbital glands of fetus have a high activity of metabolism as it has many developmental and functional activities which were mediated with the higher activity of the enzymes involved.


Assuntos
Bison , Anidrases Carbônicas , Animais , Feminino , Gravidez , Búfalos/metabolismo , Monofenol Mono-Oxigenase , Fosfatase Alcalina/metabolismo , Bison/metabolismo , NADPH Desidrogenase , L-Lactato Desidrogenase , Di-Hidrolipoamida Desidrogenase , Feto/metabolismo , Di-Hidroxifenilalanina
18.
Food Chem ; 421: 136166, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086518

RESUMO

Glycosylation of milk whey proteins, specifically the presence of sialic acid-containing glycan residues, causes functional changes in these proteins. This study aimed to analyze the N-glycome of milk whey glycoproteins from various milk sources using a linkage-specific ethyl esterification approach with MALDI-MS (matrix-assisted laser desorption/ionization-mass spectrometry). The results showed that the N-glycan profiles of bovine and buffalo whey mostly overlapped. Acetylated N-glycans were only detected in donkey milk whey at a rate of 16.06%. a2,6-linked N-Acetylneuraminic acid (a2,6-linked NeuAc, E) was found to be the predominant sialylation type in human milk whey (65.16%). The amount of a2,6-linked NeuAc in bovine, buffalo, goat, and donkey whey glycoproteomes was 42.33%, 44.16%, 39.00%, and 34.86%, respectively. The relative abundances of a2,6-linked N-Glycolylneuraminic acid (a2,6-linked NeuGc, Ge) in bovine, buffalo, goat, and donkey whey were 7.52%, 5.41%, 28.24%, and 17.31%, respectively. Goat whey exhibited the highest amount of a2,3-linked N-Glycolylneuraminic acid (a2,3-linked NeuGc, Gl, 8.62%), while bovine and donkey whey contained only 2.14% and 1.11%, respectively.


Assuntos
Búfalos , Soro do Leite , Animais , Bovinos , Humanos , Proteínas do Soro do Leite/metabolismo , Soro do Leite/química , Esterificação , Búfalos/metabolismo , Glicoproteínas/química , Leite Humano/química , Polissacarídeos/química , Ácido N-Acetilneuramínico/química , Proteínas do Leite/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cabras/metabolismo
19.
Tissue Cell ; 82: 102067, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958101

RESUMO

Cryopreservation commonly decreases the cellular functionality and post-thaw viability of cells. Reactive oxygen species (ROS) generated during cryopreservation degrade mitochondrial activity and promote the release of cytochrome C which activates caspases required for apoptosis. Antioxidants have the potential to improve the recovery efficiency of cells by reducing ROS production and maintaining mitochondrial membrane potential (MMP). The present study was conducted to explore the role of MitoQ, a derivative of coenzyme Q10 on cryopreserved fibroblasts derived from buffalo skin. To achieve our goal, buffalo skin fibroblasts were treated with varying concentrations of MitoQ (0, 0.1, 0.5, 1, 2, and 10 µM) for 24, 48, and 72 h. The MMP, ROS generation, cell viability was measured by flow cytometry. Furthermore, expression of genes related to mitochondrial oxidative stress (NRF2, GPX, and SOD), apoptosis (BAK and caspase 3) and cell proliferation (AKT) were also assessed. The results showed that over a period of 72 h lower concentrations of MitoQ (0.1-0.5 µM) decrease the ROS production, improves MMP and cell viability whilst the high concentration of MitoQ (2-10 µM) increased the oxidative damage to the cells. Taken together, our study provide important insights into the novel role of MitoQ in cryopreserved buffalo skin fibroblasts. In conclusion, we demonstrated the dose-dependent functional role of MitoQ on cryopreserved fibroblasts for improving post-thaw cell viability and cellular function.


Assuntos
Antioxidantes , Búfalos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Búfalos/metabolismo , Sobrevivência Celular , Estresse Oxidativo , Mitocôndrias/metabolismo , Fibroblastos/metabolismo , Criopreservação
20.
J Dairy Sci ; 106(5): 3465-3476, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36935234

RESUMO

Metabolic disorders as ketosis are manifestations of the animal's inability to manage the increase in energy requirement during early lactation. Generally, buffaloes show a different response to higher metabolic demands than other ruminants with a lower incidence of metabolic problems, although ketosis is one of the major diseases that may decrease the productivity in buffaloes. The aim of this study was to characterize the metabolic profile of Mediterranean buffaloes (MB) associated with 2 different levels of ß-hydroxybutyrate (BHB). Sixty-two MB within 50 days in milk (DIM) were enrolled and divided into 2 groups according to serum BHB concentration: healthy group (37 MB; BHB <0.70 mmol/L; body condition score: 5.00; parity: 3.78; and DIM: 30.70) and group at risk of hyperketonemia (25 MB; BHB ≥0.70 mmol/L; body condition score: 4.50; parity: 3.76; and DIM: 33.20). The statistical analysis was conducted by one-way ANOVA and unpaired 2-sample Wilcoxon tests. Fifty-seven metabolites were identified and among them, 12 were significant or tended to be significant. These metabolites were related to different metabolic changes such as mobilization of body resources, ruminal fermentations, urea cycle, thyroid hormone synthesis, inflammation, and oxidative stress status. These findings are suggestive of metabolic changes related to subclinical ketosis status that should be further investigated to better characterize this disease in the MB.


Assuntos
Doenças dos Bovinos , Cetose , Gravidez , Feminino , Animais , Bovinos , Búfalos/metabolismo , Lactação , Leite/metabolismo , Ácido 3-Hidroxibutírico , Cetose/veterinária , Metabolômica , Doenças dos Bovinos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...