Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 222: 112263, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339994

RESUMO

The biosynthesis of polyphenolic compounds in cabbage waste, outer green leaves of white head cabbage (Brassica oleracea L. var. capitata subvar. alba), was stimulated by postharvest irradiation with UVB lamps or sunlight. Both treatments boosted the content of kaempferol and quercetin glycosides, especially in the basal leaf zone, as determined by the HPLC analysis of leaf extracts and by a non-destructive optical sensor. The destructive analysis of samples irradiated by the sun for 6 days at the end of October 2015 in Skierniewice (Poland) showed an increase of leaf flavonols by 82% with respect to controls. The treatment by a broadband UVB fluorescent lamp, with irradiance of 0.38 W m-2 in the 290-315 nm range (and 0.59 W m-2 in the UVA region) for 12 h per day at 17 °C along with a white light of about 20 µmol m-2 s-1, produced a flavonols increase of 58% with respect to controls. The kinetics of flavonols accumulation in response to the photochemical treatments was monitored with the FLAV non-destructive index. The initial FLAV rate under the sun was proportional to the daily radiation doses with a better correlation for the sun global irradiance (R2 = 0.973), followed by the UVA (R2 = 0.965) and UVB (R2 = 0.899) irradiance. The sunlight turned out to be more efficient than the UVB lamp in increasing the flavonols level of waste leaves, because of a significant role played by UVA and visible solar radiation in the regulation of the flavonoid accumulation in cabbage. The FLAV index increase induced on the adaxial leaf side was accompanied by a lower but still significant FLAV increase on the unirradiated abaxial side, likely due to a systemic signaling by mean of the long-distance movement of macromolecules. Our present investigation provides useful data for the optimization of postharvest photochemical protocols of cabbage waste valorization. It can represent a novel and alternative tool of vegetable waste management for the recovery of beneficial phytochemicals.


Assuntos
Brassica/efeitos da radiação , Luz , Brassica/química , Brassica/metabolismo , Clorofila/química , Cromatografia Líquida de Alta Pressão , Flavonóis/análise , Flavonóis/metabolismo , Armazenamento de Alimentos , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espectrometria de Fluorescência , Raios Ultravioleta
2.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361799

RESUMO

Addition of selenium or application of ultraviolet A (UVA) radiation for crop production could be an effective way of producing phytochemical-rich food. This study was conducted to investigate the effects of selenium and UVA radiation, as well as their combination on growth and phytochemical contents in broccoli microgreens. There were three treatments: Se (100 µmol/L Na2SeO3), UVA (40 µmol/m2/s) and Se + UVA (with application of Se and UVA). The control (CK) was Se spraying-free and UVA radiation-free. Although treatment with Se or/and UVA inhibited plant growth of broccoli microgreens, results showed that phytochemical contents increased. Broccoli microgreens under the Se treatment had higher contents of total soluble sugars, total phenolic compounds, total flavonoids, ascorbic acid, Fe, and organic Se and had lower Zn content. The UVA treatment increased the contents of total chlorophylls, total soluble proteins, total phenolic compounds, and FRAP. However, the Se + UVA treatment displayed the most remarkable effect on the contents of total anthocyanins, glucoraphanin, total aliphatic glucosinolates, and total glucosinolates; here, significant interactions between Se and UVA were observed. This study provides valuable insights into the combinational selenium and UVA for improving the phytochemicals of microgreens grown in an artificial lighting plant factory.


Assuntos
Brassica/crescimento & desenvolvimento , Produção Agrícola , Compostos Fitoquímicos/biossíntese , Selênio/farmacologia , Ácido Ascórbico/metabolismo , Brassica/efeitos dos fármacos , Brassica/efeitos da radiação , Flavonoides/metabolismo , Flavonoides/efeitos da radiação , Ferro/metabolismo , Fenol/metabolismo , Fenol/efeitos da radiação , Compostos Fitoquímicos/efeitos da radiação , Açúcares/metabolismo , Açúcares/efeitos da radiação , Raios Ultravioleta
3.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800078

RESUMO

Ultraviolet-B (UV-B) acts as a regulatory stimulus, inducing the dose-dependent biosynthesis of phenolic compounds such as flavonoids at the leaf level. However, the heterogeneity of biosynthesis activation generated within a whole plant is not fully understood until now and cannot be interpreted without quantification of UV-B radiation interception. In this study, we analyzed the spatial UV-B radiation interception of kales (Brassica oleracea L. var. Acephala) grown under supplemental UV-B LED using ray-tracing simulation with 3-dimension-scanned models and leaf optical properties. The UV-B-induced phenolic compounds and flavonoids accumulated more, with higher UV-B interception and younger leaves. To distinguish the effects of UV-B energy and leaf developmental age, the contents were regressed separately and simultaneously. The effect of intercepted UV-B on flavonoid content was 4.9-fold that of leaf age, but the effects on phenolic compound biosynthesis were similar. This study confirmed the feasibility and relevance of UV-B radiation interception analysis and paves the way to explore the physical and physiological base determining the intraindividual distribution of phenolic compound in controlled environments.


Assuntos
Brassica/metabolismo , Brassica/efeitos da radiação , Fenóis/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Brassica/anatomia & histologia , Clorofila/química , Clorofila/metabolismo , Flavonoides/metabolismo , Modelos Biológicos , Fotossíntese/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Raios Ultravioleta
4.
Food Chem ; 356: 129550, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819785

RESUMO

Glucosinolates (GSLs) are well known for plant defense and human nutrition. In this study, broccoli seedlings were illuminated under different LED light, including white, red, blue, and 75% red + 25% blue (200 mmol·m-2·s-1) for 4 weeks to investigate the effects of LED light on GSLs and sulforaphane biosynthesis. Results showed that red light promoted GSL biosynthesis and sulforaphane accumulation because red light could induce SOT18 expression to advance aliphatic GSLs biosynthesis, whereas the high tryptophan content and the upregulation of CYP79B2, CYP79B3, and CYP83B1 were attributed to indole GSL biosynthesis. Low-level methionine content and downregulated SOT18 were the main factors inhibiting GSLs and sulforaphane accumulation under blue LED illumination. BoHY5 gene expression was induced significantly and the yeast one-hybrid assay demonstrated BoHY5 could bind to SOT18 promoter. Consequently, BoHY5 inhibited SOT18 expression, and played a negative role in the GSL biosynthetic network.


Assuntos
Brassica/metabolismo , Glucosinolatos/metabolismo , Isotiocianatos/metabolismo , Plântula/metabolismo , Sulfóxidos/metabolismo , Brassica/efeitos da radiação , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Iluminação , Plântula/efeitos da radiação
5.
Molecules ; 26(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477705

RESUMO

Recently, there have been efforts to use ultraviolet-B radiation (UV-B) as a biotechnological tool in greenhouses. Leafy Brassica species are mainly considered for their ability to synthesize glucosinolates and are valued as baby salads. They also have a remarkable concentration of chemically diverse flavonoid glycosides. In this study, the effect of short-term UV-B radiation at the end of the production cycle was investigated without affecting plant growth. The aim was to verify which exposure and adaptation time was suitable and needs to be further investigated to use UV as a biotechnological tool in greenhouse production of Brassica species. It is possible to modify the flavonoid glycoside profile of leafy Brassica species by increasing compounds that appear to have potentially high antioxidant activity. Exemplarily, the present experiment shows that kaempferol glycosides may be preferred over quercetin glycosides in response to UV-B in Brassica rapa ssp. chinensis, for example, whereas other species appear to prefer quercetin glycosides over kaempferol glycosides, such as Brassica oleracea var. sabellica or Brassica carinata. However, the response to short-term UV-B treatment is species-specific and conclusions on exposure and adaptation time cannot be unified but must be drawn separately for each species.


Assuntos
Adaptação Fisiológica , Brassica/metabolismo , Flavonoides/metabolismo , Glicosídeos/metabolismo , Folhas de Planta/metabolismo , Raios Ultravioleta/efeitos adversos , Brassica/classificação , Brassica/crescimento & desenvolvimento , Brassica/efeitos da radiação , Flavonoides/análise , Flavonoides/efeitos da radiação , Glicosídeos/análise , Glicosídeos/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Especificidade da Espécie , Fatores de Tempo
6.
J Sci Food Agric ; 101(4): 1676-1684, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888328

RESUMO

BACKGROUND: Recently, it become an important strategy using light to regulate plant growth and quality, especially on daily edible leafy vegetable. Pak-choi is rich in healthy functional compounds, e.g. flavonoid and glucosinolate. Many studies have focused on the plant response to increased radiation and transformed visible light quality, however, we know less about different blue and UV-A light wavelengths. Therefore, the goal of this study was to identify whether different blue and UV-A light wavelengths could improve quality in two cultivars of pak-choi and further cultivate potentially healthy functional plants. RESULTS: The different blue and UV-A light wavelength treatments significantly increased the fresh and dry weight in two cultivars of pak-choi. Compared with control, the content of soluble protein was higher after the different blue and UV-A light treatments. Similarly, the contents of total phenolics and total flavonoids increased significantly under the light treatments, and the highest content presented under T430 (supplemental blue light at 430 nm) in red-leaf pak-choi and under T400 (supplemental UV-A light at 400 nm) in green-leaf pak-choi. The total anthocyanins content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) of two pak-choi cultivars improved positively with decreasing treatment wavelength, and other healthy compounds were affected to varying degrees under supplemental light treatments. CONCLUSION: The growth and healthy compound contents of pak-choi were significantly improved by supplemental blue and UV-A light, and there were wavelength- and cultivar-dependent effects. Compared with control, T430 presented the higher biomass and the contents of total phenolics, flavonoids and pigment in two pak-choi cultivars, and T380 was an efficient strategy to increase antioxidants and health-promoting compounds of red-leaf pak-choi. © 2020 Society of Chemical Industry.


Assuntos
Brassica/metabolismo , Brassica/efeitos da radiação , Folhas de Planta/química , Antocianinas/análise , Antocianinas/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Brassica/química , Cor , Flavonoides/análise , Flavonoides/metabolismo , Glucosinolatos/análise , Glucosinolatos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Raios Ultravioleta , Verduras/química , Verduras/metabolismo , Verduras/efeitos da radiação
7.
J Sci Food Agric ; 101(1): 44-53, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949155

RESUMO

BACKGROUND: The main objective of this study was to evaluate physiological and quality changes of minimally processed broccoli sprouts illuminated during postharvest storage under blue, red and far-red LED lighting as compared to darkness or illumination with fluorescent light, as control treatments. RESULTS: Morphological and microbiological changes were determined during 15 days at 5 °C. In addition, total antioxidant activity and bioactive compound changes throughout the shelf life were also monitored. Results showed that far-red LED lighting increased hypocotyl and sprout length, decreased microbial growth and improved the total antioxidant and scavenging activities, compared to darkness and fluorescent lighting treatments. However, it did not stimulate the biosynthesis of phenolic acids. In contrast, blue LED light reduced by 50% the total antioxidant capacity of broccoli sprouts compared to far-red treatment, as well as morphological development. In addition, total scavenging activity was increased under far-red LED light compared with the other treatments by 12-10% (darkness and fluorescence) and 33-31% (blue and red LEDs). CONCLUSIONS: Our results suggest that minimally processed sprouts may benefit from LED lighting during shelf life in terms of quality, although further experiments should be conducted to optimize a proper exposure cycle and intensity aiming for use in the distribution chain. The results also open the way for further development towards the integration of this technology in the food distribution chain.


Assuntos
Brassica/química , Brassica/efeitos da radiação , Antioxidantes/química , Antioxidantes/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Cor , Luz , Fenóis/química , Fenóis/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo
8.
Molecules ; 25(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086545

RESUMO

Selenium (Se) supplement was combined with different LED light qualities to investigate mutual effects on the growth, nutritional quality, contents of glucosinolates and mineral elements in broccoli sprouts. There were five treatments: CK:1R1B1G, 1R1B1G+Se (100 µmol L-1 Na2SeO3), 1R1B+Se, 1R2B+Se, 2R1B+Se, 60 µmol m-2 s-1 PPFD, 12 h/12 h (light/dark). Sprouts under a combination of selenium and LED light quality treatment exhibited no remarkable change fresh weight, but had a shorter hypocotyl length, lower moisture content and heavier dry weight, especially with 1R2B+Se treatment. The contents of carotenoid, soluble protein, soluble sugar, vitamin C, total flavonoids, total polyphenol and contents of total glucosinolates and organic Se were dramatically improved through the combination of Se and LED light quality. Moreover, heat map and principal component analysis showed that broccoli sprouts under 1R2B+Se treatment had higher nutritional quality and health-promoting compound contents than other treatments. This suggests that the Se supplement under suitable LED lights might be beneficial to selenium-biofortified broccoli sprout production.


Assuntos
Brassica/crescimento & desenvolvimento , Proteínas/metabolismo , Plântula/crescimento & desenvolvimento , Selênio/farmacologia , Ácido Ascórbico/biossíntese , Brassica/efeitos dos fármacos , Brassica/metabolismo , Brassica/efeitos da radiação , Carotenoides/metabolismo , Flavonoides/biossíntese , Glucosinolatos/biossíntese , Humanos , Luz , Polifenóis/biossíntese , Plântula/efeitos dos fármacos , Plântula/efeitos da radiação , Selênio/metabolismo , Açúcares/metabolismo
9.
Sci Rep ; 10(1): 13301, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764606

RESUMO

Biopesticides are biological pest control agents that are viewed as safer alternatives to the synthetic chemicals that dominate the global insecticide market. A major constraint on the wider adoption of biopesticides is their susceptibility to the ultraviolet (UV: 290-400 nm) radiation in sunlight, which limits their persistence and efficacy. Here, we describe a novel formulation technology for biopesticides in which the active ingredient (baculovirus) is micro-encapsulated in an ENTOSTAT wax combined with a UV absorbant (titanium dioxide, TiO2). Importantly, this capsule protects the sensitive viral DNA from degrading in sunlight, but dissolves in the alkaline insect gut to release the virus, which then infects and kills the pest. We show, using simulated sunlight, in both laboratory bioassays and trials on cabbage and tomato plants, that this can extend the efficacy of the biopesticide well beyond the few hours of existing virus formulations, potentially increasing the spray interval and/or reducing the need for high application rates. The new formulation has a shelf-life at 30 °C of at least 6 months, which is comparable to standard commercial biopesticides and has no phytotoxic effect on the host plants. Taken together, these findings suggest that the new formulation technology could reduce the costs and increase the efficacy of baculovirus biopesticides, with the potential to make them commercially competitive alternatives to synthetic chemicals.


Assuntos
Baculoviridae/metabolismo , Baculoviridae/efeitos da radiação , Controle Biológico de Vetores , Raios Ultravioleta/efeitos adversos , Animais , Bioensaio , Brassica/efeitos da radiação , Brassica/virologia , Insetos/metabolismo , Insetos/virologia , Solanum lycopersicum/efeitos da radiação , Solanum lycopersicum/virologia
10.
Photochem Photobiol ; 96(4): 845-852, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32104924

RESUMO

UV-B irradiation has been used to enhance the secondary metabolite content in plants, but its spatial effect on plants has not been considered. The objective of this study was to compare spatial photosynthetic traits and bioactive compound accumulation in kale (Brassica oleracea L. var Acephala) according to the distribution and length of UV-B exposure near harvest. Plants were exposed to UV-B of 0-3, 3-6 and 6-9 W m-2 for 4 h per day at 5 days (Exp. 1) and 4.2 W m-2 at 5, 4, 3, 2 or 1 days (Exp. 2) before harvest. In spatial distribution, the higher the UV-B intensity, the lower the mean Fv /Fm (maximal photochemical efficiency of PSII) and the higher the concentration of total flavonoid compound (TFC). With UV-B stress, Fv /Fm and fluorescence transient parameters decreased except for DI0 /CS (dissipated energy flux per cross section) and PIabs (performance index of PSII). When exposed to UV-B radiation for 2 days before harvest, the total phenolic compounds and TFC per plant were highest, not always proportional to the local Fv /Fm but affected by dry weight. Short-term UV-B stress near harvest would be more efficient for the accumulation of bioactive compounds by minimizing the loss of plant weight.


Assuntos
Brassica/efeitos da radiação , Clorofila/metabolismo , Raios Ultravioleta , Brassica/metabolismo , Adaptação à Escuridão , Flavonoides/metabolismo , Fluorescência , Fenóis/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
11.
Biomolecules ; 10(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046153

RESUMO

Low-intensity (10 µmol m-2 s-1) white LED (light-emitting diode) light effectively delayed senescence and maintained the quality of postharvest pakchoi during storage at 20 °C. To investigate the mechanism of LED treatment in maintaining the quality of pakchoi, metabolite profiles reported previously were complemented by transcriptomic profiling to provide greater information. A total of 7761 differentially expressed genes (DEGs) were identified in response to the LED irradiation of pak-choi during postharvest storage. Several pathways were markedly induced by LED irradiation, with photosynthesis being the most notable. More specifically, porphyrin and chlorophyll metabolism and glucosinolate biosynthesis were significantly induced by LED irradiation, which is consistent with metabolomics reported previously. Additionally, chlorophyllide a, chlorophyll, as well as total glucosinolate content was positively induced by LED irradiation. Overall, LED irradiation delayed the senescence of postharvest pak-choi mainly by activating photosynthesis, inducting glucosinolate biosynthesis, and inhibiting the down-regulation of porphyrin and chlorophyll metabolism pathways. The present study provides new insights into the effect and the underlying mechanism of LED irradiation on delaying the senescence of pak-choi. LED irradiation represents a useful approach for extending the shelf life of pak-choi.


Assuntos
Brassica/genética , Brassica/metabolismo , Brassica/efeitos da radiação , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Luz , Metabolômica/métodos , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Transcriptoma/genética
12.
J Sci Food Agric ; 100(1): 431-440, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31598969

RESUMO

BACKGROUND: Sound waves are emerging as a potential biophysical alternative to traditional methods for enhancing plant growth and phytochemical contents. However, little information is available on the improvement of the concentration of functional metabolites like flavonoids in sprouts using sound waves. In this study, different frequencies of sound waves with short and long exposure times were applied to three important varieties to improve flavonoid content. The aim of this study was to investigate the effect of sound waves on flavonoid content on the basis of biochemical and molecular characteristics. RESULTS: We examined the effects of various sound wave treatments (250 Hz to 1.5 kHz) on flavonoid production in alfalfa (Medicago sativa), broccoli (Brassica oleracea) and red young radish (Raphanus sativus). The results showed that sound wave treatments differentially altered the total flavonoid contents depending upon the growth stages, species and frequency of and exposure time to sound waves. Sound wave treatments of alfalfa (250 Hz), broccoli sprouts (800 Hz) and red young radish sprouts (1 kHz) increased the total flavonoid content by 200%, 35% and 85%, respectively, in comparison with untreated control. Molecular analysis showed that sound waves induce the expression of genes of the flavonoid biosynthesis pathway, which positively corresponds to the flavonoid content. Moreover, the sound wave treatment significantly improves the antioxidant efficiency of sprouts. CONCLUSIONS: The significant improvement of flavonoid content in sprouts with sound waves makes their use a potential and promising technology for the production of agriculture-based functional foods. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Brassica/efeitos da radiação , Flavonoides/química , Medicago sativa/efeitos da radiação , Raphanus/efeitos da radiação , Brassica/química , Brassica/crescimento & desenvolvimento , Medicago sativa/química , Medicago sativa/crescimento & desenvolvimento , Raphanus/química , Raphanus/crescimento & desenvolvimento , Som
13.
Opt Express ; 27(22): 31967-31977, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684418

RESUMO

Light-converting polypropylene spunbond was first used in the study of the key physiological parameters of plants. A comparative study of the functioning of the photosynthetic apparatus and the dynamics of growth in late cabbage plants (Olga variety) and leaf lettuce (Emerald variety) was conducted using the ordinary nonwoven polypropylene fabric (spunbond) (density 30 g·m-2) and the spunbond containing a photoluminophore (PL) (1.6% yttrium oxysulfide doped with europium). The plants were grown in a glass greenhouse without spunbond and under the spunbond containing and not containing the PL that transforms a part of UV-radiation into red light radiation. The use of the spunbond led to a decrease in the rate of photosynthesis, activity of the photosystem 2, and the accumulation of plant biomass and to an increase in the stomatal conductance. By contrast to unmodified spunbond, the application of the spunbond containing the PL led to an increase in the rate of photosynthesis, the water-use efficiency (WUE), and the accumulation of the total biomass of plants by 30-50% but to a decrease in the transpiration rate and the stomatal conductance. It is assumed that the positive effect of the PL is associated with an increase in the fraction of fluorescent red light, which enhances photosynthetic activity and accelerates plant growth.


Assuntos
Agricultura , Brassica/crescimento & desenvolvimento , Brassica/efeitos da radiação , Lactuca/crescimento & desenvolvimento , Lactuca/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Têxteis , Biomassa , Polipropilenos/química , Espectrometria de Fluorescência
14.
Metabolomics ; 15(12): 155, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31773368

RESUMO

The main objective of this study was to investigate the effect of low-level light emitting diode (LED) irradiation on the metabolite profile of pak-choi. A total of 633 different molecular features (MFs) were identified among sample groups (initial, dark-treated, light-treated) using an untargeted metabolomic approach. The identified metabolites were associated with 24 different metabolic pathways. Four of the pathways including carbon pool by folate, folate biosynthesis, thiamine metabolism, and glutathione metabolism, all of which are associated with vitamin biosynthesis, changed significantly. Metabolites in four of the pathways exhibited significant differences from the control in response to LED irradiation. Additionally, porphyrin and chlorophyll metabolism, as well as glucosinolate biosynthesis, riboflavin metabolism, and carotenoid biosynthesis were positively induced by LED irradiation. These results indicate that postharvest LED illumination represents a potential tool for modifying the metabolic profile of pak-choi to maintain quality and nutritional levels.


Assuntos
Brassica/metabolismo , Brassica/efeitos da radiação , Vitaminas/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Metabolômica/métodos , Vitaminas/metabolismo
15.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597250

RESUMO

Short-term abiotic stress treatment before harvest can enhance the quality of horticultural crops cultivated in controlled environments. Here, we investigated the effects of combined chilling and UV-A treatment on the accumulation of phenolic compounds in kale (Brassica oleracea var. acephala). Five-week-old plants were subjected to combined treatments (10 °C plus UV-A LED radiation at 30.3 W/m2) for 3-days, as well as single treatments (4 °C, 10 °C, or UV-A LED radiation). The growth parameters and photosynthetic rates of plants under the combined treatment were similar to those of the control, whereas UV-A treatment alone significantly increased these parameters. Maximum quantum yield (Fv/Fm) decreased and H2O2 increased in response to UV-A and combined treatments, implying that these treatments induced stress in kale. The total phenolic contents after 2- and 3-days of combined treatment and 1-day of recovery were 40%, 60%, and 50% higher than those of the control, respectively, and the phenylalanine ammonia-lyase activity also increased. Principal component analysis suggested that stress type and period determine the changes in secondary metabolites. Three days of combined stress treatment followed by 2-days of recovery increased the contents of quercetin derivatives. Therefore, combined chilling and UV-A treatment could improve the phenolic contents of leafy vegetables such as kale, without growth inhibition.


Assuntos
Adaptação Biológica , Brassica/fisiologia , Brassica/efeitos da radiação , Temperatura Baixa , Metaboloma , Metabolômica , Raios Ultravioleta , Clorofila/metabolismo , Cromatografia Líquida de Alta Pressão , Metabolismo Energético/efeitos da radiação , Flavonóis/metabolismo , Metaboloma/efeitos da radiação , Metabolômica/métodos , Fenóis/metabolismo , Fotossíntese/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
16.
Life Sci Space Res (Amst) ; 20: 93-100, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30797438

RESUMO

An algorithm of determining optimal LED lighting parameters for leafy crops (Chinese cabbage Brassica chinensis L. was taken as a model) in a vitamin space Plant Growth Facility is proposed. The lighting parameters to optimize were the level of photosynthetic photon flux density (PPFD), red and white LEDs PPFD ratio and pulse repetition period with a fixed pulse length 30 µs. Optimal lighting parameters should allow achieving a high biomass yield per consumed light energy, as well as high vitamin C content in the crop biomass. A quantitative optimality criterion for estimating the lighting parameters quality is suggested. For Chinese cabbage crop the maximum value of this criterion was obtained at the following lighting conditions parameters: PPFD - 500 µmol m-2 s-1, red/white ratio - 1.5, and pulse repetition period - 501 µs.


Assuntos
Ácido Ascórbico/administração & dosagem , Brassica/crescimento & desenvolvimento , Fotossíntese , Desenvolvimento Vegetal , Voo Espacial , Vitaminas/administração & dosagem , Brassica/efeitos dos fármacos , Brassica/efeitos da radiação , Luz , Iluminação/métodos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação
17.
J Agric Food Chem ; 66(24): 5984-5991, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29851489

RESUMO

There is increasing evidence that the circadian clock is a significant driver of plant phytochemicals. However, little is known about the clock effect on antioxidant metabolites in edible crops. Thus, the aim of the present investigation was to study whether the antioxidant potential of Brassica cultivars is under circadian regulation and its relationship with polyphenol content. To accomplish that we entrain plants of four Brassica cultivars to light-dark cycles prior to release into continuous light. The antioxidant activity and phenolic content was monitored at four time points of the day during four consecutive days: 2 days under light-dark conditions followed by 2 days under continuous light. Results showed daily oscillation of antioxidant activity. In addition, those variations were related with endogenous circadian rhythms in polyphenolics and exhibit a species-specific pattern. Considered together, we determined that Brassica cultivars have an optimal time during a single day with increased levels of health phytochemicals.


Assuntos
Antioxidantes/química , Brassica/química , Ritmo Circadiano , Polifenóis/química , Antioxidantes/metabolismo , Brassica/fisiologia , Brassica/efeitos da radiação , Fotoperíodo , Polifenóis/metabolismo
18.
Int J Mol Sci ; 18(11)2017 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-29113068

RESUMO

Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied.


Assuntos
Brassica/metabolismo , Carotenoides/biossíntese , Clorofila/biossíntese , Ciclopentanos/farmacologia , Glucosinolatos/biossíntese , Oxilipinas/farmacologia , Raios Ultravioleta , Brassica/efeitos dos fármacos , Brassica/efeitos da radiação , Ácido Gálico/metabolismo , Ácido Quínico/análogos & derivados
19.
Food Res Int ; 100(Pt 2): 277-281, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28888451

RESUMO

Optimally ripened commercial cabbage kimchi is considered the main cause of enteric norovirus (NoV) outbreaks in Korea. This study investigated the effect of 1-10kGy gamma radiation on the inactivation of murine norovirus-1 (MNV-1; initial inoculum of 5-6log10PFU/ml), used as a human NoV surrogate, in kimchi. The effects of gamma radiation on the pH and acidity were also examined to address the index of quality and fermentation, respectively. Titers of MNV-1 significantly reduced (p<0.05) in kimchi subjected to increasing gamma radiation doses: MNV-1 titers in kimchi after 1, 3, 5, 7, and 10kGy were 4.82 (0.34-log10 reduction), 4.45 (0.71-log10 reduction), 4.18 (0.98-log10 reduction), 3.71 (1.45-log10 reduction), and 3.40 (1.76-log10 reduction) log10 PFU/ml, respectively. However, the values of pH (4.5-4.6) and acidity (0.6-0.7%) were not significantly different between non-irradiated and irradiated kimchi (p>0.05). The D-value (1-log reduction) for MNV-1 in kimchi, calculated using first-order kinetics, was 5.75kGy (R2=0.98, RMSE=0.10). Therefore, this study suggests that the use of ≥5.75kGy gamma radiation in the kimchi manufacturing industry could be very effective in reducing NoV contamination by >90% (1 log), without causing changes in quality and fermentation.


Assuntos
Brassica/efeitos da radiação , Alimentos Fermentados/efeitos da radiação , Conservação de Alimentos , Qualidade dos Alimentos , Raios gama , Norovirus/efeitos da radiação , Brassica/virologia , Relação Dose-Resposta à Radiação , Fermentação , Alimentos Fermentados/virologia , Contaminação de Alimentos , Manipulação de Alimentos , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Norovirus/isolamento & purificação , República da Coreia , Inativação de Vírus/efeitos da radiação
20.
Sci Rep ; 7(1): 5232, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701702

RESUMO

Red cabbage (Brassica oleracea L. var. capitata f. rubra DC.) is a fresh edible vegetable consumed globally that contains high levels of antioxidant compounds including anthocyanins. In this study, fresh-cut red cabbage was treated with different Ultraviolet-C (UV-C) dosages. Fifteen cyanidin derivatives were observed in UV-C treated fresh-cut red cabbage; four of these were anthocyanins absent in control samples. The optimum dose of UV-C for enhancing total anthocyanin content in fresh-cut red cabbage was 3.0 kJ/m2. Different UV-C irradiation doses resulted in miscellaneous responses for each of the anthocyanin compounds, and these alterations appeared to be dose-dependent. The expression of genes relating to anthocyanin metabolism was altered by UV-C irradiation. For example, genes for biosynthetic enzymes including glycosyltransferase and acyltransferase, as well as R2R3 MYB transcription factors (production of anthocyanin pigment 1 and MYB114), had strongly increased expression following UV-C treatment. These results are in accord with the roles of these gene products in anthocyanin metabolism. This is, to the authors' knowledge, the first report demonstrating that UV-C treatment can increase the antioxidant activity in fresh-cut red cabbage in storage. Moreover, our detailed phytochemical and gene expression analysis establish specific roles for both anthocyanins and metabolism genes in this process.


Assuntos
Antocianinas/biossíntese , Antioxidantes/metabolismo , Brassica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/metabolismo , Raios Ultravioleta , Brassica/genética , Brassica/efeitos da radiação , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...