Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.044
Filtrar
1.
Sci Rep ; 14(1): 9161, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644412

RESUMO

Water bodies are highly pollution-prone areas in which mercury (Hg) is considered as a major menace to aquatic organisms. However, the information about the toxicity of mercuric chloride (HgCl2) in a vital organ such as the liver of fish is still inadequate. This study aimed to assess the impact of mercuric chloride (HgCl2) exposure on the liver of Channa punctata fish over 15, 30, and 45 days, at two different concentrations (0.039 mg/L and 0.078 mg/L). Mercury is known to be a significant threat to aquatic life, and yet, information regarding its effects on fish liver remains limited. The results of this study demonstrate that exposure to HgCl2 significantly increases oxidative stress markers, such as lipid peroxidation (LPO) and protein carbonyls (PC), as well as the levels of serum glutamic-oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in the fish. Additionally, the transcriptional and protein analysis of specific genes and molecules associated with necroptosis and inflammation, such as ABCG2, TNF α, Caspase 3, RIPK 3, IL-1ß, Caspase-1, IL-18, and RIPK1, confirm the occurrence of necroptosis and inflammation in the liver. Histopathological and ultrastructural examinations of the liver tissue further reveal a significant presence of liver steatosis. Interestingly, the upregulation of PPARα suggests that the fish's body is actively responding to counteract the effects of liver steatosis. This study provides a comprehensive analysis of oxidative stress, biochemical changes, gene expression, protein profiles, and histological findings in the liver tissue of fish exposed to mercury pollution in freshwater environments.


Assuntos
Fígado Gorduroso , Inflamação , Fígado , Cloreto de Mercúrio , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Estresse Oxidativo/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Inflamação/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Poluentes Químicos da Água/toxicidade , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Peixes/metabolismo , Channa punctatus
2.
Environ Toxicol ; 39(5): 2937-2947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308452

RESUMO

Mercury chloride is a type of heavy metal that causes the formation of free radicals, causing hepatotoxicity, nephrotoxicity and apoptosis. In this study, the effects of naringenin on oxidative stress and apoptosis in the liver and kidney of rats exposed to mercury chloride were investigated. In the study, 41 2-month-old male Wistar-Albino rats were divided into five groups. Accordingly, group 1 was set as control group, group 2 as naringenin-100, group 3 as mercury chloride, group 4 as mercury chloride + naringenin-50, and group 5 as mercury chloride + naringenin-100. For the interventions, 1 mL/kg saline was administered to the control, 0.4 mg/kg/day mercury (II) chloride to the mercury chloride groups by i.p., and 50 and 100 mg/kg/day naringenin prepared in corn oil to the naringenin groups by gavage. All the interventions lasted for 20 days. Mercury chloride administration was initiated 1 h following the administration of naringenin. When mercury chloride and the control group were compared, a significant increase in plasma urea, liver and kidney malondialdehyde (MDA) levels, in kidney superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) activities (p < .001), and a significant decrease in liver and kidney glutathione (GSH) levels (p < .001), in liver catalase (CAT) activity (p < .01) were observed. In addition, histopathological changes and a significant increase in caspase-3 levels were detected (p < .05). When mercury chloride and treatment groups were compared, the administration of naringenin caused a decrease aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) (p < .01), urea, creatinine levels (p < .001) in plasma, MDA levels in liver and kidney, SOD, GSH-Px, GST activities in kidney (p < .001), and increased GSH levels in liver and kidney. The addition of naringenin-100 increased GSH levels above the control (p < .001). The administration of naringenin was also decreased histopathological changes and caspase-3 levels (p < .05). Accordingly, it was determined that naringenin is protective and therapeutic against mercury chloride-induced oxidative damage and apoptosis in the liver and kidney, and 100 mg/kg naringenin is more effective in preventing histopathological changes and apoptosis.


Assuntos
Cloretos , Flavanonas , Mercúrio , Ratos , Masculino , Animais , Cloretos/metabolismo , Caspase 3/metabolismo , Ratos Wistar , Cloreto de Mercúrio/toxicidade , Cloreto de Mercúrio/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Rim , Fígado , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Apoptose , Mercúrio/metabolismo , Mercúrio/farmacologia , Ureia
3.
Nutr. clín. diet. hosp ; 44(1): 127-136, Feb. 2024. tab, ilus
Artigo em Espanhol | IBECS | ID: ibc-231311

RESUMO

Introducción: Las enfermedades neurodegenerativas han ido en aumento durante las últimas décadas, siendo la demencia la principal patología con mayor repercusión a nivel global. Objetivo: Evaluar el efecto neuroprotector del zumo del fruto Solanum quitoense (lulo) frente a la toxicidad del cloruro de mercurio (II) en los ratones. Materiales y métodos: Diseño experimental, con grupo control y posprueba. Se empleó 42 ratones machos. Para inducir a la toxicidad se empleó una solución de HgCl2 (10 mg/kg), vía orogástrica, por un periodo de siete días. Durante ese periodo recibieron los siguientes tratamientos: grupos I y II suero fisiológico; grupos III vitamina E (40UI/kg); grupo IV-V-VI zumo de lulo, 0,5; 2,0 y 8,0 mL/kg, respectivamente. Terminado el tratamiento los animales fueron sacrificados por decapitación, el cerebro y cerebelo fueron extraído de la cavidad craneana. El hemisferio izquierdo fue homogenizado para la determinación de la lipoperoxidación, glutatión (reducido y total), actividad de superóxido dismutasa y catalasa. El hemisferio derecho y cerebelo fueron conservados, para la evaluación histológica. Se evaluó la función cognitiva (aprendizaje y memoria), según protocolo de Deacon y Rawlis. Resultados: La administración del zumo de lulo disminuyeron los índices de cerebro en los grupos V-VI. La lipoperoxidación disminuyó (grupos IV-VI), la relación GSH/GSSG aumentaron (grupos V-VI). La actividad de la catalasa aumentó (grupos IV-VI). La relación SOD/CAT disminuyeron (grupos IV-VI). El tiempo de latencia y número de intentos fueron menores en los grupos IV-VI. Conclusiones: La administración del zumo del fruto Solanum quitoense presenta efecto neuroprotector para el modelo estudiado. Palabras clave: Neuroprotección, Solanum quitoense, cloruro de mercurio, función cognitiva, alimento funcional (Fuente: DeCS BIREME).(AU)


Introduction: Neurodegenerative diseases have beenincreasing in recent decades, with dementia being the mainpathology with the greatest impact globally. Objective: To evaluate the neuroprotective effect ofSolanum quitoense (lulo) fruit juice against the toxicity ofmercury (II) chloride in mice. Materials and methods: Experimental design, withcontrol group and post-test. 42 male mice were used. Toinduce toxicity, a solution of HgCl2 (10 mg/kg) was used viathe orogastric route for a period of seven days. During thisperiod, they received the following treatments: groups I and II physiological saline; groups III vitamin E (40IU/kg); groupIV-V-VI lulo juice, 0.5; 2.0 and 8.0 mL/kg, respectively. Oncethe treatment was completed, the animals were sacrificed bydecapitation, the brain and cerebellum were removed fromthe cranial cavity. The left hemisphere was homogenized forthe determination of lipoperoxidation, glutathione (reducedand total), superoxide dismutase and catalase activity. Theright hemisphere and cerebellum were preserved forhistological evaluation. Cognitive function (learning andmemory) was evaluated according to the Deacon and Rawlisprotocol. Results: The administration of lulo juice decreased brainindices in groups V-VI. Lipoperoxidation decreased (groupsIV-VI), the GSH/GSSG ratio increased (groups V-VI). Catalaseactivity increased (groups IV-VI). The SOD/CAT ratiodecreased (groups IV-VI). The latency time and number ofattempts were lower in groups IV-VI. Conclusions: The administration of Solanum quitoensefruit juice has a neuroprotective effect for the model studied.(AU)


Assuntos
Animais , Camundongos , Solanum , Sucos de Frutas e Vegetais/toxicidade , Alimento Funcional , Cognição , Cloreto de Mercúrio/toxicidade , Neuroproteção , 28573 , Doenças Neurodegenerativas , Dano Encefálico Crônico
4.
BMC Plant Biol ; 24(1): 108, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347449

RESUMO

Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.


Assuntos
Brassica napus , Metais Pesados , Poluentes do Solo , Antioxidantes/metabolismo , alfa-Tocoferol/farmacologia , alfa-Tocoferol/metabolismo , Brassica napus/metabolismo , Cloreto de Mercúrio/toxicidade , Cloreto de Mercúrio/metabolismo , Tocoferóis/metabolismo , Tocoferóis/farmacologia , Metais Pesados/metabolismo , Prolina/metabolismo , Poluentes do Solo/metabolismo
5.
Int Immunopharmacol ; 126: 111289, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38016347

RESUMO

The ß3-adrenergic receptor (ß3-AR) agonism mirabegron is used to treat overactive urinary bladder syndrome; however, its role against acute kidney injury (AKI) is not unveiled, hence, we aim to repurpose mirabegron in the treatment of mercuric chloride (HgCl2)-induced AKI. Rats were allocated into normal, normal + mirabegron, HgCl2 untreated, HgCl2 + mirabegron, and HgCl2 + the ß3-AR blocker SR59230A + mirabegron. The latter increased the mRNA of ß3-AR and miR-127 besides downregulating NF-κB p65 protein expression and the contents of its downstream targets iNOS, IL-4, -13, and -17 but increased that of IL-10 to attest its anti-inflammatory capacity. Besides, mirabegron downregulated the protein expression of STAT-6, PI3K, and ERK1/2, the downstream targets of the above cytokines. Additionally, it enhanced the transcription factor PPAR-α but turned off the harmful hub HNF-4α/HNF-1α and the lipid peroxide marker MDA. Mirabegron also downregulated the CD-163 protein expression, which besides the inhibited correlated cytokines of M1 (NF-κB p65, iNOS, IL-17) and M2 (IL-4, IL-13, CD163, STAT6, ERK1/2), inactivated the macrophage phenotypes. The crosstalk between these parameters was echoed in the maintenance of claudin-2, kidney function-related early (cystatin-C, KIM-1, NGAL), and late (creatinine, BUN) injury markers, besides recovering the microscopic structures. Nonetheless, the pre-administration of SR59230A has nullified the beneficial effects of mirabegron on the aforementioned parameters. Here we verified that mirabegron can berepurposedto treat HgCl2-induced AKI by activating the ß3-AR. Mirabegron signified its effect by inhibiting inflammation, oxidative stress, and the activated M1/M2 macrophages, events that preserved the proximal tubular tight junction claudin-2 via the intersection of several trajectories.


Assuntos
Injúria Renal Aguda , Claudina-2 , Ratos , Animais , Cloreto de Mercúrio/toxicidade , NF-kappa B/metabolismo , Interleucina-4 , Rim/metabolismo , Macrófagos/metabolismo , Receptores Adrenérgicos
6.
J Biochem Mol Toxicol ; 38(1): e23589, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985964

RESUMO

In this study, a zebrafish embryo toxicity model was employed, utilizing 24 h postfertilization (hpf) zebrafish embryos. These embryos were treated with varying concentrations of mercuric chloride for 96 h under static conditions. We assessed multiple parameters that reflected developmental abnormalities, behavioral alterations, morphological anomalies, antioxidant enzyme activities, including those of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST), immune messenger RNA transcription levels of key factors such as tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and cyclooxygenase 2 (COX-2), as well as protein expression of TNF-α. The results revealed that embryos exposed to higher concentrations of mercury exhibited reduced hatchability and increased rates of morphological abnormalities and mortality at 48, 72, and 96 hpf. In addition, a concentration-dependent increase in developmental abnormalities, including cardiac edema, reduced body length, yolk sac edema, scoliosis, and bent tails, was observed. Larval behaviors, such as touch-induced escape responses, startle reactions, and turning actions, were found to be diminished in a concentration-dependent manner. Additionally, the activities of various antioxidative enzymes, such as SOD, CAT, and GST, exhibited an increase at higher mercury concentrations, with the exception of GPX activity, which decreased significantly in a dose-dependent manner (p < 0.05). Pro-inflammatory cytokine transcription levels, specifically TNF-α, IL-1ß, IL-6, and COX-2, were significantly upregulated in a dose-dependent manner in the mercuric (II) chloride (HgCl2 ) treatment group compared with the control group. TNF-α protein expression was notably elevated in the larvae group treated with 300 and 400 nM HgCl2 .


Assuntos
Antioxidantes , Peixe-Zebra , Animais , Antioxidantes/farmacologia , Peixe-Zebra/metabolismo , Cloreto de Mercúrio/toxicidade , Cloretos/farmacologia , Estresse Oxidativo , Citocinas/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Embrião não Mamífero , Superóxido Dismutase/metabolismo
7.
Brain Res ; 1826: 148741, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157955

RESUMO

This study investigated the effects of 6-gingerol-rich fraction of Zingiber officinale (6-GIRIFZO) on mercury chloride (HgCl2)-induced neurotoxicity in Wistar rats. Thirty -five male Wistar rats weighing between (150-200 g) were divided randomly into five groups (n = 7): group 1: control, received 0.5 mL of normal saline, group 2: received HgCl2 (5 mg/kg), group 3: received N-acetylcysteine (NAC) (50 mg/kg) as well as HgCl2 (5 mg/kg), group 4: received 6-GIRIFZO (100 mg/kg) and HgCl2 (5 mg/kg), group 5: had 6-GIRIFZO (200 mg/kg) and HgCl2 (5 mg/kg), consecutively for 14 days. On the day14, the rats were subjected to behavioural tests using a Morris water maze and novel object recognition tests. The rats were then euthanized to obtain brain samples for the determination of biochemical parameters (acetylcholinesterase (AchE), nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), tumor necrosis factor- alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6)) using standard methods. The result revealed a significant increase in escape latency and a significant decrease in recognition ratio in the rats that were exposed to HgCl2 only. However, 6-GIRIFZO produced a significant reduction in the escape latency and (p < 0.05) increase in the recognition ratio. Similarly, HgCl2 exposure caused a significant (p < 0.05) decrease in the brain SOD, GPx, CAT, GSH with increased brain levels of MDA, NO, AchE, TNF-α, NF-κB, IL-1ß and IL-6. Similarly to the standard drug, NAC, 6-GIRIFZO (100 and 200 mg/kg) significantly (p < 0.05) increased brain SOD, GPx, CAT, and GSH levels with decreased concentrations of MDA, NO, AchE, TNF-α, NF-κB, IL-1ß and IL-6. Also, pre-treatment with 6-GIRIFZO prevented the HgCl2-induced morphological aberrations in the rats. This study concludes that 6-GIRIFZO prevents HgCl2-induced cognitive deficit via reduction of brain inflammation as well as oxidative stress in rats.


Assuntos
Catecóis , Disfunção Cognitiva , Álcoois Graxos , Mercúrio , Zingiber officinale , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Cloretos , Doenças Neuroinflamatórias , Cloreto de Mercúrio/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Interleucina-6 , Acetilcolinesterase , Estresse Oxidativo , Glutationa/metabolismo , Acetilcisteína/farmacologia , Superóxido Dismutase/metabolismo , Mercúrio/farmacologia
8.
Environ Pollut ; 337: 122583, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741541

RESUMO

Inorganic mercury (Hg2+) is a highly toxic heavy metal in the environment. To date, the impacts of Hg2+ on the development of monocytes, or monopoiesis, have not been fully addressed. The aim of the present study was to investigate the impact of Hg2+ on monopoiesis. In this study, we treated B10.S mice and DBA/2 mice with 10 µM or 50 µM HgCl2 via drinking water for 4 wk, and we then evaluated the development of monocytes. Treatment with 50 µM HgCl2, but not 10 µM HgCl2, increased the number of monocytes in the blood, spleen and bone marrow (BM) of B10.S mice. Accordingly, treatment with 50 µM HgCl2, but not 10 µM HgCl2, increased the number of common myeloid progenitors (CMP) and granulocyte-macrophage progenitors (GMP) in the BM. Functional analyses indicated that treatment with 50 µM HgCl2 promoted the differentiation of CMP and GMP to monocytes in the BM of B10.S mice. Mechanistically, treatment with 50 µM HgCl2 induced the production of IFNγ, which activated the Jak1/3-STAT1/3-IRF1 signaling in CMP and GMP and enhanced their differentiation potential for monocytes in the BM, thus likely leading to increased number of mature monocytes in B10.S mice. Moreover, the increased monopoiesis by Hg2+ was associated with the increased inflammatory status in B10.S mice. In contrast, treatment with 50 µM HgCl2 did not impact the monopoiesis in DBA/2 mice. Our study reveals the impact of Hg on the development of monocytes.


Assuntos
Cloreto de Mercúrio , Mercúrio , Camundongos , Animais , Cloreto de Mercúrio/toxicidade , Cloretos , Camundongos Endogâmicos DBA , Mercúrio/toxicidade , Células Progenitoras Mieloides
9.
J Appl Toxicol ; 43(12): 1899-1915, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37551865

RESUMO

We have adapted a semiautomated method for tracking Caenorhabditis elegans spontaneous locomotor activity into a quantifiable assay by developing a sophisticated method for analyzing the time course of measured activity. The 16-h worm Adult Activity Test (wAAT) can be used to measure C. elegans activity levels for efficient screening for pharmacological and toxicity-induced effects. As with any apical endpoint assay, the wAAT is mode of action agnostic, allowing for detection of effects from a broad spectrum of response pathways. With caffeine as a model mild stimulant, the wAAT showed transient hyperactivity followed by reversion to baseline. Mercury chloride (HgCl2 ) produced an early dose-response hyperactivity phase followed by pronounced hypoactivity, a behavior pattern we have termed a toxicant "escape response." Methylmercury chloride (meHgCl) produced a similar pattern to HgCl2 , but at much lower concentrations, a weaker hyperactivity response, and more pronounced hypoactivity. Sodium arsenite (NaAsO2 ) and dimethylarsinic acid (DMA) induced hypoactivity at high concentrations. Acute toxicity, as measured by hypoactivity in C. elegans adults, was ranked: meHgCl > HgCl2 > NaAsO2 = DMA. Caffeine was not toxic with the wAAT at tested concentrations. Methods for conducting the wAAT are described, along with instructions for preparing C. elegans Habitation Medium, a liquid nutrient medium that allows for developmental timing equivalent to that found with C. elegans grown on agar with OP50 Escherichia coli feeder cultures. A de novo mathematical parametric model for adult C. elegans activity and the application of this model in ranking exposure toxicity are presented.


Assuntos
Caenorhabditis elegans , Modelos Teóricos , Animais , Cloreto de Mercúrio/toxicidade , Escherichia coli
10.
J Biochem Mol Toxicol ; 37(10): e23425, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37401655

RESUMO

Mercury is a toxic, environmentally heavy metal that can cause severe damage to all organs, including the nervous system. The functions of puerarin include antioxidant, anti-inflammatory, nerve cell repair, regulation of autophagy, and so forth. But because of the limited oral absorption of puerarin, it affects the protective effect on brain tissue. The nano-encapsulation of Pue can improve its limitation. Therefore, this study investigated the protective effect of Pue drug-loaded PLGA nanoparticles (Pue-PLGA-nps) on brain injury induced by mercuric chloride (HgCl2 ) in mice. The mice were divided into normal saline (NS) group, HgCl2 (4 mg/kg) group, Pue-PLGA-nps (50 mg/kg) group, HgCl2 + Pue (4 mg/kg + 30 mg/kg) group, and HgCl2 + Pue-PLGA-nps (4 mg/kg + 50 mg/kg) group. After 28 days of treatment, the mice were observed for behavioral changes, antioxidant capacity, autophagy and inflammatory response, and mercury levels in the brain, blood, and urine were measured. The results showed that HgCl2 toxicity caused learning and memory dysfunction in mice, increased mercury content in brain and blood, and increased serum levels of interleukin (IL-6), IL-1ß, and tumor necrosis factor-α in the mice. HgCl2 exposure decreased the activity of T-AOC, superoxide dismutase, and glutathione peroxidase, and increased the expression of malondialdehyde in the brain of mice. Moreover, the expression levels of TRIM32, toll-like receptor 4 (TLR4), and LC3 proteins were upregulated. Both Pue and Pue-PLGA-nps interventions mitigated the changes caused by HgCl2 exposure, and Pue-PLGA-nps further enhanced this effect. Our results suggest that Pue-PLGA-nps can ameliorate HgCl2 -induced brain injury and reduce Hg accumulation, which is associated with inhibition of oxidative stress, inflammatory response, and TLR4/TRIM32/LC3 signaling pathway.


Assuntos
Lesões Encefálicas , Mercúrio , Nanopartículas , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cloreto de Mercúrio/toxicidade , Receptor 4 Toll-Like/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Mercúrio/metabolismo , Mercúrio/farmacologia , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle
11.
Ecotoxicol Environ Saf ; 258: 114973, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37163906

RESUMO

Mercury chloride can cause severe liver injury, which involves multiple mechanisms. Ferroptosis plays an important role in regulating the development and progression of liver pathology. Oleanolic acid (OA), a triterpenoid compound widely exists in fruits, has liver protective properties. In this study, we investigated the role of ferroptosis in mercury chloride-induced liver injury and the intervention effect of OA, and clarified the potential mechanism. We found that mercury chloride-induced oxidative stress in liver tissues and cells, leading to lipid peroxidation and iron overload, thereby reducing the expression levels of GPX4 and SLC7A11, and increasing the expression level of TRF1, OA pretreatment improved the changes of GPX4, SLC7A11 and TRF1 induced by mercury chloride, which were related to its inhibition of oxidative stress. Furthermore, We pretreated cells with OA, VC, and Fer-1, respectively and found that VC pretreatment reduced oxidative stress and significantly reversed the gene and protein expressions of GPX4, SLC7A11, and TRF1 in mercury chloride-exposed cells (P < 0.05, vs. HgCl2 group), however, the protein expression level of GPX4 in OA pre-treatment group was lower than that in VC pre-treatment group (P < 0.05). Fer-1 pretreatment decreased the level of iron ions in cells, increased the gene and protein expression levels of GPX4 and SLC7A11, and decreased the gene and protein expression levels of TRF1 (P < 0.05, vs. HgCl2 group), however, the protein expression levels of GPX4 and SLC7A11 in OA pre-treatment group were lower than those in Fer-1 pre-treatment group (P < 0.05). Moreover, vivo experiments also demonstrated that pre-treatment with OA, VC, and Fer-1 reversed the changes in gene expression levels of Nrf2 and SOD1, and protein expression of GPX4 induced by mercury chloride (P < 0.05, vs. HgCl2 group), meanwhile, the difference was not statistically significant among OA, VC, and Fer-1 pretreatment. The improvement effect of OA pretreatment on the change in TFR1 protein expression caused by mercury chloride was similar to that of Fer-1 and VC, however, the intervention effect of OA on SLC7A11 protein expression was not as good as Fer-1 and VC pre-treatment. To sum up, all these results suggest that ferroptosis is involved in mercury chloride-induced liver injury, OA pretreatment alleviated mercury chloride-induced ferroptosis by inhibiting ROS production and iron ion overload, and then alleviate the liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Sobrecarga de Ferro , Mercúrio , Ácido Oleanólico , Humanos , Cloretos , Cloreto de Mercúrio/toxicidade , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Espécies Reativas de Oxigênio , Sobrecarga de Ferro/tratamento farmacológico , Ferro , Halogênios , Mercúrio/toxicidade
12.
Food Chem Toxicol ; 177: 113820, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172713

RESUMO

Mercury is one heavy metal toxin that could cause severe health impairments. Mercury exposure has become a global environmental issue. Mercury chloride (HgCl2) is one of mercury's main chemical forms, but it lacks detailed hepatotoxicity data. The present study aimed to investigate the mechanism of hepatotoxicity induced by HgCl2 through proteomics and network toxicology at the animal and cellular levels. HgCl2 showed apparent hepatotoxicity after being administrated with C57BL/6 mice (16 mg/kg.bw, oral once a day, 28 days) and HepG2 cells (100 µmol/L, 12 h). Otherwise, oxidative stress, mitochondrial dysfunction and inflammatory infiltration play an important role in HgCl2-induced hepatotoxicity. The differentially expressed proteins (DEPs) after HgCl2 treatment and enriched pathways were obtained through proteomics and network toxicology. Western blot and qRT-PCR results showed acyl-CoA thioesterase 1 (ACOT1), acyl-CoA synthetase short chain family member 3 (ACSS3), epidermal growth factor receptor (EGFR), apolipoprotein B (APOB), signal transducer and activator of transcription 3 (STAT3), alanine--glyoxylate aminotransferase (AGXT), cytochrome P450 3A5 (CYP3A5), CYP2E1 and CYP1A2 may be the major biomarkers for HgCl2-induced hepatotoxicity, which involved chemical carcinogenesis, fatty acid metabolism, CYPs-mediated metabolism, GSH metabolism and others. Therefore, this study can provide scientific evidence for the biomarkers and mechanism of HgCl2-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Mercúrio , Camundongos , Animais , Humanos , Cloreto de Mercúrio/toxicidade , Cloretos , Células Hep G2 , Proteômica , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Biomarcadores/metabolismo
13.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108594

RESUMO

Acute kidney injury, which is associated with high levels of morbidity and mortality, affects a significant number of individuals, and can be triggered by multiple factors, such as medications, exposure to toxic chemicals or other substances, disease, and trauma. Because the kidney is a critical organ, understanding and identifying early cellular or gene-level changes can provide a foundation for designing medical interventions. In our earlier work, we identified gene modules anchored to histopathology phenotypes associated with toxicant-induced liver and kidney injuries. Here, using in vivo and in vitro experiments, we assessed and validated these kidney injury-associated modules by analyzing gene expression data from the kidneys of male Hartley guinea pigs exposed to mercuric chloride. Using plasma creatinine levels and cell-viability assays as measures of the extent of renal dysfunction under in vivo and in vitro conditions, we performed an initial range-finding study to identify the appropriate doses and exposure times associated with mild and severe kidney injuries. We then monitored changes in kidney gene expression at the selected doses and time points post-toxicant exposure to characterize the mechanisms of kidney injury. Our injury module-based analysis revealed a dose-dependent activation of several phenotypic cellular processes associated with dilatation, necrosis, and fibrogenesis that were common across the experimental platforms and indicative of processes that initiate kidney damage. Furthermore, a comparison of activated injury modules between guinea pigs and rats indicated a strong correlation between the modules, highlighting their potential for cross-species translational studies.


Assuntos
Injúria Renal Aguda , Cloreto de Mercúrio , Ratos , Masculino , Cobaias , Animais , Cloreto de Mercúrio/toxicidade , Rim/metabolismo , Testes de Função Renal , Injúria Renal Aguda/metabolismo , Fígado/metabolismo
14.
Ecotoxicol Environ Saf ; 256: 114862, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004432

RESUMO

The widespread presence of mercury, a heavy metal found in the environment and used in numerous industries and domestic, raises concerns about its potential impact on human health. Nevertheless, the adverse effects of this environmental toxicant at low concentrations are often underestimated. There are emerging studies showing that accumulation of mercury in the eye may contribute to visual impairment and a comorbidity between autism spectrum disorders (ASD) trait and visual impairment. However, the underlying mechanism of visual impairment in humans and rodents is challenging. In response to this issue, zebrafish larvae with a cone-dominated retinal visual system were exposed to 100 nM mercury chloride (HgCl2), according to our previous study, followed by light-dark stimulation, a social assay, and color preference to examine the functionality of the visual system in relation to ASD-like behavior. Exposure of embryos to HgCl2 from gastrulation to hatching increased locomotor activity in the dark, reduced shoaling and exploratory behavior, and impaired color preference. Defects in microridges as the first barrier may serve as primary tools for HgCl2 toxicity affecting vision. Depletion of polyunsaturated fatty acids (PUFAs), linoleic acid, arachidonic acid (ARA), alpha-linoleic acid, docosahexaenoic acid (DHA), stearic acid, L-phenylalanine, isoleucine, L-lysine, and N-acetylputrescine, along with the increase of gamma-aminobutyric acid (GABA), sphingosine-1-phosphate, and citrulline assayed by liquid chromatography-mass spectrometry (LC-MS) suggest that these metabolites serve as biomarkers of retinal impairments that affect vision and behavior. Although suppression of adsl, shank3a, tsc1b, and nrxn1a gene expression was observed, among these tsc1b showed more positive correlation with ASD. Collectively, these results contribute new insights into the possible mechanism of mercury toxicity give rise to visual, cognitive, and social deficits in zebrafish.


Assuntos
Mercúrio , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/metabolismo , Mercúrio/toxicidade , Cloreto de Mercúrio/toxicidade , Transtornos da Visão , Expressão Gênica
15.
Environ Sci Pollut Res Int ; 30(18): 51531-51541, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36810819

RESUMO

Mercury is a highly toxic heavy metal with definite cardiotoxic properties and can affect the health of humans and animals through diet. Selenium (Se) is a heart-healthy trace element and dietary Se has the potential to attenuate heavy metal-induced myocardial damage in humans and animals. This study was designed to explore antagonistic effect of Se on the cardiotoxicity of mercuric chloride (HgCl2) in chickens. Hyline brown hens received a normal diet, a diet containing 250 mg/L HgCl2, or a diet containing 250 mg/L HgCl2 and 10 mg/kg Na2SeO3 for 7 weeks, respectively. Histopathological observations demonstrated that Se attenuated HgCl2-induced myocardial injury, which was further confirmed by the results of serum creatine kinase and lactate dehydrogenase levels assay and myocardial tissues oxidative stress indexes assessment. The results showed that Se prevented HgCl2-induced cytoplasmic calcium ion (Ca2+) overload and endoplasmic reticulum (ER) Ca2+ depletion mediated by Ca2+-regulatory dysfunction of ER. Importantly, ER Ca2+ depletion led to unfolded protein response and endoplasmic reticulum stress (ERS), resulting in apoptosis of cardiomyocytes via PERK/ATF4/CHOP pathway. In addition, heat shock protein expression was activated by HgCl2 through these stress responses, which was reversed by Se. Moreover, Se supplementation partially eliminated the effects of HgCl2 on the expression of several ER-settled selenoproteins, including selenoprotein K (SELENOK), SELENOM, SELENON, and SELENOS. In conclusion, these results suggested that Se alleviated ER Ca2+ depletion and oxidative stress-induced ERS-dependent apoptosis in chicken myocardium after HgCl2 exposure.


Assuntos
Selênio , Humanos , Animais , Feminino , Selênio/farmacologia , Selênio/metabolismo , Galinhas , Cálcio/metabolismo , Cloreto de Mercúrio/toxicidade , Cloreto de Mercúrio/metabolismo , Apoptose , Miocárdio , Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Cardiotoxicidade/metabolismo
16.
Cells ; 12(3)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36766766

RESUMO

Mercury is a toxic heavy metal widely dispersed in the natural environment. Mercury exposure induces an increase in oxidative stress in red blood cells (RBCs) through the production of reactive species and alteration of the endogenous antioxidant defense system. Recently, among various natural antioxidants, the polyphenols from extra-virgin olive oil (EVOO), an important element of the Mediterranean diet, have generated growing interest. Here, we examined the potential protective effects of hydroxytyrosol (HT) and/or homovanillyl alcohol (HVA) on an oxidative stress model represented by human RBCs treated with HgCl2 (10 µM, 4 h of incubation). Morphological changes as well as markers of oxidative stress, including thiobarbituric acid reactive substance (TBARS) levels, the oxidation of protein sulfhydryl (-SH) groups, methemoglobin formation (% MetHb), apoptotic cells, a reduced glutathione/oxidized glutathione ratio, Band 3 protein (B3p) content, and anion exchange capability through B3p were analyzed in RBCs treated with HgCl2 with or without 10 µM HT and/or HVA pre-treatment for 15 min. Our data show that 10 µM HT and/or HVA pre-incubation impaired both acanthocytes formation, due to 10 µM HgCl2, and mercury-induced oxidative stress injury and, moreover, restored the endogenous antioxidant system. Interestingly, HgCl2 treatment was associated with a decrease in the rate constant for SO42- uptake through B3p as well as MetHb formation. Both alterations were attenuated by pre-treatment with HT and/or HVA. These findings provide mechanistic insights into benefits deriving from the use of naturally occurring polyphenols against oxidative stress induced by HgCl2 on RBCs. Thus, dietary supplementation with polyphenols might be useful in populations exposed to HgCl2 poisoning.


Assuntos
Antioxidantes , Mercúrio , Humanos , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cloretos/metabolismo , Eritrócitos/metabolismo , Cloreto de Mercúrio/toxicidade , Cloreto de Mercúrio/metabolismo , Mercúrio/toxicidade , Azeite de Oliva/farmacologia , Estresse Oxidativo
17.
Chemosphere ; 316: 137862, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642134

RESUMO

Toxic elements, such as mercury (Hg) and arsenic (As), are major pollutants in aquatic environments, posing ecological threats to living organisms due to their toxicity and bioaccumulation. This paper investigated whether zebrafish response to Hg and As displayed day/night differences. Fish were exposed to either 35 µg/L of mercury chloride for 6 h or 65 mg/L of sodium arsenate for 4 h, at two different times of the day: mid-light (day; ML) and mid-darkness (night; MD). Fish were video-recorded to investigate their behavioural response and at the end of each trial, gills and liver samples were collected for gene expression measurement. Gills, liver and brain samples were also obtained to determine Hg and As concentration. A control group (non-exposed) was video-recorded and sampled too. The effect of Hg and As on zebrafish swimming activity and the expression of antioxidant and metallothionein genes was time-of-day-dependent, with a stronger response being observed during the day than at night. However, the neurobehavioural effect of Hg was more affected by the time of exposure than the effect of As. In addition, Hg concentration in the gills was significantly higher in zebrafish exposed at ML than at MD. Altogether, these findings suggest that zebrafish response to Hg and As is time-of-day-dependent and remark the importance of considering toxicity rhythms when using this fish species as a model in toxicological research.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Cloreto de Mercúrio/toxicidade , Mercúrio/metabolismo , Natação , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
18.
Forensic Toxicol ; 41(2): 304-308, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36564610

RESUMO

PURPOSE: Poisoning with elemental metals and metallic compounds was much more frequent in the past, and was related, among other things, to lifestyle and the lack of appropriate toxicological diagnostics. One example is mercury, which is being gradually eliminated but still has many different applications as a pure metal or in the form of various compounds. The paper presents a case of suicidal poisoning with mercury chloride (corrosive sublimate). METHODS: Forensic and toxicological tests including inductively coupled plasma mass spectrometry (ICP-MS) were at the Department of Forensic Medicine, PMU in Szczecin. RESULTS: The patient before death had a range of symptoms such as epigastric pain, vomiting of the stomach contents, central cyanosis with tachycardia, tremors, severe shortness of breath with wheezing, difficulty swallowing, slurred speech, rales in the lungs, and diarrhea. The concentration of mercury measured by ICP-MS was 191 mg/L for a blood sample collected antemortem, and 147 mg/L for a blood sample collected at autopsy. Both concentrations of mercury are regarded as lethal. The post-mortem examination revealed signs of extensive thrombotic necrosis in some internal organs. CONCLUSIONS: Mercuric chloride has an estimated human fatal dose of between 1 and 4 g. It can produce a range of toxic effects, including corrosive injury, severe gastrointestinal disturbances, acute renal failure, circulatory collapse, and eventual death. The presented case of fatal poisoning with mercury chloride, due to the type of agent used, is now interesting in toxicological practice.


Assuntos
Intoxicação por Mercúrio , Mercúrio , Humanos , Cloreto de Mercúrio/toxicidade , Cloretos , Ideação Suicida , Intoxicação por Mercúrio/complicações
19.
Histochem Cell Biol ; 159(1): 61-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136163

RESUMO

Mercury is a highly toxic element that induces severe alterations and a broad range of adverse effects on health. Its exposure is a global concern because it is widespread in the environment due to its multiple industrial, domestic, agricultural and medical usages. Among its various chemical forms, both humans and animals are mainly exposed to mercury chloride (HgCl2), methylmercury and elemental mercury. HgCl2 is metabolized primarily in the liver. We analysed the effects on the nuclear architecture of an increasing dosage of HgCl2 in mouse hepatocytes cell culture and in mouse liver, focusing specifically on the organization, on some epigenetic features of the heterochromatin domains and on the nucleolar morphology and activity. Through the combination of molecular and imaging approaches both at optical and electron microscopy, we show that mercury chloride induces modifications of the heterochromatin domains and a decrease of some histones post-translational modifications associated to heterochromatin. This is accompanied by an increase in nucleolar activity which is reflected by bigger nucleoli. We hypothesized that heterochromatin decondensation and nucleolar activation following mercury chloride exposure could be functional to express proteins necessary to counteract the harmful stimulus and reach a new equilibrium.


Assuntos
Cloreto de Mercúrio , Mercúrio , Humanos , Camundongos , Animais , Cloreto de Mercúrio/toxicidade , Heterocromatina , Cloretos/farmacologia , Mercúrio/toxicidade , Fígado
20.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203335

RESUMO

Results obtained from rat studies indicate that, even at low concentrations, mercurial species cause harmful effects on the kidneys, by inducing the nephrotic oxidative stress response. In the present work, Hg-associated proteins were identified as possible mercury-exposure biomarkers in rat kidneys exposed to low mercury chloride concentrations for 30 days (Hg-30) and 60 days (Hg-60), using metalloproteomic strategies. The renal proteomic profile was fractioned by two-dimensional electrophoresis and the mercury determinations in kidney samples, protein pellets and protein spots were performed using graphite furnace atomic absorption spectrometry. The characterization of Hg-associated protein spots and the analysis of differentially expressed proteins were performed by liquid chromatography, coupled with tandem mass spectrometry. Eleven Hg-associated protein spots with a concentration range of 79 ± 1 to 750 ± 9 mg kg-1 in the Hg-60 group were identified. The characterization and expression analyses allowed the identification of 53 proteins that were expressed only in the Hg-60 group, 13 "upregulated" proteins (p > 0.95) and 47 "downregulated" proteins (p < 0.05). Actin isoforms and hemoglobin subunits were identified in protein spots of the Hg-60 group, with mercury concentrations in the range of 138 to 750 mg kg-1, which qualifies these proteins as potential mercury-exposure biomarkers.


Assuntos
Desequilíbrio Ácido-Base , Mercúrio , Animais , Ratos , Proteínas de Transporte , Cloretos , Proteômica , Cloreto de Mercúrio/toxicidade , Mercúrio/toxicidade , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...