Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.460
Filtrar
1.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714634

RESUMO

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Assuntos
Cristalização , Griseofulvina , Polímeros , Temperatura de Transição , Griseofulvina/química , Cristalização/métodos , Polímeros/química , Estabilidade de Medicamentos , Ligação de Hidrogênio , Polivinil/química , Polietilenoglicóis/química , Povidona/química , Vidro/química
2.
BMC Oral Health ; 24(1): 620, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807109

RESUMO

BACKGROUND: The mechanical properties of fully crystallized lithium aluminosilicate ceramics may be influenced by intraoral temperature variations and postmilling surface treatment. The purpose of this study is to explore the interplay among glazing, thermocycling, and the mechanical characteristics (namely, fracture toughness and hardness) of fully crystallized lithium aluminosilicate ceramics. METHODS: Bending bars (n = 40) cut from LisiCAD blocks (GC, Japan) were randomly assigned to glazed or unglazed groups (n = 20) and subjected to the single edge v-notch beam method to create notches. A glazing firing cycle was applied to the glazed group, while the unglazed group was not subjected to glazing. Half of the specimens (n = 10) from both groups underwent thermocycling before fracture toughness testing. The fracture toughness (KIC) was evaluated at 23 ± 1 °C using a universal testing machine configured for three-point bending, and the crack length was measured via light microscopy. Seven specimens per group were selected for the hardness test. Hardness was assessed using a Vickers microhardness tester with a 1 kg load for 20 s, and each specimen underwent five indentations following ISO 14705:2016. The Shapiro-Wilk and Kolmogorov-Smirnov tests were used to evaluate the normality of the data and a two-way ANOVA was utilized for statistical analysis. The significance level was set at (α = 0.05). RESULTS: Regardless of the thermocycling conditions, the glazed specimens exhibited significantly greater fracture toughness than did their unglazed counterparts (P < 0.001). Thermocycling had no significant impact on the fracture toughness of either the glazed or unglazed specimens. Furthermore, statistical analysis revealed no significant effects on hardness with thermocycling in either group, and glazing alone did not substantially affect hardness. CONCLUSIONS: The impact of glazing on the fracture toughness of LiSiCAD restorations is noteworthy, but it has no significant influence on their hardness. Furthermore, within the parameters of this study, thermocycling was found to exert negligible effects on both fracture toughness and hardness.


Assuntos
Silicatos de Alumínio , Cerâmica , Desenho Assistido por Computador , Dureza , Teste de Materiais , Cerâmica/química , Silicatos de Alumínio/química , Análise do Estresse Dentário , Propriedades de Superfície , Cristalização
3.
Chem Pharm Bull (Tokyo) ; 72(5): 480-486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763752

RESUMO

X-ray absorption near-edge structure (XANES) spectroscopy is a new method for the characterization of active pharmaceutical ingredients. XANES spectra show unique features depending on the electronic states of the X-ray absorbing elements and provide information about the chemical environment that affects the electronic states. In this study, six bisphosphonate hydrate crystals were used to investigate, for the first time, how the phosphorus K-edge XANES spectra are affected by the interatomic interactions and charged states of phosphonate moieties. Phosphorus K-edge XANES spectra showed several differences among the bisphosphonates. In particular, the chlorine atoms covalently bonded near the phosphonate and the number of electric charges of the phosphonate moieties seemed to have large effects on peak shape in XANES spectra. Unique shapes of the XANES spectra demonstrated that differences in interactions at the oxygen atoms of the phosphonate moieties could change the shapes of the XANES spectrum peaks to the extent that each material was distinguished based on the spectra. Since slight differences in interatomic interactions and charged states lead to variations in the spectra, XANES spectroscopy could be widely applied as the fingerprint method to evaluate active pharmaceutical ingredients.


Assuntos
Difosfonatos , Espectroscopia por Absorção de Raios X , Difosfonatos/química , Fósforo/química , Cristalização , Estrutura Molecular
4.
Chem Pharm Bull (Tokyo) ; 72(5): 471-474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38749738

RESUMO

The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research.


Assuntos
Ranitidina , Ranitidina/química , Cristalização , Estrutura Molecular , Elétrons
5.
AAPS PharmSciTech ; 25(5): 114, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750299

RESUMO

There is a growing focus on solid-state degradation, especially for its relevance in understanding interactions with excipients. Performing a solid-state degradation of Venetoclax (VEN), we delve into VEN's stability in different solid-state oxidative stress conditions, utilizing Peroxydone™ complex and urea peroxide (UHP). The investigation extends beyond traditional forced degradation scenarios, providing insights into VEN's behavior over 32 h, considering temperature and crystallinity conditions. Distinct behaviors emerge in the cases of Peroxydone™ complex and UHP. The partially crystalline (PC-VEN) form proves more stable with Peroxydone™, while the amorphous form (A-VEN) shows enhanced stability with UHP. N-oxide VEN, a significant degradation product, varies between these cases, reflecting the impact of different oxidative stress conditions. Peroxydone™ complex demonstrates higher reproducibility and stability, making it a promising option for screening impurities in solid-state oxidative stress scenarios. This research not only contributes to the understanding of VEN's stability in solid-state but also aids formulators in anticipating excipient incompatibilities owing to presence of reactive impurities (peroxides) and oxidation in the final dosage form.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Cristalização , Estabilidade de Medicamentos , Excipientes , Oxirredução , Sulfonamidas , Compostos Bicíclicos Heterocíclicos com Pontes/química , Cristalização/métodos , Sulfonamidas/química , Excipientes/química , Estresse Oxidativo , Química Farmacêutica/métodos , Temperatura
6.
Science ; 384(6697): 781-785, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753795

RESUMO

Colloidal self-assembly allows rational design of structures on the micrometer and submicrometer scale. One architecture that can generate complete three-dimensional photonic bandgaps is the diamond cubic lattice, which has remained difficult to realize at length scales comparable with the wavelength of visible or ultraviolet light. In this work, we demonstrate three-dimensional photonic crystals self-assembled from DNA origami that act as precisely programmable patchy colloids. Our DNA-based nanoscale tetrapods crystallize into a rod-connected diamond cubic lattice with a periodicity of 170 nanometers. This structure serves as a scaffold for atomic-layer deposition of high-refractive index materials such as titanium dioxide, yielding a tunable photonic bandgap in the near-ultraviolet.


Assuntos
DNA , Fótons , Titânio , DNA/química , Titânio/química , Cristalização , Diamante/química , Nanoestruturas/química , Coloides/química , Conformação de Ácido Nucleico
8.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731865

RESUMO

This study explored the feasibility of fluoride removal from simulated semiconductor industry wastewater and its recovery as calcium fluoride using fluidized bed crystallization. The continuous reactor showed the best performance (>90% fluoride removal and >95% crystallization efficiency) at a calcium-to-fluoride ratio of 0.6 within the first 40 days of continuous operation. The resulting particle size increased by more than double during this time, along with a 36% increase in the seed bed height, indicating the deposition of CaF2 onto the silica seed. The SEM-EDX analysis showed the size and shape of the crystals formed, along with the presence of a high amount of Ca-F ions. The purity of the CaF2 crystals was determined to be 91.1% though ICP-OES analysis. Following the continuous experiment, different process improvement strategies were explored. The addition of an excess amount of calcium resulted in the removal of an additional 6% of the fluoride; however, compared to this single-stage process, a two-stage approach was found to be a better strategy to achieve a low effluent concentration of fluoride. The fluoride removal reached 94% with this two-stage approach under the optimum conditions of 4 + 1 h HRT combinations and a [Ca2+]/[F-] ratio of 0.55 and 0.7 for the two reactors, respectively. CFD simulation showed the impact of the inlet diameter, bottom-angle shape, and width-to-height ratio of the reactor on the mixing inside the reactor and the possibility of further improvement in the reactor performance by optimizing the FBR configuration.


Assuntos
Fluoreto de Cálcio , Fluoretos , Águas Residuárias , Fluoreto de Cálcio/química , Fluoretos/química , Fluoretos/isolamento & purificação , Águas Residuárias/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cristalização
9.
PLoS One ; 19(5): e0302142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722957

RESUMO

We explore theoretically Goos-Hänchen (GH) shift around the defect mode in superconducting defective photonic crystals (PCs) in cryogenic environment. The defective PCs are constructed by alternating semiconductors and superconductors. A defect mode arises in the photonic bandgap and sensitively depends on environment temperature and hydrostatic pressure. Reflection and transmission coefficient phases make an abruptly jump at the defect mode and giant GH shifts have been achieved around this mode. The maximum GH shift can get as high as 103λ (incident wavelength), which could be modulated by the values of temperature and hydrostatic pressure. This study may be utilized for pressure- or temperature-sensors in cryogenic environment.


Assuntos
Fótons , Cristalização , Supercondutividade , Semicondutores , Pressão Hidrostática , Temperatura
10.
Cryo Letters ; 45(3): 185-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709190

RESUMO

BACKGROUND: Characterization of intracellular ice formation (IIF) in oocytes during the freezing and thawing processes will contribute to optimizing their cryopreservation. However, the observation of the ice formation process in oocytes is limited by the spatiotemporal resolution of the cryomicroscope systems. OBJECTIVE: To observe the intracellular icing of oocytes during cooling and rewarming, and to study the mechanism of formation and growth of intracellular ice in oocytes. MATERIALS AND METHODS: Mouse oocytes were frozen at different cooling rates to induce intracellular ice formation using a cryomicroscopy system consisting of a microscope equipped with a cryogenic cold stage, an automatic cooling system, a temperature control system, and a high-speed camera. The growth patterns of intracellular ice in oocytes were analyzed from the images recorded. Finally, the growth rate of intracellular ice formation in oocytes was calculated using an automatic intracellular ice tracking method. RESULTS: The IIF temperature decreased gradually with the increase in cooling rate. Initiation sites of IIF could be classified into three categories: marginal type, internal type and coexisting type. There was a strong predominance for ice crystal initiation site in the oocytes, with up to 80% of the initiation sites located in the marginal region. The intracellular ice growth modes of darkening and twitching cells were characterized by "spreading" and "clustering", respectively. In addition, twitching cells started to recrystallize during rewarming, while darkening cells did not. The instantaneous maximal growth rate of ice crystals in twitching cells was about 10 times higher than that in darkening cells. CONCLUSION: By visualising the growth of ice crystals in mouse oocytes during cooling and rewarming, we obtained valuable information on the kinetics of ice formation and melting in these cells. This information can help us understand how ice formation and melting affect the viability and quality of oocytes after cryopreservation. Doi.org/10.54680/fr24310110412.


Assuntos
Criopreservação , Gelo , Oócitos , Animais , Camundongos , Oócitos/citologia , Oócitos/fisiologia , Criopreservação/métodos , Feminino , Congelamento , Cristalização , Microscopia/métodos
11.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792070

RESUMO

Ligustrazine (TMP) is the main active ingredient extracted from Rhizoma Chuanxiong, which is used in the treatment of cardiovascular and cerebrovascular diseases, with the drawback of being unstable and readily sublimated. Cocrystal technology is an effective method to improve the stability of TMP. Three benzoic acid compounds including P-aminobenzoic acid (PABA), 3-Aminobenzoic acid (MABA), and 3,5-Dinitrobenzoic acid (DNBA) were chosen for co-crystallization with TMP. Three novel cocrystals were obtained, including TMP-PABA (1:2), TMP-MABA (1.5:1), and TMP-DNBA (0.5:1). Hygroscopicity was characterized by the dynamic vapor sorption (DVS) method. Three cocrystals significantly improved the hygroscopicity stability, and the mass change in TMP decreased from 25% to 1.64% (TMP-PABA), 0.12% (TMP-MABA), and 0.03% (TMP-DNBA) at 90% relative humidity. The melting points of the three cocrystals were all higher than TMP, among which the TMP-DNBA cocrystal had the highest melting point and showed the best stability in reducing hygroscopicity. Crystal structure analysis shows that the mesh-like structure formed by the O-H⋯N hydrogen bond in the TMP-DNBA cocrystal was the reason for improving the stability of TMP.


Assuntos
Cristalização , Pirazinas , Molhabilidade , Pirazinas/química , Estabilidade de Medicamentos , Ligação de Hidrogênio , Cristalografia por Raios X , Estrutura Molecular , Difração de Raios X
12.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791149

RESUMO

The crystallization of paramagnetic species in a magnetic field gradient under microgravity-like conditions is an area of interest for both fundamental and applied science. In this paper, a setup for the crystallization of paramagnetic species in the magnetic field up to 7 T generated by a superconducting magnet is described. The research includes calculations of the conditions necessary to compensate for the gravitational force for several types of paramagnetic substances using the magnetic field of superconducting magnets (4.7 T, 7 T, 9.4 T, and 16.4 T). Additionally, for the first time, the crystallization of copper sulfate and cobalt sulfate, as well as a mixture of copper sulfate and cobalt sulfate under gravitational force compensation in a superconducting magnet, was performed. This paper experimentally demonstrates the feasibility of growing paramagnetic crystals within the volume of a test tube on the example of copper and cobalt sulfate crystals. A comparison of crystals grown from the solution of a mixture of copper and cobalt sulfates under the same conditions, with and without the presence of a magnetic field, showed changes in both the number and size of crystals.


Assuntos
Cobalto , Cristalização , Campos Magnéticos , Cobalto/química , Ausência de Peso , Sulfato de Cobre/química , Cobre/química
13.
Int J Pharm ; 657: 124189, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701906

RESUMO

Amorphous solid dispersions (ASDs) represent an important approach for enhancing oral bioavailability for poorly water soluble compounds; however, assuring that these ASDs do not recrystallize to a significant extent during storage can be time-consuming. Therefore, various efforts have been undertaken to predict ASD crystallization levels with kinetic models. However, only limited success has been achieved due to limits on crystal content quantification methods and the complexity of crystallization kinetics. To increase the prediction accuracy, the accelerated stability assessment program (ASAP), employing isoconversion (time to hit a specification limit) and a modified Arrhenius approach, are employed here for predictive shelf-life modeling. In the current study, a model ASD was prepared by spray drying griseofulvin and HPMC-AS-LF. This ASD was stressed under a designed combinations of temperature, relative humidity and time with the conditions set to ensure stressing was carried out below the glass transition temperature (Tg) of the ASD. Crystal content quantification method by X-ray powder diffraction (XRPD) with sufficient sensitivity was developed and employed for stressed ASD. Crystallization modeling of the griseofulvin ASD using ASAPprime® demonstrated good agreement with long-term (40 °C/75 %RH) crystallinity levels and support the use of this type of accelerated stability studies for further improving ASD shelf-life prediction accuracy.


Assuntos
Cristalização , Estabilidade de Medicamentos , Griseofulvina , Griseofulvina/química , Derivados da Hipromelose/química , Difração de Raios X/métodos , Solubilidade , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Temperatura , Umidade
14.
J Colloid Interface Sci ; 669: 64-74, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38705113

RESUMO

The intricate organization of goethite nanorods within a silica-rich matrix makes limpet teeth the strongest known natural material. However, the mineralization pathway of goethite in organisms under ambient conditions remains elusive. Here, by investigating the multi-level structure of limpet teeth at different growth stages, it is revealed that the growth of goethite crystals proceeds by the attachment of amorphous nanoparticles, a nonclassical crystallization pathway widely observed during the formation of calcium-based biominerals. Importantly, these nanoparticles contain a high amount of silica, which is gradually expelled during the growth of goethite. Moreover, in mature teeth of limpet, the content of silica correlates with the size of goethite crystals, where smaller goethite crystals are densely packed in the leading part with higher content of silica. Correspondingly, the leading part exhibits higher hardness and elastic modulus. Thus, this study not only reveals the nonclassical crystallization pathway of goethite nanorods in limpet teeth, but also highlights the critical roles of silica in controlling the hierarchical structure and the mechanical properties of limpet teeth, thus providing inspirations for fabricating biomimetic materials with excellent properties.


Assuntos
Cristalização , Compostos de Ferro , Minerais , Nanopartículas , Nanotubos , Dióxido de Silício , Dióxido de Silício/química , Minerais/química , Nanotubos/química , Compostos de Ferro/química , Nanopartículas/química , Animais , Dente/química , Gastrópodes/química , Tamanho da Partícula
15.
Inorg Chem ; 63(21): 9801-9808, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38743640

RESUMO

Enzyme immobilization within metal-organic frameworks (MOFs) is a promising solution to avoid denaturation and thereby utilize the desirable properties of enzymes outside of their native environments. The biomimetic mineralization strategy employs biomacromolecules as nucleation agents to promote the crystallization of MOFs in water at room temperature, thus overcoming pore size limitations presented by traditional postassembly encapsulation. Most biomimetic crystallization studies reported to date have employed zeolitic imidazole frameworks (ZIFs). Herein, we expand the library of MOFs suitable for biomimetic mineralization to include zinc(II) MOFs incorporating functionalized terephthalic acid linkers and study the catalytic performance of the enzyme@MOFs. Amine functionalization of terephthalic acids is shown to accelerate the formation of crystalline MOFs enabling new enzyme@MOFs to be synthesized. The structure and morphology of the enzyme@MOFs were characterized by PXRD, FTIR, and SEM-EDX, and the catalytic potential was evaluated. Increasing the linker length while retaining the amino moiety gave rise to a family of linkers; however, MOFs generated with the 2,2'-aminoterephthalic acid linker displayed the best catalytic performance. Our data also illustrate that the pH of the reaction mixture affects the crystal structure of the MOF and that this structural transformation impacts the catalytic performance of the enzyme@MOF.


Assuntos
Ácidos Carboxílicos , Cristalização , Estruturas Metalorgânicas , Temperatura , Água , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/síntese química , Ácidos Carboxílicos/química , Água/química , Ácidos Ftálicos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/síntese química , Estrutura Molecular , Zinco/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Aminas/química , Catálise
16.
Int J Biol Macromol ; 269(Pt 1): 132050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777690

RESUMO

Solid dispersions (SDs) have emerged as a promising strategy to enhance the solubility and bioavailability of poorly soluble active pharmaceutical ingredients. However, SDs tend to recrystallize unless suitable excipients are utilized. This study aimed to facilitate the rational selection of polymers and formulation design by evaluating the impact of various polymers on the miscibility, and phase behavior of SDs using baloxavir marboxil (BXM) with a high crystallization tendency as a model drug. Meanwhile, the effects of these polymers on the solubility enhancement and recrystallization inhibition were also assessed. The results indicated that the miscibility limit of BXM for HPMCAS was around 40 % drug loading (DL), whereas for PVP, PVPVA, and HPMC approximately 20 % DL. The BXM-HPC system exhibited limited miscibility with DL of 10 % or higher. BXM SDs based on various polymers exhibited varying degrees of spontaneous phase separation once DL exceeded the miscibility limit. Interestingly, a correlation was discovered between the phase separation behavior and the ability of the polymer to inhibit recrystallization. BXM-HPMCAS SDs exhibited optimal dissolution performance, compared with other systems. In conclusion, the physicochemical properties of polymers significantly influence BXM SDs performance and the BXM-HPMCAS SDs might promote an efficient and stable drug delivery system.


Assuntos
Cristalização , Derivados da Hipromelose , Solubilidade , Derivados da Hipromelose/química , Polímeros/química , Piridonas/química , Piridonas/farmacologia
17.
Sci Rep ; 14(1): 12001, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796538

RESUMO

The current study aimed to establish an experimental model in vitro and in vivo of urinary crystal deposition on the surface of ureteral stents, to evaluate the ability to prevent crystal adhesion. Non-treated ureteral stents were placed in artificial urine under various conditions in vitro. In vivo, ethylene glycol and hydroxyproline were administered orally to rats and pigs, and urinary crystals and urinary Ca were investigated by Inductively Coupled Plasma-Optical Emission Spectrometer. in vitro, during the 3- and 4-week immersion periods, more crystals adhered to the ureteral stent in artificial urine model 1 than the other artificial urine models (p < 0.01). Comparing the presence or absence of urea in the composition of the artificial urine, the artificial urine without urea showed less variability in pH change and more crystal adhesion (p < 0.05). Starting the experiment at pH 6.3 resulted in the highest amount of crystal adhesion to the ureteral stent (p < 0.05). In vivo, urinary crystals and urinary Ca increased in rat and pig experimental models. This experimental model in vitro and in vivo can be used to evaluate the ability to prevent crystal adhesion and deposition in the development of new ureteral stents to reduce ureteral stent-related side effects in patients.


Assuntos
Stents , Animais , Ratos , Suínos , Masculino , Concentração de Íons de Hidrogênio , Cálcio/urina , Cristalização , Ureter , Etilenoglicol/química , Hidroxiprolina/urina , Urina/química , Ratos Sprague-Dawley
18.
Int J Biol Macromol ; 269(Pt 1): 132097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710249

RESUMO

Biodegradable polymer blends filled with rod-like polysaccharide nanocrystals have attracted much attention because each component in this type of ternary composites is biodegradable, and the final properties are more easily tailored comparing to those of binary composites. In this work, chitin nanocrystals (ChNCs) were used as nanofiller for the biodegradable poly(ε-caprolactone) (PCL)/polylactide (PLA) immiscible blend to prepare ternary composites for a crystallization study. The results revealed that the crystallization behavior of PCL/PLA blend matrices strongly depended on the surface properties of ChNCs. Non-modified ChNCs and modified ChNCs played completely different roles during crystallization of the ternary systems: the former was inert filler, while the latter acted as anti-nucleator to the PCL phase. This alteration was resulted from the improved ChNC-PCL affinity after modification of ChNCs, which was due to the 'interfacial dilution effect' and the preferential dispersion of ChNCs. This work presents a unique perspective on the nucleation role of ChNCs in the crystallization of immiscible PCL/PLA blends, and opens up a new application scenario for ChNCs as anti-nucleator.


Assuntos
Quitina , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , Poliésteres , Poliésteres/química , Quitina/química , Nanopartículas/química
19.
ACS Nano ; 18(21): 13794-13807, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38741414

RESUMO

Gout flare-up, commonly resulting from monosodium urate monohydrate (MSUM) crystallization, has led to painful inflammatory arthritis among hundreds of millions of people. Herein, a kind of hydrogel nanoparticles (HNPs) with specific properties was developed, aimed at providing a promising pathway for MSUM crystallization control. The experimental and molecular dynamics simulation results synchronously indicate that the fabricated HNPs achieve efficient inhibition of MSUM crystallization governed by the mechanism of "host-guest interaction" even under very low-dose administration. HNPs as the host dispersed in the hyperuricemic model effectively lift the relative heterogeneous nucleation barrier of the MSUM crystal and hinder solute aggregation with strong electronegativity and hydrophobicity. The initial appearance of MSUM crystals was then delayed from 94 to 334 h. HNPs as the guest on the surface of the formed crystal can decelerate the growth rate by anchoring ions and occupying the active sites on the surface, and the terminal yield of the MSUM crystal declined to less than 1% of the control group. The good biocompatibility of HNPs (cell viability > 94%) renders it possible for future clinical applications. This study can guide the rational design of inhibitory nanomaterials and the development of their application in the control of relevant pathological crystallization.


Assuntos
Cristalização , Hidrogéis , Simulação de Dinâmica Molecular , Nanopartículas , Ácido Úrico , Ácido Úrico/química , Hidrogéis/química , Nanopartículas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Tamanho da Partícula , Íons/química , Propriedades de Superfície
20.
Waste Manag ; 182: 55-62, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636126

RESUMO

Rice husk (RH), which is an abundant agricultural waste, consists of ca. 20 % silica (SiO2·nH2O). Upon RH combustion, a large amount of silica ash is generated. RH silica is originally amorphous; however, the ash is crystalized depending on the conditions of the combustion. Crystallization of RH occurs at a much lower temperature than that of pure SiO2 due to the eutectic effects of minerals, such as Na and K, that are initially present in RH. Controlling for anti-crystallization is required for expanding the possibility of using RH ash that is abundantly generated by combustion. Here, RH is combusted, followed by a highly thermocontrolled investigation, and the time and temperature dependency of RH ash crystallization are studied. Crystallization is avoidable when the ash is rapidly cooled; for instance, 20 °C/min cooling can avoid crystallization even if the combustion temperature reaches 950 °C. Various pathway patterns for achieving temperature and cooling ratio are plotted on a uniform diagram of temperature vs. time. Furthermore, a border zone, indicating the regions in which RH ash becomes amorphous and crystals, is successfully drawn into the diagram by using the data maintained at a constant temperature. A comparison with a few different types of RH showed that the border zone on the diagram can move depending on their ratios of inorganic elements, causing a eutectic effect.


Assuntos
Cristalização , Oryza , Dióxido de Silício , Oryza/química , Dióxido de Silício/química , Incineração/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...