Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0182723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305183

RESUMO

Most icosahedral DNA viruses package and condense their genomes into pre-formed, volumetrically constrained capsids. However, concurrent genome biosynthesis and packaging are specific to single-stranded (ss) DNA micro- and parvoviruses. Before packaging, ~120 copies of the øX174 DNA-binding protein J interact with double-stranded DNA. 60 J proteins enter the procapsid with the ssDNA genome, guiding it between 60 icosahedrally ordered DNA-binding pockets formed by the capsid proteins. Although J proteins are small, 28-37 residues in length, they have two domains. The basic, positively charged N-terminus guides the genome between binding pockets, whereas the C-terminus acts as an anchor to the capsid's inner surface. Three C-terminal aromatic residues, W30, Y31, and F37, interact most extensively with the coat protein. Their corresponding codons were mutated, and the resulting strains were biochemically and genetically characterized. Depending on the mutation, the substitutions produced unstable packaging complexes, unstable virions, infectious progeny, or particles packaged with smaller genomes, the latter being a novel phenomenon. The smaller genomes contained internal deletions. The juncture sequences suggest that the unessential A* (A star) protein mediates deletion formation.IMPORTANCEUnessential but strongly conserved gene products are understudied, especially when mutations do not confer discernable phenotypes or the protein's contribution to fitness is too small to reliably determine in laboratory-based assays. Consequently, their functions and evolutionary impact remain obscure. The data presented herein suggest that microvirus A* proteins, discovered over 40 years ago, may hasten the termination of non-productive packaging events. Thus, performing a salvage function by liberating the reusable components of the failed packaging complexes, such as DNA templates and replication enzymes.


Assuntos
Bacteriófago phi X 174 , Proteínas do Capsídeo , DNA de Cadeia Simples , DNA Viral , Proteínas de Ligação a DNA , Evolução Molecular , Empacotamento do Genoma Viral , Bacteriófago phi X 174/química , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/crescimento & desenvolvimento , Bacteriófago phi X 174/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Sequência Conservada , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Aptidão Genética , Mutação , Fenótipo , Moldes Genéticos , Vírion/química , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/metabolismo
2.
Science ; 381(6654): eadg9091, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440661

RESUMO

The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production. We experimentally validate this result for two different viral species, providing a clear model for bacterial lysis and unifying previous experimental data. Additionally, we characterize the Escherichia coli MraY structure-revealing features of this essential enzyme-and the structure of the chaperone SlyD bound to a protein. Our structures provide insights into the mechanism of phage-mediated lysis and for structure-based design of phage therapeutics.


Assuntos
Antibacterianos , Bacteriólise , Bacteriófago phi X 174 , Proteínas de Escherichia coli , Escherichia coli , Proteínas Virais , Antibacterianos/metabolismo , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Imagem Individual de Molécula , Microscopia Crioeletrônica
3.
FEBS J ; 288(10): 3300-3316, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33244868

RESUMO

The bacteriophage ΦX174 causes large pore formation in Escherichia coli and related bacteria. Lysis is mediated by the small membrane-bound toxin ΦX174-E, which is composed of a transmembrane domain and a soluble domain. The toxin requires activation by the bacterial chaperone SlyD and inhibits the cell wall precursor forming enzyme MraY. Bacterial cell wall biosynthesis is an important target for antibiotics; therefore, knowledge of molecular details in the ΦX174-E lysis pathway could help to identify new mechanisms and sites of action. In this study, cell-free expression and nanoparticle technology were combined to avoid toxic effects upon ΦX174-E synthesis, resulting in the efficient production of a functional full-length toxin and engineered derivatives. Pre-assembled nanodiscs were used to study ΦX174-E function in defined lipid environments and to analyze its membrane insertion mechanisms. The conformation of the soluble domain of ΦX174-E was identified as a central trigger for membrane insertion, as well as for the oligomeric assembly of the toxin. Stable complex formation of the soluble domain with SlyD is essential to keep nascent ΦX174-E in a conformation competent for membrane insertion. Once inserted into the membrane, ΦX174-E assembles into high-order complexes via its transmembrane domain and oligomerization depends on the presence of an essential proline residue at position 21. The data presented here support a model where an initial contact of the nascent ΦX174-E transmembrane domain with the peptidyl-prolyl isomerase domain of SlyD is essential to allow a subsequent stable interaction of SlyD with the ΦX174-E soluble domain for the generation of a membrane insertion competent toxin.


Assuntos
Antibiose/genética , Bacteriófago phi X 174/genética , Proteínas de Escherichia coli/genética , Escherichia coli/virologia , Lisogenia/genética , Peptidilprolil Isomerase/genética , Toxinas Biológicas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago phi X 174/metabolismo , Bacteriófago phi X 174/patogenicidade , Sítios de Ligação , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/virologia , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanopartículas/química , Peptidilprolil Isomerase/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solubilidade , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
4.
Sci Rep ; 10(1): 22419, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376251

RESUMO

Survival of respiratory viral pathogens in expelled saliva microdroplets is central to their transmission, yet the factors that determine survival in such microdroplets are not well understood. Here we combine microscopy imaging with virus viability assays to study survival of three bacteriophages suggested as good models for respiratory pathogens: the enveloped Phi6 (a surrogate for SARS-CoV-2), and the non-enveloped PhiX174 and MS2. We measured virus viability in human saliva microdroplets, SM buffer, and water following deposition on glass surfaces at various relative humidities (RH). Saliva and water microdroplets dried out rapidly, within minutes, at all tested RH levels (23%, 43%, 57%, and 78%), while SM microdroplets remained hydrated at RH ≥ 57%. Generally, the survival of all three viruses in dry saliva microdroplets was significantly greater than those in SM buffer and water under all RH (except PhiX174 in water under 57% RH survived the best among 3 media). Thus, atmosphere RH and microdroplet hydration state are not sufficient to explain virus survival, indicating that the virus-suspended medium, and association with saliva components in particular, likely play a role in virus survival. Uncovering the exact properties and components that make saliva a favorable environment for the survival of viruses, in particular enveloped ones like Phi6, is thus of great importance for reducing transmission of viral respiratory pathogens including SARS-CoV-2.


Assuntos
Bacteriófago phi X 174/metabolismo , Levivirus/metabolismo , Viabilidade Microbiana , SARS-CoV-2/metabolismo , Saliva/virologia , Bacteriófago phi 6/metabolismo , COVID-19/transmissão , Microbiologia Ambiental , Humanos , Ensaio de Placa Viral , Inativação de Vírus
5.
Virology ; 547: 47-56, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32560904

RESUMO

Bacteriophage ϕX174 is a model virus for studies across the fields of structural biology, genetics, gut microbiomics, and synthetic biology, but did not have a high-resolution transcriptome until this work. In this study we used next-generation sequencing to measure the RNA produced from ϕX174 while infecting its host E. coli C. We broadly confirm the past transcriptome model while revealing several interesting deviations from previous knowledge. Additionally, we measure the strength of canonical ϕX174 promoters and terminators and discover both a putative new promoter that may be activated by heat shock sigma factors, as well as rediscover a controversial Rho-dependent terminator. We also provide evidence for the first antisense transcription observed in the Microviridae, identify two promoters that may be involved in generating this transcriptional activity, and discuss possible reasons why this RNA may be produced.


Assuntos
Bacteriófago phi X 174/genética , Transcrição Gênica , Bacteriófago phi X 174/metabolismo , Sequência de Bases , Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Regiões Promotoras Genéticas , RNA Viral/genética , RNA Viral/metabolismo
6.
Sci Rep ; 8(1): 8350, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844443

RESUMO

Viruses rely upon their hosts for biosynthesis of viral RNA, DNA and protein. This dependency frequently engenders strong selection for virus genome compatibility with potential hosts, appropriate gene regulation and expression necessary for a successful infection. While bioinformatic studies have shown strong correlations between codon usage in viral and host genomes, the selective factors by which this compatibility evolves remain a matter of conjecture. Engineered to include codons with a lesser usage and/or tRNA abundance within the host, three different attenuated strains of the bacterial virus ФX174 were created and propagated via serial transfers. Molecular sequence data indicate that biosynthetic compatibility was recovered rapidly. Extensive computational simulations were performed to assess the role of mutational biases as well as selection for translational efficiency in the engineered phage. Using bacteriophage as a model system, we can begin to unravel the evolutionary processes shaping codon compatibility between viruses and their host.


Assuntos
Bacteriófago phi X 174/genética , Genoma Viral/genética , Bacteriófago phi X 174/metabolismo , Bacteriófagos/genética , Códon/genética , Biologia Computacional/métodos , Evolução Molecular , RNA de Transferência/genética , RNA Viral/genética , Vírus/genética
7.
Proc Natl Acad Sci U S A ; 114(52): 13708-13713, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229840

RESUMO

Unlike tailed bacteriophages, which use a preformed tail for transporting their genomes into a host bacterium, the ssDNA bacteriophage ΦX174 is tailless. Using cryo-electron microscopy and time-resolved small-angle X-ray scattering, we show that lipopolysaccharides (LPS) form bilayers that interact with ΦX174 at an icosahedral fivefold vertex and induce single-stranded (ss) DNA genome ejection. The structures of ΦX174 complexed with LPS have been determined for the pre- and post-ssDNA ejection states. The ejection is initiated by the loss of the G protein spike that encounters the LPS, followed by conformational changes of two polypeptide loops on the major capsid F proteins. One of these loops mediates viral attachment, and the other participates in making the fivefold channel at the vertex contacting the LPS.


Assuntos
Bacteriófago phi X 174 , Proteínas do Capsídeo , Parede Celular/virologia , Escherichia coli/virologia , Internalização do Vírus , Bacteriófago phi X 174/química , Bacteriófago phi X 174/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo
8.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795440

RESUMO

During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. IMPORTANCE: Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity.


Assuntos
Bacteriófago phi X 174/química , Proteínas do Capsídeo/química , Capsídeo/química , Regulação Viral da Expressão Gênica , Montagem de Vírus , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Evolução Molecular Direcionada , Genes Letais , Aptidão Genética , Cinética , Modelos Moleculares , Mutação , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
9.
J Virol ; 88(18): 10276-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24990998

RESUMO

Although ϕX174 DNA pilot protein H is monomeric during procapsid assembly, it forms an oligomeric tube on the host cell surface. Reminiscent of a double-stranded DNA phage tail in form and function, the H tube transports the single-stranded ϕX174 genome across the Escherichia coli cell wall. The 2.4-Šresolution H-tube crystal structure suggests functional and energetic mechanisms that may be common features of DNA transport through virally encoded conduits.


Assuntos
Bacteriófago phi X 174/metabolismo , DNA Viral/metabolismo , Escherichia coli/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Bacteriófago phi X 174/química , Bacteriófago phi X 174/genética , Transporte Biológico , DNA Viral/química , DNA Viral/genética , Modelos Moleculares , Proteínas Virais/genética
10.
Nature ; 505(7483): 432-5, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24336205

RESUMO

Prokaryotic viruses have evolved various mechanisms to transport their genomes across bacterial cell walls. Many bacteriophages use a tail to perform this function, whereas tail-less phages rely on host organelles. However, the tail-less, icosahedral, single-stranded DNA ΦX174-like coliphages do not fall into these well-defined infection processes. For these phages, DNA delivery requires a DNA pilot protein. Here we show that the ΦX174 pilot protein H oligomerizes to form a tube whose function is most probably to deliver the DNA genome across the host's periplasmic space to the cytoplasm. The 2.4 Å resolution crystal structure of the in vitro assembled H protein's central domain consists of a 170 Å-long α-helical barrel. The tube is constructed of ten α-helices with their amino termini arrayed in a right-handed super-helical coiled-coil and their carboxy termini arrayed in a left-handed super-helical coiled-coil. Genetic and biochemical studies demonstrate that the tube is essential for infectivity but does not affect in vivo virus assembly. Cryo-electron tomograms show that tubes span the periplasmic space and are present while the genome is being delivered into the host cell's cytoplasm. Both ends of the H protein contain transmembrane domains, which anchor the assembled tubes into the inner and outer cell membranes. The central channel of the H-protein tube is lined with amide and guanidinium side chains. This may be a general property of viral DNA conduits and is likely to be critical for efficient genome translocation into the host.


Assuntos
Bacteriófago phi X 174/química , Bacteriófago phi X 174/metabolismo , DNA Viral/metabolismo , Escherichia coli/virologia , Montagem de Vírus , Bacteriófago phi X 174/ultraestrutura , Transporte Biológico , Microscopia Crioeletrônica , Cristalografia por Raios X , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoplasma/virologia , DNA Viral/ultraestrutura , Escherichia coli/citologia , Escherichia coli/ultraestrutura , Genoma Viral , Modelos Moleculares , Periplasma/metabolismo , Periplasma/ultraestrutura , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura
11.
Photochem Photobiol Sci ; 12(8): 1517-26, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23835850

RESUMO

Here we report that the photoreactivity of ruthenium(II) complexes with nucleobases may not only be modulated by their photoredox properties but also by their DNA binding mode. The damage resulting from photolysis of synthetic oligonucleotides and plasmid DNA by [Ru(bpz)3](2+), [Ru(bipy)3](2+) and the two DNA intercalating agents [Ru(bpz)2dppz](2+) and [Ru(bipy)2dppz](2+) has been monitored by polyacrylamide gel electrophoresis and by tests using proteins involved in DNA repair processes (DNA-PKCs, Ku80, Ku70, and PARP-1). The data show that intercalation controls the nature of the DNA damage photo-induced by ruthenium(II) complexes reacting with DNA via an electron transfer process. The intercalating agent [Ru(bpz)2dppz](2+) is a powerful DNA breaker inducing the formation of both single and double (DSBs) strand breaks which are recognized by the PARP-1 and DNA-PKCs proteins respectively. [Ru(bpz)2dppz](2+) is the first ruthenium(II) complex described in the literature that is able to induce DSBs by an electron transfer process. In contrast, its non-intercalating parent compound, [Ru(bpz)3](2+), is mostly an efficient DNA alkylating agent. Photoadducts are recognized by the proteins Ku70 and Ku80 as with cisplatin adducts. This result suggests that photoaddition of [Ru(bpz)2dppz](2+) is strongly affected by its DNA intercalation whereas its photonuclease activity is exalted. The data clearly show that DNA intercalation decreases drastically the photonuclease activity of ruthenium(II) complexes oxidizing guanine via the production of singlet oxygen. Interestingly, the DNA sequencing data revealed that the ligand dipyridophenazine exhibits on single-stranded oligonucleotides a preference for the 5'-TGCGT-3' sequence. Moreover the use of proteins involved in DNA repair processes to detect DNA damage was a powerful tool to examine the photoreactivity of ruthenium(II) complexes with nucleic acids.


Assuntos
Complexos de Coordenação/farmacologia , DNA/química , Substâncias Intercalantes/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Piridinas/farmacologia , Rutênio/farmacologia , Animais , Antígenos Nucleares/metabolismo , Bacteriófago phi X 174/química , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Sequência de Bases , Bovinos , Complexos de Coordenação/química , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Substâncias Intercalantes/química , Autoantígeno Ku , Oxirredução , Fármacos Fotossensibilizantes/química , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Piridinas/química , Rutênio/química
12.
Mol Biotechnol ; 54(2): 436-44, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22782703

RESUMO

Bacterial ghost is a novel vaccine platform, and its safe and efficient production depends largely upon a suitable and functional vector. In this study, a series of temperature-inducible plasmids, carrying Phix174 lysis gene E and/or staphylococcal nuclease A (SNA) gene, were constructed and evaluated in Escherichia coli. The results showed that the direct product of SNA (pBV220-SNA) could degrade the plasmid and genomic DNA of E. coli while the fusion product of gene E and partial Cro gene (pKF396M-2) lost the ability to lyse the host strain. The insertion of enhancer T7g10 elements and Shine-Dalgarno box (ESD) between them (pKF396M-3) could resume the function of gene E. Using plasmid pKF396M-4 with gene E and SNA, respectively, under the immediate control of promoter pR and pL, the remnant plasmids and genomic DNA of E. coli were eliminated, and the rates of inactivation increased by two orders of magnitude over that obtained with the exclusive use of E-mediated lysis plasmid. By substituting these two genes with customized multiple cloning sites sequences, the plasmid could be modified to a dual expression vector (pKF396M-5).


Assuntos
Bacteriófago lambda/genética , Bacteriófago phi X 174/genética , Genes Bacterianos , Vetores Genéticos/genética , Nuclease do Micrococo/genética , Proteínas Virais/genética , Bacteriófago lambda/metabolismo , Bacteriófago phi X 174/metabolismo , Clonagem Molecular/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/metabolismo , Nuclease do Micrococo/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Virais/metabolismo
13.
J Virol ; 86(18): 9640-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22740415

RESUMO

It has been well established that chemical mutagenesis has adverse fitness effects in RNA viruses, often leading to population extinction. This is mainly a consequence of the high RNA virus spontaneous mutation rates, which situate them close to the extinction threshold. Single-stranded DNA viruses are the fastest-mutating DNA-based systems, with per-nucleotide mutation rates close to those of some RNA viruses, but chemical mutagenesis has been much less studied in this type of viruses. Here, we serially passaged bacteriophage X174 in the presence of the nucleoside analogue 5-fluorouracil (5-FU). We found that 5-FU was unable to trigger population extinction for the range of concentrations tested, but it negatively affected viral adaptability. The phage evolved partial drug resistance, and parallel nucleotide substitutions appearing in independently evolved lines were identified as candidate resistance mutations. Using site-directed mutagenesis, two single-nucleotide substitutions in the lysis protein E (T572C and A781G) were shown to be selectively advantageous in the presence of 5-FU. In RNA viruses, base analogue resistance is often mediated by changes in the viral polymerase, but this mechanism is not possible for X174 and other single-stranded DNA viruses because they do not encode their own polymerase. In addition to increasing mutation rates, 5-FU produces a wide variety of cytotoxic effects at the levels of replication, transcription, and translation. We found that substitutions T572C and A781G lost their ability to confer 5-FU resistance after cells were supplemented with deoxythymidine, suggesting that their mechanism of action is at the DNA level. We hypothesize that regulation of lysis time may allow the virus to optimize progeny size in cells showing defects in DNA synthesis.


Assuntos
Bacteriófago phi X 174/genética , Bacteriófago phi X 174/efeitos dos fármacos , Bacteriófago phi X 174/crescimento & desenvolvimento , Bacteriófago phi X 174/metabolismo , DNA/efeitos dos fármacos , DNA/genética , DNA/metabolismo , Evolução Molecular Direcionada , Farmacorresistência Viral/genética , Fluoruracila/farmacologia , Genes Virais , Mutagênese Sítio-Dirigida
14.
Appl Environ Microbiol ; 76(21): 7310-3, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833781

RESUMO

To determine bacteriophage PhiX174's ecological niche, 783 Escherichia coli isolates were screened for susceptibility. Sensitive strains are diverse regarding their phylogenies and core lipopolysaccharides (LPS), but all have rough phenotypes. Further analysis of E. coli K-12 LPS mutants revealed that PhiX174 can use a wide diversity of LPS structures to initiate its infectious process.


Assuntos
Bacteriófago phi X 174/fisiologia , Escherichia coli/virologia , Lipopolissacarídeos/metabolismo , Bacteriófago phi X 174/metabolismo , Bacteriófago phi X 174/patogenicidade , Ecologia , Escherichia coli/metabolismo , Escherichia coli K12/metabolismo , Escherichia coli K12/virologia , Lipopolissacarídeos/genética , Mutação/genética , Fenótipo , Filogenia
15.
Methods Mol Biol ; 521: 361-79, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19563117

RESUMO

Unwinding of double-stranded DNA is required to create a single-stranded DNA template for essential DNA processes such as those involved in recombination, repair, and replication. A set of specialized enzymes called DNA helicases is dedicated to this purpose, catalyzing DNA strand separation by breaking hydrogen bonds and other noncovalent interactions that stably hold the two complementary DNA strands together. They use energy derived from the hydrolysis of nucleotide triphosphates for both bond breakage between complementary bases and translocation of a helicase enzyme along DNA. DNA unwinding activity catalyzed by a helicase usually exhibits a specific directionality (5' to 3' or 3' to 5') with respect to the DNA strand to which the enzyme is bound and moves. Unwinding activity ofa DNA helicase and its related properties can be easily measured in vitro using common lab equipment. We will describe the detailed methods and notes for preparation of various helicase substrates and in vitro helicase assays using the substrates prepared.


Assuntos
DNA Helicases/análise , DNA Helicases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Autorradiografia , Bacteriófago T4/enzimologia , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Sequência de Bases , DNA/química , DNA/genética , DNA/metabolismo , DNA Nucleotidilexotransferase/metabolismo , Replicação do DNA/fisiologia , DNA Viral/genética , DNA Viral/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Hidrólise , Técnicas In Vitro , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Radioisótopos de Fósforo , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Especificidade por Substrato
16.
Virology ; 386(2): 303-9, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19237183

RESUMO

The first alpha-helices of Microviridae external scaffolding proteins function as coat protein substrate specificity domains. Mutations in this helix can lengthen the lag phase before progeny production. 5' deletion genes, encoding N-terminal deletion proteins, were constructed on plasmids and in the øX174 genome. Proteins lacking the first seven amino acids were able to rescue a nullD mutant when expressed from a plasmid. However, the lag phase before progeny production was lengthened. The øX174 mutant with the corresponding genomic gene grew very poorly. The molecular basis of the defective phenotype was complex. External scaffolding protein levels were reduced compared to wild-type and most of the viral coat protein in mutant infected cells appears to be siphoned off the assembly pathway. Second-site suppressors of the growth defects were isolated and appear to act via two different mechanisms. One class of suppressors most likely acts by altering mutant external scaffolding protein expression while the second class of suppressors appears to act on the level of protein-protein interactions.


Assuntos
Bacteriófago phi X 174/genética , Bacteriófago phi X 174/fisiologia , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Sequência de Aminoácidos , Bacteriófago phi X 174/metabolismo , Mutagênese , Deleção de Sequência , Proteínas Estruturais Virais/genética
17.
Int J Radiat Biol ; 83(7): 463-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17538796

RESUMO

PURPOSE: The objective of this study was to investigate how Escherichia coli cells responded at the level of DNA repair, when the cells were subjected to UV (ultraviolet) radiation and heat-stress to induce a DNA repair system (SOS) and heat-shock response, respectively. MATERIALS AND METHODS: The experiments were performed to study the Weigle reactivation of the bacteriophage phiX174 in its host E. coli C/1 cells. Two distinct techniques, top layer agar plating and Western blotting, were employed to measure the plaque count of viable phages and to demonstrate the heat-shock response respectively. RESULTS: Repair of UV-inactivated bacteriophages in UV-irradiated E. coli cells is known as Weigle reactivation. In the case of the single-stranded DNA containing bacteriophage phiX174, Weigle reactivation occurs only through the inducible SOS repair response. Here we report that when UV-irradiated E. coli cells were transferred to higher temperature, the consequent heat-shock enhanced the reactivation of UV-inactivated phiX174 over normal Weigle reactivation; the enhancement being maximum when the cells were shifted from 30 - 47 degrees C and incubated there for 30 min. The extent of increase of reactivation was less, when the cells were first subjected to heat-shock and then irradiated by UV. Besides heat, ethanol (5 - 10% volume/volume [v/v]), an established heat-shock inducer, also caused enhancement of phage reactivation and the maximum enhancement occurred at 8% v/v ethanol. CONCLUSION: We suggest that the SOS and heat-shock responses in E. coli act synergistically in the reactivation of UV-damaged bacteriophage phiX174.


Assuntos
Bacteriófago phi X 174/metabolismo , Escherichia coli/metabolismo , Ágar/química , Dano ao DNA , Reparo do DNA , Relação Dose-Resposta à Radiação , Escherichia coli/virologia , Etanol/farmacologia , Resposta ao Choque Térmico , Temperatura Alta , Peróxido de Hidrogênio/química , Resposta SOS em Genética , Temperatura , Raios Ultravioleta
18.
Chemistry ; 13(18): 5213-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17385761

RESUMO

The zinc(II) complexes reported here have been synthesised from the ligand 4-methyl-2-N-(2-pyridylmethyl)aminophenol (Hpyramol) with chloride or acetate counterions. All the five complexes have been structurally characterised, and the crystal structures reveal that the ligand Hpyramol gradually undergoes an oxidative dehydrogenation to form the ligand 4-methyl-2-N-(2-pyridylmethylene)aminophenol (Hpyrimol), upon coordination to Zn(II). All the five complexes cleave the phiX174 phage DNA oxidatively and the complexes with fully dehydrogenated pyrimol ligands were found to be more efficient than the complexes with non-dehydrogenated Hpyramol ligands. The DNA cleavage is suggested to be ligand-based, whereas the pure ligands alone do not cleave DNA. The DNA cleavage is strongly suggested to be oxidative, possibly due to the involvement of a non-diffusible phenoxyl radical mechanism. The enzymatic religation experiments and DNA cleavage in the presence of different radical scavengers further support the oxidative DNA cleavage by the zinc(II) complexes.


Assuntos
Aminofenóis/química , Clivagem do DNA , DNA/química , Compostos Organometálicos/síntese química , Oxidantes/química , Zinco/química , Acetatos/química , Bacteriófago phi X 174/química , Bacteriófago phi X 174/metabolismo , Cátions Bivalentes , Cloretos/química , Cristalografia por Raios X , DNA/metabolismo , Eletroquímica , Sequestradores de Radicais Livres/química , Hidrogênio/química , Ligantes , Modelos Químicos , Oxirredução , Fenóis/química
20.
Proc Natl Acad Sci U S A ; 102(26): 9127-32, 2005 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-15961544

RESUMO

We demonstrate a complete nanotube electrophoresis system (nanotube radii in the range of 50 to 150 nm) based on lipid membranes, comprising DNA injection, single-molecule transport, and single-molecule detection. Using gel-capped electrodes, electrophoretic single-file transport of fluorescently labeled dsDNA molecules is observed inside nanotubes. The strong confinement to a channel of molecular dimensions ensures a detection efficiency close to unity and identification of DNA size from its linear relation to the integrated peak intensity. In addition to constituting a nanotechnological device for identification and quantification of single macromolecules or biopolymers, this system provides a method to study their conformational dynamics, reaction kinetics, and transport in cell-like environments.


Assuntos
DNA/química , Eletroforese/métodos , Nanotubos/química , Tensoativos/química , Bacteriófago phi X 174/metabolismo , Transporte Biológico , DNA/metabolismo , Eletrodos , Corantes Fluorescentes/farmacologia , Cinética , Lipídeos/química , Lipossomos/química , Microscopia Confocal , Conformação de Ácido Nucleico , Osmose , Conformação Proteica , Compostos de Prata/química , Solventes/química , Glycine max/metabolismo , Tensoativos/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...