Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 669
Filtrar
1.
Anim Sci J ; 94(1): e13894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054387

RESUMO

Chondroitin sulfate/dermatan sulfate (CS/DS) is a member of glycosaminoglycans (GAGs) found in animal tissues. Major CS/DS subclasses, O, A, C, D, and E units, exist based on the sulfation pattern in d-glucuronic acid (GlcA) and N-acetyl-d-galactosamine repeating units. DS is formed when GlcA is epimerized into l-iduronic acid. Our study aimed to analyze the CS/DS profile in 3 T3-L1 cells before and after adipogenic induction. CS/DS contents, molecular weight (Mw), and sulfation pattern were analyzed by using high-performance liquid chromatography. CS/DS synthesis- and sulfotransferase-related genes were analyzed by reverse transcription real-time PCR. CS/DS amount was significantly decreased in the differentiated (DI) group compared to the non-differentiated (ND) group, along with a lower expression of CS biosynthesis-related genes, chondroitin sulfate N-acetylgalactosaminyltransferase 1 and 2, as well as chondroitin polymerizing factor. GAGs in the DI group also showed lower Mw than those of ND. Furthermore, the A unit was the major CS/DS in both groups, with a proportionally higher CS-A in the DI group. This was consistent with the expression of carbohydrate sulfotransferase 12 that encodes chondroitin 4-O-sulfotransferase, for CS-A formation. These qualitative and quantitative changes in CS/DS and CS/DS-synthases before and after adipocyte differentiation reveal valuable insights into adipocyte development.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Animais , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/análise , Dermatan Sulfato/metabolismo , Dermatan Sulfato/farmacologia , Glicosaminoglicanos/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Diferenciação Celular
2.
J Toxicol Sci ; 48(8): 457-467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532579

RESUMO

Cadmium is an environmental pollutant and a risk factor for atherosclerosis. In the atherosclerotic intima, dermatan sulfate chains accelerate accumulation and oxidation of LDL cholesterol. The major type of dermatan sulfate proteoglycan that is synthesized by vascular endothelial cells is biglycan. In the present study, we analyzed the effect of cadmium on the biglycan synthesis using cultured bovine aortic endothelial cells. Cadmium did not induce biglycan mRNA and core protein expression; however, it elongated the chondroitin/dermatan sulfate chains of biglycan. Among elongation enzymes of the chondroitin/dermatan sulfate chain, chondroitin sulfate synthase 1 (CHSY1) mRNA and protein expression were dose- and time-dependently upregulated by cadmium depending on protein kinase Cα. This finding suggests that CHSY1-dependent elongation of chondroitin/dermatan sulfate chains of biglycan may exacerbate cadmium-induced atherosclerosis.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Animais , Bovinos , Biglicano , Dermatan Sulfato/metabolismo , Cádmio , Células Endoteliais/metabolismo , RNA Mensageiro , Proteínas Quinases , Células Cultivadas
3.
Biomolecules ; 13(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36830616

RESUMO

Glycosaminoglycans (GAGs) are a class of linear anionic periodic polysaccharides containing disaccharide repetitive units. These molecules interact with a variety of proteins in the extracellular matrix and so participate in biochemically crucial processes such as cell signalling affecting tissue regeneration as well as the onset of cancer, Alzheimer's or Parkinson's diseases. Due to their flexibility, periodicity and chemical heterogeneity, often termed "sulfation code", GAGs are challenging molecules both for experiments and computation. One of the key questions in the GAG research is the specificity of their intermolecular interactions. In this study, we make a step forward to deciphering the "sulfation code" of chondroitin sulfates-4,6 (CS4, CS6, where the numbers correspond to the position of sulfation in NAcGal residue) and dermatan sulfate (DS), which is different from CSs by the presence of IdoA acid instead of GlcA. We rigorously investigate two sets of these GAGs in dimeric, tetrameric and hexameric forms with molecular dynamics-based descriptors. Our data clearly suggest that CS4, CS6 and DS are substantially different in terms of their structural, conformational and dynamic properties, which contributes to the understanding of how these molecules can be different when they bind proteins, which could have practical implications for the GAG-based drug design strategies in the regenerative medicine.


Assuntos
Dermatan Sulfato , Simulação de Dinâmica Molecular , Dermatan Sulfato/análise , Dermatan Sulfato/química , Dermatan Sulfato/metabolismo , Sulfatos de Condroitina/química , Glicosaminoglicanos/química , Sulfatos
4.
Genes (Basel) ; 14(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36833436

RESUMO

Dermatan sulfate (DS) and its proteoglycans are essential for the assembly of the extracellular matrix and cell signaling. Various transporters and biosynthetic enzymes for nucleotide sugars, glycosyltransferases, epimerase, and sulfotransferases, are involved in the biosynthesis of DS. Among these enzymes, dermatan sulfate epimerase (DSE) and dermatan 4-O-sulfotranserase (D4ST) are rate-limiting factors of DS biosynthesis. Pathogenic variants in human genes encoding DSE and D4ST cause the musculocontractural type of Ehlers-Danlos syndrome, characterized by tissue fragility, joint hypermobility, and skin hyperextensibility. DS-deficient mice exhibit perinatal lethality, myopathy-related phenotypes, thoracic kyphosis, vascular abnormalities, and skin fragility. These findings indicate that DS is essential for tissue development as well as homeostasis. This review focuses on the histories of DSE as well as D4ST, and their knockout mice as well as human congenital disorders.


Assuntos
Dermatan Sulfato , Síndrome de Ehlers-Danlos , Gravidez , Feminino , Humanos , Animais , Camundongos , Dermatan Sulfato/metabolismo , Síndrome de Ehlers-Danlos/genética , Fenótipo , Sulfotransferases/genética , Racemases e Epimerases/genética
5.
J Chromatogr A ; 1689: 463748, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36586283

RESUMO

Glycosaminoglycans (GAGs), which are one of the major components of proteoglycans, play a pivotal role in physiological processes such as signal transduction, cell adhesion, growth, and differentiation. Characterization of GAGs is challenging due to the tremendous structural diversity of heteropolysaccharides with numerous sulfate or carboxyl groups. In this present study, we examined the analysis of 2-aminobenzamide (2-AB) labeled GAG disaccharides by high-performance liquid chromatography (HPLC) using a reverse-phase (RP)-column with adamantyl groups. Under the analytical conditions, 17 types of 2-AB labeled GAG disaccharides derived from heparan sulfate, chondroitin/dermatan sulfates, and hyaluronan were sequentially separated in a single analysis. The analysis time was fast with high retention time reproducibility. Moreover, the RP-HPLC column with adamantyl groups allowed the quantification of GAGs in various biological samples, such as serum, cultured cells, and culture medium.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Glicosaminoglicanos/química , Sulfatos de Condroitina/química , Ácido Hialurônico/análise , Ácido Hialurônico/química , Dermatan Sulfato/análise , Dermatan Sulfato/química , Dermatan Sulfato/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Dissacarídeos/química , Reprodutibilidade dos Testes , Heparitina Sulfato/análise
6.
Mar Drugs ; 20(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36354999

RESUMO

Acute and chronic dermatological injuries need rapid tissue repair due to the susceptibility to infections. To effectively promote cutaneous wound recovery, it is essential to develop safe, low-cost, and affordable regenerative tools. Therefore, we aimed to identify the biological mechanisms involved in the wound healing properties of the glycosaminoglycan dermatan sulfate (DS), obtained from ascidian Styela plicata, a marine invertebrate, which in preliminary work from our group showed no toxicity and promoted a remarkable fibroblast proliferation and migration. In this study, 2,4-DS (50 µg/mL)-treated and control groups had the relative gene expression of 84 genes participating in the healing pathway evaluated. The results showed that 57% of the genes were overexpressed during treatment, 16% were underexpressed, and 9.52% were not detected. In silico analysis of metabolic interactions exhibited overexpression of genes related to: extracellular matrix organization, hemostasis, secretion of inflammatory mediators, and regulation of insulin-like growth factor transport and uptake. Furthermore, in C57BL/6 mice subjected to experimental wounds treated with 0.25% 2,4-DS, the histological parameters demonstrated a great capacity for vascular recovery. Additionally, this study confirmed that DS is a potent inducer of wound-healing cellular pathways and a promoter of neovascularization, being a natural ally in the tissue regeneration strategy.


Assuntos
Dermatan Sulfato , Urocordados , Animais , Camundongos , Dermatan Sulfato/metabolismo , Dermatan Sulfato/farmacologia , Camundongos Endogâmicos C57BL , Urocordados/metabolismo , Cicatrização , Recursos Naturais
7.
Methods Mol Biol ; 2531: 163-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941485

RESUMO

Proteoglycans are heavily glycosylated proteins, covalently linked to one or more glycosaminoglycan (GAG) chains, abundantly expressed in the extracellular matrix (ECM). Among GAGs, chondroitin sulfate (CS) and dermatan sulfate (DS) play an essential role at the ECM level; however, the composition of the hybrid CS/DS as well as the distribution of the sulfate groups along the chain were also shown to influence biological activities in brain. The elevated structural diversity of CS/DS motifs, in which sulfation may occur at GalNAc and/or IdoA/GlcA in various combinations, requires the development of specific high performance analytical methods for reliable elucidation. Due to its sensitivity, reproducibility, and efficiency, capillary zone electrophoresis (CZE) for separation of CS/DS oligosaccharides coupled to electrospray ionization mass spectrometry (ESI-MS) for their structure determination contributed an essential progress to this field.In the present chapter, two powerful methods based on CZE for separation and ESI-MS for identification and structural analysis of CS/DS are presented. The first part is devoted to offline CZE-ESI-MS based on fraction collection, screening by negative ion mode nanoESI, and fragmentation analysis in tandem MS using collision-induced dissociation (CID) at low ion acceleration energies. In the second part of the chapter, a strategy for online CZE-ESI-MS in normal polarity and negative mode ESI followed by tandem MS in real-time data-dependent acquisition mode for CS/DS separation, screening, and fragmentation is described in detail. The latter method entails the in-laboratory manufacturing of a simple yet sturdy interface for the online CZE coupling to ESI-MS and the optimization of the coupled system for total analysis of regularly sulfated and irregularly, i.e., under- and oversulfated CS/DS domains.


Assuntos
Sulfatos de Condroitina , Espectrometria de Massas por Ionização por Electrospray , Sulfatos de Condroitina/química , Dermatan Sulfato/análise , Dermatan Sulfato/química , Dermatan Sulfato/metabolismo , Eletroforese Capilar/métodos , Oligossacarídeos/química , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Sulfatos/análise , Espectrometria de Massas em Tandem
8.
Am J Physiol Cell Physiol ; 323(6): C1843-C1859, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993517

RESUMO

Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization. The importance of these biosynthetic enzymes is illustrated by several severe pleiotropic disorders that arise upon their deficiency. The Ehlers-Danlos syndromes (EDS) constitute a special group among these disorders. Although most EDS types are caused by defects in fibrillar types I, III, or V collagen, or their modifying enzymes, a few rare EDS types have recently been linked to defects in GAG biosynthesis. Spondylodysplastic EDS (spEDS) is caused by defective formation of the tetrasaccharide linker region, either due to ß4GalT7 or ß3GalT6 deficiency, whereas musculocontractural EDS (mcEDS) results from deficiency of D4ST1 or DS-epi1, impairing DS formation. This narrative review highlights the consequences of GAG deficiency in these specific EDS types, summarizes the associated phenotypic features and the molecular spectrum of reported pathogenic variants, and defines the current knowledge on the underlying pathophysiological mechanisms based on studies in patient-derived material, in vitro analyses, and animal models.


Assuntos
Dermatan Sulfato , Síndrome de Ehlers-Danlos , Animais , Dermatan Sulfato/metabolismo , Sulfotransferases/metabolismo , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Colágeno/metabolismo , Proteoglicanas
9.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806490

RESUMO

The crucial roles of dermatan sulfate (DS) have been demonstrated in tissue development of the cutis, blood vessels, and bone through construction of the extracellular matrix and cell signaling. Although DS classically exerts physiological functions via interaction with collagens, growth factors, and heparin cofactor-II, new functions have been revealed through analyses of human genetic disorders as well as of knockout mice with loss of DS-synthesizing enzymes. Mutations in human genes encoding the epimerase and sulfotransferase responsible for the biosynthesis of DS chains cause connective tissue disorders including spondylodysplastic type Ehlers-Danlos syndrome, characterized by skin hyperextensibility, joint hypermobility, and tissue fragility. DS-deficient mice show perinatal lethality, skin fragility, vascular abnormalities, thoracic kyphosis, myopathy-related phenotypes, acceleration of nerve regeneration, and impairments in self-renewal and proliferation of neural stem cells. These findings suggest that DS is essential for tissue development in addition to the assembly of collagen fibrils in the skin, and that DS-deficient knockout mice can be utilized as models of human genetic disorders that involve impairment of DS biosynthesis. This review highlights a novel role of DS in tissue development studies from the past decade.


Assuntos
Dermatan Sulfato , Síndrome de Ehlers-Danlos , Animais , Colágeno/metabolismo , Dermatan Sulfato/metabolismo , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Sulfotransferases/metabolismo
10.
J Phys Chem B ; 126(21): 3852-3866, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35594147

RESUMO

Glycosaminoglycans (GAGs) are anionic biopolymers present on cell surfaces as a part of proteoglycans. The biological activities of GAGs depend on the sulfation pattern. In our study, we have considered three octadecasaccharide dermatan sulfate (DS) chains with increasing order of sulfation (dp6s, dp7s, and dp12s) to illuminate the role of sulfation on the GAG units and its chain conformation through 10 µs-long Gaussian accelerated molecular dynamics simulations. DS is composed of repeating disaccharide units of iduronic acid (IdoA) and N-acetylgalactosamine (N-GalNAc). Here, N-GalNAc is linked to IdoA via ß(1-4), while IdoA is linked to N-GalNAc through α(1-3). With the increase in sulfation, the DS structure becomes more rigid and linear, as is evident from the distribution of root-mean-square deviations (RMSDs) and end-to-end distances. The tetrasaccharide linker region of the main chain shows a rigid conformation in terms of the glycosidic linkage. We have observed that upon sulfation (i.e., dp12s), the ring flip between two chair forms vanished for IdoA. The dynamic cross-correlation analysis reveals that the anticorrelation motions in dp12s are reduced significantly compared to dp6s or dp7s. An increase in sulfation generates relatively more stable hydrogen-bond networks, including water bridging with the neighboring monosaccharides. Despite the favorable linear structures of the GAG chains, our study also predicts few significant bendings related to the different puckering states, which may play a notable role in the function of the DS. The relation between the global conformation with the micro-level parameters such as puckering and water-mediated hydrogen bonds shapes the overall conformational space of GAGs. Overall, atomistic details of the DS chain provided in this study will help understand their functional and mechanical roles, besides developing new biomaterials.


Assuntos
Dermatan Sulfato , Glicosaminoglicanos , Dermatan Sulfato/análise , Dermatan Sulfato/química , Dermatan Sulfato/metabolismo , Glicosaminoglicanos/química , Conformação Molecular , Simulação de Dinâmica Molecular , Água
11.
PLoS Genet ; 18(2): e1010067, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192612

RESUMO

Chondroitin/dermatan sulfate (CS/DS) proteoglycans are indispensable for animal development and homeostasis but the large number of enzymes involved in their biosynthesis have made CS/DS function a challenging problem to study genetically. In our study, we generated loss-of-function alleles in zebrafish genes encoding CS/DS biosynthetic enzymes and characterized the effect on development in single and double mutants. Homozygous mutants in chsy1, csgalnact1a, csgalnat2, chpfa, ust and chst7, respectively, develop to adults. However, csgalnact1a-/- fish develop distinct craniofacial defects while the chsy1-/- skeletal phenotype is milder and the remaining mutants display no gross morphological abnormalities. These results suggest a high redundancy for the CS/DS biosynthetic enzymes and to further reduce CS/DS biosynthesis we combined mutant alleles. The craniofacial phenotype is further enhanced in csgalnact1a-/-;chsy1-/- adults and csgalnact1a-/-;csgalnact2-/- larvae. While csgalnact1a-/-;csgalnact2-/- was the most affected allele combination in our study, CS/DS is still not completely abolished. Transcriptome analysis of chsy1-/-, csgalnact1a-/- and csgalnact1a-/-;csgalnact2-/- larvae revealed that the expression had changed in a similar way in the three mutant lines but no differential expression was found in any of fifty GAG biosynthesis enzymes identified. Thus, zebrafish larvae do not increase transcription of GAG biosynthesis genes as a consequence of decreased CS/DS biosynthesis. The new zebrafish lines develop phenotypes similar to clinical characteristics of several human congenital disorders making the mutants potentially useful to study disease mechanisms and treatment.


Assuntos
Dermatan Sulfato , Peixe-Zebra , Animais , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/genética , Dermatan Sulfato/metabolismo , Glicosiltransferases/genética , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
Food Funct ; 13(2): 587-595, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34919100

RESUMO

The objective of the present study was to explore the desensitization effect of dermatan sulfate (DS) and chondroitin sulfate (CS) from Lophius litulon (Ll) on mice sensitized by major royal jelly protein 1 (MRJP1). First, the affinity between six glycosaminoglycans and the MRJP1 polyclonal antibody was measured by the ELISA method. Lophius litulon dermatan sulfate (Ll DS) and Lophius litulon chondroitin sulfate (Ll CS) were selected due to their highest binding affinity. Second, the molecular docking method was used to explore the interaction between Ll DS and MRJP1 and Ll CS and MRJP1. The results showed that Ll DS and Ll CS combined with MRJP1 successfully, which meant a potential function of relieving the MRJP1-caused allergy. Finally, the MRJP1-sensitized mice model was established and confirmed that Ll DS and Ll CS had the desensitization ability to relieve MRJP1-induced allergic symptoms. To validate the conclusion, the relief of allergic symptoms in mice was observed. The production of total IgE, MRJP1-specific IgE and histamine was measured. The desensitization mechanism was further studied by measuring cytokines (IL-4 and IFN-γ) from splenocytes stimulated with MRJP1 in vitro. Based on in vivo and in vitro experiments, it was confirmed that Ll DS and Ll CS have the ability to alleviate MRJP1-induced allergic symptoms, which proposes a potential candidate material against IgE-mediated food allergy.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Hipersensibilidade Alimentar/metabolismo , Glicoproteínas , Proteínas de Insetos , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacologia , Dermatan Sulfato/química , Dermatan Sulfato/metabolismo , Dermatan Sulfato/farmacologia , Feminino , Peixes , Glicoproteínas/efeitos adversos , Glicoproteínas/química , Glicoproteínas/metabolismo , Proteínas de Insetos/efeitos adversos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Coelhos
13.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071909

RESUMO

Corneal transparency relies on the precise arrangement and orientation of collagen fibrils, made of mostly Type I and V collagen fibrils and proteoglycans (PGs). PGs are essential for correct collagen fibrillogenesis and maintaining corneal homeostasis. We investigated the spatial and temporal distribution of glycosaminoglycans (GAGs) and PGs after a chemical injury. The chemical composition of chondroitin sulfate (CS)/dermatan sulfate (DS) and heparan sulfate (HS) were characterized in mouse corneas 5 and 14 days after alkali burn (AB), and compared to uninjured corneas. The expression profile and corneal distribution of CS/DSPGs and keratan sulfate (KS) PGs were also analyzed. We found a significant overall increase in CS after AB, with an increase in sulfated forms of CS and a decrease in lesser sulfated forms of CS. Expression of the CSPGs biglycan and versican was increased after AB, while decorin expression was decreased. We also found an increase in KS expression 14 days after AB, with an increase in lumican and mimecan expression, and a decrease in keratocan expression. No significant changes in HS composition were noted after AB. Taken together, our study reveals significant changes in the composition of the extracellular matrix following a corneal chemical injury.


Assuntos
Queimaduras Químicas/metabolismo , Doenças da Córnea/induzido quimicamente , Doenças da Córnea/metabolismo , Matriz Extracelular/metabolismo , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/metabolismo , Álcalis/efeitos adversos , Animais , Biomarcadores , Queimaduras Químicas/diagnóstico , Doenças da Córnea/diagnóstico , Dermatan Sulfato/metabolismo , Modelos Animais de Doenças , Queimaduras Oculares/diagnóstico , Imunofluorescência , Expressão Gênica , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Sulfato de Queratano/metabolismo , Camundongos , Proteoglicanas/metabolismo
14.
Protein J ; 40(1): 68-77, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389473

RESUMO

Mucopolysaccharidosis type I is a rare autosomal recessive genetic disease caused by deficient activity of α-L-iduronidase. As a consequence of low or absent activity of this enzyme, glycosaminoglycans accumulate in the lysosomal compartments of multiple cell types throughout the body. Mucopolysaccharidosis type I has been classified into 3 clinical subtypes, ranging from a severe Hurler form to the more attenuated Hurler-Scheie and Scheie phenotypes. Over 200 gene variants causing the various forms of mucopolysaccharidosis type I have been reported. DNA isolated from dried blood spot was used to sequencing of all exons of the IDUA gene from a patient with a clinical phenotype of severe mucopolysaccharidosis type I syndrome. Enzyme activity of α-L-iduronidase was quantified by fluorimetric assay. Additionally, a molecular dynamics simulation approach was used to determine the effect of the Ser633Trp mutation on the structure and dynamics of the α-L-iduronidase. The DNA sequencing analysis and enzymatic activity shows a c.1898C>G mutation associated a patient with a homozygous state and α-L-iduronidase activity of 0.24 µmol/L/h, respectively. The molecular dynamics simulation analysis shows that the p.Ser633Trp mutation on the α-L-iduronidase affect significant the temporal and spatial properties of the different structural loops, the N-glycan attached to Asn372 and amino acid residues around the catalytic site of this enzyme. Low enzymatic activity observed for p.Ser633Trp variant of the α-L-iduronidase seems to lead to severe mucopolysaccharidosis type I phenotype, possibly associated with a perturbation of the structural dynamics in regions of the enzyme close to the active site.


Assuntos
Anormalidades Múltiplas/genética , Dermatan Sulfato/química , Heparitina Sulfato/química , Iduronidase/química , Mucopolissacaridose I/genética , Mutação Puntual , Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/terapia , Domínio Catalítico , Cristalografia por Raios X , Dermatan Sulfato/metabolismo , Terapia de Reposição de Enzimas/métodos , Expressão Gênica , Heparitina Sulfato/metabolismo , Humanos , Iduronidase/genética , Iduronidase/metabolismo , Lactente , Masculino , Simulação de Dinâmica Molecular , Mucopolissacaridose I/enzimologia , Mucopolissacaridose I/patologia , Mucopolissacaridose I/terapia , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato
15.
Glycobiology ; 31(2): 103-115, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32573715

RESUMO

Chondroitin sulfate (CS)and dermatan sulfate (DS) are negatively charged polysaccharides found abundantly in animal tissue and have been extensively described to play key roles in health and disease. The most common method to analyze their structure is by digestion into disaccharides with bacterial chondroitinases, followed by chromatography and/or mass spectrometry. While studying the structure of oncofetal CS, we noted a large variation in the activity and specificity of commercially available chondroitinases. Here studied the kinetics of the enzymes and used high-performance liquid chromatography-mass spectrometry to determine the di- and oligosaccharide products resulting from the digestion of commercially available bovine CS A, shark CS C and porcine DS, focusing on chondroitinases ABC, AC and B from different vendors. Application of a standardized assay setup demonstrated large variations in the enzyme-specific activity compared to the values provided by vendors, large variation in enzyme specific activity of similar enzymes from different vendors and differences in the extent of cleavage of the substrates and the generated products. The high variability of different chondroitinases highlights the importance of testing enzyme activity and monitoring product formation in assessing the content and composition of chondroitin and DSs in cells and tissues.


Assuntos
Condroitinases e Condroitina Liases/metabolismo , Dissacarídeos/metabolismo , Animais , Configuração de Carboidratos , Bovinos , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/metabolismo , Especificidade por Substrato , Suínos
16.
Sci Rep ; 10(1): 22422, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33380731

RESUMO

The glycocalyx is thought to perform a potent, but not yet defined function in cellular adhesion and signaling. Since 95% of cancer cells have altered glycocalyx structure, this role can be especially important in cancer development and metastasis. The glycocalyx layer of cancer cells directly influences cancer progression, involving the complicated kinetic process of cellular adhesion at various levels. In the present work, we investigated the effect of enzymatic digestion of specific glycocalyx components on cancer cell adhesion to RGD (arginine-glycine-aspartic acid) peptide motif displaying surfaces. High resolution kinetic data of cell adhesion was recorded by the surface sensitive label-free resonant waveguide grating (RWG) biosensor, supported by fluorescent staining of the cells and cell surface charge measurements. We found that intense removal of chondroitin sulfate (CS) and dermatan sulfate chains by chondroitinase ABC reduced the speed and decreased the strength of adhesion of HeLa cells. In contrast, mild digestion of glycocalyx resulted in faster and stronger adhesion. Control experiments on a healthy and another cancer cell line were also conducted, and the discrepancies were analysed. We developed a biophysical model which was fitted to the kinetic data of HeLa cells. Our analysis suggests that the rate of integrin receptor transport to the adhesion zone and integrin-RGD binding is strongly influenced by the presence of glycocalyx components, but the integrin-RGD dissociation is not. Moreover, based on the kinetic data we calculated the dependence of the dissociation constant of integrin-RGD binding on the enzyme concentration. We also determined the dissociation constant using a 2D receptor binding model based on saturation level static data recorded at surfaces with tuned RGD densities. We analyzed the discrepancies of the kinetic and static dissociation constants, further illuminating the role of cancer cell glycocalyx during the adhesion process. Altogether, our experimental results and modelling demonstrated that the chondroitin sulfate and dermatan sulfate chains of glycocalyx have an important regulatory function during the cellular adhesion process, mainly controlling the kinetics of integrin transport and integrin assembly into mature adhesion sites. Our results potentially open the way for novel type of cancer treatments affecting these regulatory mechanisms of cellular glycocalyx.


Assuntos
Adesão Celular/fisiologia , Glicocálix/metabolismo , Glicocálix/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenômenos Biofísicos , Técnicas Biossensoriais , Condroitina ABC Liase/metabolismo , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/metabolismo , Adesões Focais/metabolismo , Adesões Focais/patologia , Células HeLa , Humanos , Integrinas/metabolismo , Cinética , Modelos Biológicos , Oligopeptídeos/metabolismo
17.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707880

RESUMO

Mucopolysaccharidosis type II is a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS) and characterized by the accumulation of the primary storage substrate, glycosaminoglycans (GAGs). Understanding central nervous system (CNS) pathophysiology in neuronopathic MPS II (nMPS II) has been hindered by the lack of CNS biomarkers. Characterization of fluid biomarkers has been largely focused on evaluating GAGs in cerebrospinal fluid (CSF) and the periphery; however, GAG levels alone do not accurately reflect the broad cellular dysfunction in the brains of MPS II patients. We utilized a preclinical mouse model of MPS II, treated with a brain penetrant form of IDS (ETV:IDS) to establish the relationship between markers of primary storage and downstream pathway biomarkers in the brain and CSF. We extended the characterization of pathway and neurodegeneration biomarkers to nMPS II patient samples. In addition to the accumulation of CSF GAGs, nMPS II patients show elevated levels of lysosomal lipids, neurofilament light chain, and other biomarkers of neuronal damage and degeneration. Furthermore, we find that these biomarkers of downstream pathology are tightly correlated with heparan sulfate. Exploration of the responsiveness of not only CSF GAGs but also pathway and disease-relevant biomarkers during drug development will be crucial for monitoring disease progression, and the development of effective therapies for nMPS II.


Assuntos
Encéfalo/metabolismo , Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/metabolismo , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Mucopolissacaridose II/sangue , Mucopolissacaridose II/líquido cefalorraquidiano , Adolescente , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Dermatan Sulfato/sangue , Dermatan Sulfato/líquido cefalorraquidiano , Dermatan Sulfato/metabolismo , Terapia de Reposição de Enzimas , Feminino , Gangliosídeos/metabolismo , Glicosaminoglicanos/líquido cefalorraquidiano , Transplante de Células-Tronco Hematopoéticas , Heparitina Sulfato/sangue , Heparitina Sulfato/líquido cefalorraquidiano , Heparitina Sulfato/metabolismo , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/farmacologia , Lactente , Inflamação/metabolismo , Lisossomos/patologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Mucopolissacaridose II/metabolismo , Mucopolissacaridose II/terapia , Proteínas de Neurofilamentos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Int J Mol Sci ; 21(14)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664626

RESUMO

Perturbations of glycosaminoglycan metabolism lead to mucopolysaccharidoses (MPS)-lysosomal storage diseases. One type of MPS (type VI) is associated with a deficiency of arylsulfatase B (ARSB), for which we previously established a cellular model using pulmonary artery endothelial cells with a silenced ARSB gene. Here, we explored the effects of silencing the ARSB gene on the growth of human pulmonary artery smooth muscle cells in the presence of different concentrations of dermatan sulfate (DS). The viability of pulmonary artery smooth muscle cells with a silenced ARSB gene was stimulated by the dermatan sulfate. In contrast, the growth of pulmonary artery endothelial cells was not affected. As shown by microarray analysis, the expression of the arylsulfatase G (ARSG) in pulmonary artery smooth muscle cells increased after silencing the arylsulfatase B gene, but the expression of genes encoding other enzymes involved in the degradation of dermatan sulfate did not. The active site of arylsulfatase G closely resembles that of arylsulfatase B, as shown by molecular modeling. Together, these results lead us to propose that arylsulfatase G can take part in DS degradation; therefore, it can affect the functioning of the cells with a silenced arylsulfatase B gene.


Assuntos
Dermatan Sulfato/metabolismo , Miócitos de Músculo Liso/enzimologia , N-Acetilgalactosamina-4-Sulfatase/fisiologia , Sequência de Aminoácidos , Arilsulfatases/biossíntese , Arilsulfatases/química , Arilsulfatases/genética , Domínio Catalítico , Dermatan Sulfato/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Inativação Gênica , Humanos , Modelos Moleculares , Mucopolissacaridose VI/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , N-Acetilgalactosamina-4-Sulfatase/química , Especificidade de Órgãos , Ligação Proteica , Conformação Proteica , Artéria Pulmonar/citologia , RNA Mensageiro/biossíntese , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Análise Serial de Tecidos , Regulação para Cima
19.
PLoS One ; 15(5): e0233032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413051

RESUMO

Mucopolysaccharidoses are a class of lysosomal storage diseases, characterized by enzymatic deficiency in the degradation of specific glycosaminoglycans (GAG). Pathological accumulation of excess GAG leads to multiple clinical symptoms with systemic character, most severely affecting bones, muscles and connective tissues. Current therapies include periodic intravenous infusion of supplementary recombinant enzyme (Enzyme Replacement Therapy-ERT) or bone marrow transplantation. However, ERT has limited efficacy due to poor penetration in some organs and tissues. Here, we investigated the potential of the ß-D-xyloside derivative odiparcil as an oral GAG clearance therapy for Maroteaux-Lamy syndrome (Mucopolysaccharidosis type VI, MPS VI). In vitro, in bovine aortic endothelial cells, odiparcil stimulated the secretion of sulphated GAG into culture media, mainly of chondroitin sulphate (CS) /dermatan sulphate (DS) type. Efficacy of odiparcil in reducing intracellular GAG content was investigated in skin fibroblasts from MPS VI patients where odiparcil was shown to reduce efficiently the accumulation of intracellular CS with an EC50 in the range of 1 µM. In vivo, in wild type rats, after oral administrations, odiparcil was well distributed, achieving µM concentrations in MPS VI disease-relevant tissues and organs (bone, cartilage, heart and cornea). In MPS VI Arylsulphatase B deficient mice (Arsb-), after chronic oral administration, odiparcil consistently stimulated the urinary excretion of sulphated GAG throughout the treatment period and significantly reduced tissue GAG accumulation in liver and kidney. Furthermore, odiparcil diminished the pathological cartilage thickening observed in trachea and femoral growth plates of MPS VI mice. The therapeutic efficacy of odiparcil was similar in models of early (treatment starting in juvenile, 4 weeks old mice) or established disease (treatment starting in adult, 3 months old mice). Our data demonstrate that odiparcil effectively diverts the synthesis of cellular glycosaminoglycans into secreted soluble species and this effect can be used for reducing cellular and tissue GAG accumulation in MPS VI models. Therefore, our data reveal the potential of odiparcil as an oral GAG clearance therapy for MPS VI patients.


Assuntos
Glicosaminoglicanos/metabolismo , Glicosídeos/uso terapêutico , Mucopolissacaridose VI/tratamento farmacológico , Mucopolissacaridose VI/metabolismo , Administração Oral , Animais , Bovinos , Células Cultivadas , Sulfatos de Condroitina , Dermatan Sulfato/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Glicosídeos/administração & dosagem , Glicosídeos/farmacocinética , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mucopolissacaridose VI/genética , Ratos , Ratos Sprague-Dawley
20.
PLoS Pathog ; 16(5): e1008516, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413091

RESUMO

Lyme disease, caused by Borrelia burgdorferi, B. afzelii and B. garinii, is a chronic, multi-systemic infection and the spectrum of tissues affected can vary with the Lyme disease strain. For example, whereas B. garinii infection is associated with neurologic manifestations, B. burgdorferi infection is associated with arthritis. The basis for tissue tropism is poorly understood, but has been long hypothesized to involve strain-specific interactions with host components in the target tissue. OspC (outer surface protein C) is a highly variable outer surface protein required for infectivity, and sequence differences in OspC are associated with variation in tissue invasiveness, but whether OspC directly influences tropism is unknown. We found that OspC binds to the extracellular matrix (ECM) components fibronectin and/or dermatan sulfate in an OspC variant-dependent manner. Murine infection by isogenic B. burgdorferi strains differing only in their ospC coding region revealed that two OspC variants capable of binding dermatan sulfate promoted colonization of all tissues tested, including joints. However, an isogenic strain producing OspC from B. garinii strain PBr, which binds fibronectin but not dermatan sulfate, colonized the skin, heart and bladder, but not joints. Moreover, a strain producing an OspC altered to recognize neither fibronectin nor dermatan sulfate displayed dramatically reduced levels of tissue colonization that were indistinguishable from a strain entirely deficient in OspC. Finally, intravital microscopy revealed that this OspC mutant, in contrast to a strain producing wild type OspC, was defective in promoting joint invasion by B. burgdorferi in living mice. We conclude that OspC functions as an ECM-binding adhesin that is required for joint invasion, and that variation in OspC sequence contributes to strain-specific differences in tissue tropism displayed among Lyme disease spirochetes.


Assuntos
Borrelia burgdorferi/metabolismo , Dermatan Sulfato/metabolismo , Matriz Extracelular/metabolismo , Artropatias/metabolismo , Articulações/metabolismo , Doença de Lyme/metabolismo , Animais , Antígenos de Bactérias , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidade , Dermatan Sulfato/genética , Matriz Extracelular/genética , Matriz Extracelular/microbiologia , Matriz Extracelular/patologia , Feminino , Fibronectinas/genética , Fibronectinas/metabolismo , Artropatias/genética , Artropatias/microbiologia , Artropatias/patologia , Articulações/microbiologia , Articulações/patologia , Doença de Lyme/genética , Doença de Lyme/microbiologia , Doença de Lyme/patologia , Camundongos , Camundongos SCID , Mutação , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...