Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 80(4): 699-709, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201097

RESUMO

Phosphoribosyl pyrophosphate synthetase-1 (PRPS-1; EC 2.7.6.1.) catalyzes the binding of phosphate-group to ribose 5-phosphate, forming the 5-phosphoribosyl-1-pyrophosphate, which is necessary for the salvage pathways of purine and pyrimidine, pyridine nucleotide cofactors - NAD and NADP, the amino acids histidine and tryptophan biosynthesis. We aimed to investigate the impact of the different effectors on the activity of PRPS-1, to check the activity of the enzyme in vitro in a wide range of pHs and investigate some structural essentials of the enzyme, isolated from brain and liver. Molecular docking analyses were used to delineate the essentials of PRPS-1 structure, to find out the existence of enzyme effectors. Previously created by us kit was used for determination of the activity of PRPS-1 based on the formation of the inorganic phosphates (λ = 700 nm, Cary 60, Agilent, USA). Effectors impact on the activity of PRPS-1 was evaluated. In silico results of the effectors were later proven by in vitro experiments. For the first time biochemical essentials, including the existence of the multiple pockets, involvement of the amino acids into the processes of interactions with the effectors, evolutional of the sequence conservation, tissue depended Vmax differences were identified.


Assuntos
Fosforribosil Pirofosfato , Ribose-Fosfato Pirofosfoquinase , Difosfatos , Histidina , Simulação de Acoplamento Molecular , NAD , NADP , Nucleotídeos , Fosfatos , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Purinas/metabolismo , Piridinas , Pirimidinas , Ribose-Fosfato Pirofosfoquinase/metabolismo , Triptofano
2.
Elife ; 112022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35736577

RESUMO

Phosphoribosyl pyrophosphate (PRPP) is a key intermediate in the biosynthesis of purine and pyrimidine nucleotides, histidine, tryptophan, and cofactors NAD and NADP. Abnormal regulation of PRPP synthase (PRPS) is associated with human disorders, including Arts syndrome, retinal dystrophy, and gouty arthritis. Recent studies have demonstrated that PRPS can form filamentous cytoophidia in eukaryotes. Here, we show that PRPS forms cytoophidia in prokaryotes both in vitro and in vivo. Moreover, we solve two distinct filament structures of E. coli PRPS at near-atomic resolution using Cryo-EM. The formation of the two types of filaments is controlled by the binding of different ligands. One filament type is resistant to allosteric inhibition. The structural comparison reveals conformational changes of a regulatory flexible loop, which may regulate the binding of the allosteric inhibitor and the substrate ATP. A noncanonical allosteric AMP/ADP binding site is identified to stabilize the conformation of the regulatory flexible loop. Our findings not only explore a new mechanism of PRPS regulation with structural basis, but also propose an additional layer of cell metabolism through PRPS filamentation.


Assuntos
Escherichia coli , Fosforribosil Pirofosfato , Regulação Alostérica , Sítio Alostérico , Escherichia coli/genética , Humanos , Fosforribosil Pirofosfato/química
3.
Chem Commun (Camb) ; 56(55): 7617-7620, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32515440

RESUMO

The enzyme ForT catalyzes C-C bond formation between 5'-phosphoribosyl-1'-pyrophosphate (PRPP) and 4-amino-1H-pyrazole-3,5-dicarboxylate to make a key intermediate in the biosynthesis of formycin A 5'-phosphate by Streptomyces kaniharaensis. We report the 2.5 Å resolution structure of the ForT/PRPP complex and locate active site residues critical for PRPP recognition and catalysis.


Assuntos
Carbono-Carbono Ligases/metabolismo , Fosforribosil Pirofosfato/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Carbono-Carbono Ligases/química , Domínio Catalítico , Cristalografia por Raios X , Modelos Químicos , Fosforribosil Pirofosfato/química , Ligação Proteica , Streptomyces/enzimologia
4.
Biochemistry ; 59(13): 1361-1366, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32202416

RESUMO

The modularity of protein domains is well-known, but the existence of independent domains that confer function in RNA is less established. Recently, a family of RNA aptamers termed ykkC was discovered; they bind at least four ligands of very different chemical composition, including guanidine, phosphoribosyl pyrophosphate (PRPP), and guanosine tetraphosphate (ppGpp) (graphical abstract). Structures of these aptamers revealed an architecture characterized by two coaxial helical stacks. The first helix appears to be a generic scaffold, while the second helix forms the most contacts to the ligands. To determine if these two regions within the aptamer are modular units for ligand recognition, we swapped the ligand-binding coaxial stacks of a guanidine aptamer and a PRPP aptamer. This operation, in combination with a single mutation in the scaffold domain, achieved full switching of ligand specificity. This finding suggests that the ligand-binding helix largely dictates the ligand specificity of ykkC RNAs and that the scaffold coaxial stack is generally compatible with various ykkC ligand-binding modules. This work presents an example of RNA domain modularity comparable to that of a ligand-binding protein, showcasing the versatility of RNA as an entity capable of molecular evolution through adaptation of existing motifs.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo
5.
Protein Expr Purif ; 169: 105587, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32001359

RESUMO

Prs (phosphoribosyl pyrophosphate synthase) is a broadly conserved protein that synthesises 5-phosphoribosyl 1-pyrophospate (PRPP); a substrate for biosynthesis of at least 10 enzymatic pathways including biosynthesis of DNA building blocks - purines and pyrimidines. In Escherichia coli, it is a protein of homo-hexameric quaternary structure, which can be challenging to work with, due to frequent aggregation and activity loss. Several studies showed brief purification protocols for various bacterial PRPP synthases, in most cases involving ammonium sulfate precipitation. Here, we provide a protocol for expression of E. coli Prs protein in Rosetta (DE3) and BL21 (DE3) pLysE strains and a detailed method for His-Prs and untagged Prs purification on nickel affinity chromatography columns. This protocol allows purification of proteins with high yield, purity and activity. We report here N-terminally His-tagged protein fusions, stable and active, providing that the temperature around 20 °C is maintained at all stages, including centrifugation. Moreover, we successfully applied this method to purify two enzyme variants with K194A and G9S alterations. The K194A mutation in conserved lysine residue results in protein variant unable to synthetize PRPP, while the G9S alteration originates from prs-2 allele variant which was previously related to thermo-sensitive growth. His-PrsG9S protein purified here, exhibited comparable activity as previously observed in-vivo suggesting the proteins purified with our protocol resemble their physiological state. The protocol for Prs purification showed here indicates guidance to improve stability and quality of the protein and to ensure more reliable results in further assays in-vitro.


Assuntos
Fosforribosil Pirofosfato/biossíntese , Proteínas Recombinantes de Fusão , Cromatografia de Afinidade , Clonagem Molecular/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Temperatura
6.
Elife ; 72018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29877798

RESUMO

Two classes of riboswitches related to the ykkC guanidine-I riboswitch bind phosphoribosyl pyrophosphate (PRPP) and guanosine tetraphosphate (ppGpp). Here we report the co-crystal structure of the PRPP aptamer and its ligand. We also report the structure of the G96A point mutant that prefers ppGpp over PRPP with a dramatic 40,000-fold switch in specificity. The ends of the aptamer form a helix that is not present in the guanidine aptamer and is involved in the expression platform. In the mutant, the base of ppGpp replaces G96 in three-dimensional space. This disrupts the S-turn, which is a primary structural feature of the ykkC RNA motif. These dramatic differences in ligand specificity are achieved with minimal mutations. ykkC aptamers are therefore a prime example of an RNA fold with a rugged fitness landscape. The ease with which the ykkC aptamer acquires new specificity represents a striking case of evolvability in RNA.


Assuntos
Aptâmeros de Nucleotídeos/química , Conformação de Ácido Nucleico , RNA Bacteriano/química , Riboswitch , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Sequência de Bases , Cristalografia por Raios X , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Ligantes , Modelos Moleculares , Mutação , Motivos de Nucleotídeos , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Dobramento de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
7.
Comput Biol Chem ; 74: 80-85, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29567489

RESUMO

The role of Mg2+ cofactor in orotate phosphoribosyltransferase (OPRT) catalyzed synthesis of orotidine monophosphate (OMP) from phosphoribosyl pyrophosphate (PRPP) and orotate (OA) in substrate binding and the influence of the identity of the divalent metal ion on the reaction mechanism were addressed in this study using quantum mechanics/molecular mechanics framework. Energetics of migration and binding of different substrate complexes in the active site cavity was established. A quantitative analysis of various processes indicated the reaction pathway to consist of complexation of Mg2+ with PRPP, migration of Mg2+-PRPP and OA towards the active site, binding of OA to OPRT, and binding of Mg2+-PRPP complex to OA-OPRT complex. The mechanism of the reaction was unaltered by the change in the identity of divalent metal ion. Experimentally reported inhibiting character of Co2+ was explained on the basis of large Co2+-PRPP binding and migration energies. Mg2+, Ca2+, Mn2+, Co2+ and Zn2+ ions were screened computationally to assess their inhibiting/activating characteristics. Trends obtained by our computational investigations were in correspondence with experimentally reported trends.


Assuntos
Metais Alcalinoterrosos/farmacologia , Metais Pesados/farmacologia , Orotato Fosforribosiltransferase/metabolismo , Teoria Quântica , Saccharomyces cerevisiae/enzimologia , Metais Alcalinoterrosos/química , Metais Pesados/química , Orotato Fosforribosiltransferase/química , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo
8.
Biochemistry ; 56(5): 793-803, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28092443

RESUMO

Adenosine 5'-triphosphate phosphoribosyltransferase (ATPPRT) catalyzes the first step in histidine biosynthesis, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to generate N1-(5-phospho-ß-d-ribosyl)-ATP and inorganic pyrophosphate. The enzyme is allosterically inhibited by histidine. Two forms of ATPPRT, encoded by the hisG gene, exist in nature, depending on the species. The long form, HisGL, is a single polypeptide chain with catalytic and regulatory domains. The short form, HisGS, lacks a regulatory domain and cannot bind histidine. HisGS instead is found in complex with a regulatory protein, HisZ, constituting the ATPPRT holoenzyme. HisZ triggers HisGS catalytic activity while rendering it sensitive to allosteric inhibition by histidine. Until recently, HisGS was thought to be catalytically inactive without HisZ. Here, recombinant HisGS and HisZ from the psychrophilic bacterium Psychrobacter arcticus were independently overexpressed and purified. The crystal structure of P. arcticus ATPPRT was determined at 2.34 Å resolution, revealing an equimolar HisGS-HisZ hetero-octamer. Steady-state kinetics indicate that both the ATPPRT holoenzyme and HisGS are catalytically active. Surprisingly, HisZ confers only a modest 2-4-fold increase in kcat. Reaction profiles for both enzymes cannot be distinguished by 31P nuclear magnetic resonance, indicating that the same reaction is catalyzed. The temperature dependence of kcat shows deviation from Arrhenius behavior at 308 K with the holoenzyme. Interestingly, such deviation is detected only at 313 K with HisGS. Thermal denaturation by CD spectroscopy resulted in Tm's of 312 and 316 K for HisZ and HisGS, respectively, suggesting that HisZ renders the ATPPRT complex more thermolabile. This is the first characterization of a psychrophilic ATPPRT.


Assuntos
ATP Fosforribosiltransferase/química , Aminoacil-tRNA Sintetases/química , Proteínas de Bactérias/química , Histidina/química , Proteínas de Transporte de Monossacarídeos/química , Psychrobacter/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Aclimatação , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Difosfatos/química , Difosfatos/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Histidina/biossíntese , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Psychrobacter/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
9.
Microbiol Mol Biol Rev ; 81(1)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28031352

RESUMO

Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Metabolismo Energético/fisiologia , Fungos/metabolismo , Peptídeo Sintases/química , Fosforribosil Pirofosfato/química , Sequência de Aminoácidos , Archaea/enzimologia , Bactérias/enzimologia , Fungos/enzimologia , Humanos , Fosforribosil Pirofosfato/biossíntese , Fosfotransferases (Aceptor do Grupo Fosfato) , Estrutura Secundária de Proteína , Ribosemonofosfatos/química
10.
Biochemistry ; 54(14): 2323-34, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25790177

RESUMO

The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded ß-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and ß-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.


Assuntos
Adenina Fosforribosiltransferase/química , Proteínas Arqueais/química , Sulfolobus solfataricus/enzimologia , Adenina/química , Difosfato de Adenosina/química , Monofosfato de Adenosina/química , Domínio Catalítico , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Fosforribosil Pirofosfato/química , Conformação Proteica , Multimerização Proteica , Ribosemonofosfatos/química
11.
ACS Chem Biol ; 8(1): 242-8, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23101964

RESUMO

Anthranilate phosphoribosyl transferase (TrpD) has been well characterized for its role in the tryptophan biosynthetic pathway. Here, we characterized a new reaction catalyzed by TrpD that resulted in the formation of the purine/thiamine intermediate metabolite phosphoribosylamine (PRA). The data showed that 4- and 5-carbon enamines served as substrates for TrpD, and the reaction product was predicted to be a phosphoribosyl-enamine adduct. Isotopic labeling data indicated that the TrpD reaction product was hydrolyzed to PRA. Variants of TrpD that were proficient for tryptophan synthesis were unable to support PRA formation in vivo in Salmonella enterica. These protein variants had substitutions at residues that contributed to binding substrates anthranilate or phosphoribosyl pyrophosphate (PRPP). Taken together the data herein identified a new reaction catalyzed by a well-characterized biosynthetic enzyme, and both illustrated the robustness of the metabolic network and identified a role for an enamine that accumulates in the absence of reactive intermediate deaminase RidA.


Assuntos
Aminas/química , Antranilato Fosforribosiltransferase/química , Fosforribosil Pirofosfato/química , Ribosemonofosfatos/química , Tiamina/química , Tiamina/biossíntese
12.
Biochemistry ; 49(7): 1377-87, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20047307

RESUMO

Quinolinate phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) catalyzes an unusual phosphoribosyl transfer that is linked to a decarboxylation reaction to form the NAD precursor nicotinate mononucleotide, carbon dioxide, and pyrophosphate from quinolinic acid (QA) and 5-phosphoribosyl 1-pyrophosphate (PRPP). Structural studies and sequence similarities with other PRTases have implicated Glu214, Asp235, Lys153, and Lys284 in contributing to catalysis through direct interaction with PRPP. The four residues were substituted by site-directed mutagenesis. A nadC deletant form of BL21DE3 was created to eliminate trace contamination by chromosomal QAPRTase. The mutant enzymes were readily purified and retained their dimeric aggregation state on gel filtration. Substitution of Lys153 with Ala resulted in an inactive enzyme, indicating its essential nature. Mutation of Glu214 to Ala or Asp caused at least a 4000-fold reduction in k(cat), with 10-fold increases in K(m) and K(D) values for PRPP. However, mutation of Glu214 to Gln had only modest effects on ligand binding and catalysis. pH profiles indicated that the deprotonated form of a residue with pK(a) of 6.9 is essential for catalysis. The WT-like pH profile of the E214Q mutant indicated that Glu214 is not that residue. Mutation of Asp235 to Ala did not affect ligand binding or catalysis. Mutation of Lys284 to Ala decreased k(cat) by 30-fold and increased K(m) and K(D) values for PRPP by 80-fold and at least 20-fold, respectively. The study suggests that Lys153 is necessary for catalysis and important for PRPP binding, Glu214 provides a hydrogen bond necessary for catalysis but does not act as a base or electrostatically to stabilize the transition state, Lys284 is involved in PRPP binding, and Asp235 is not essential.


Assuntos
Pentosiltransferases/química , Pentosiltransferases/metabolismo , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Salmonella typhimurium/enzimologia , Sequência de Aminoácidos , Ácido Aspártico/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Estabilidade Enzimática/genética , Ácido Glutâmico/genética , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Lisina/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Pentosiltransferases/genética , Fosforribosil Pirofosfato/genética , Ligação Proteica/genética , Salmonella typhimurium/genética , Especificidade por Substrato/genética
13.
J Biomol Struct Dyn ; 25(6): 589-97, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18399692

RESUMO

Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 A resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 A resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 A resolution. Comparisons of these three hAPRT structures with other 'type I' PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPP. Comparative analyses presented here provide structural evidence to propose the role of Glu104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.


Assuntos
Adenina Fosforribosiltransferase/química , Adenina/química , Monofosfato de Adenosina/química , Catálise , Cristalografia por Raios X , Humanos , Modelos Moleculares , Fosforribosil Pirofosfato/química
14.
FEBS J ; 275(11): 2691-711, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18422659

RESUMO

Decaprenyl-phospho-arabinose (beta-D-arabinofuranosyl-1-O-monophosphodecaprenol), the only known donor of d-arabinose in bacteria, and its precursor, decaprenyl-phospho-ribose (beta-D-ribofuranosyl-1-O-monophosphodecaprenol), were first described in 1992. En route to D-arabinofuranose, the decaprenyl-phospho-ribose 2'-epimerase converts decaprenyl-phospho-ribose to decaprenyl-phospho-arabinose, which is a substrate for arabinosyltransferases in the synthesis of the cell-wall arabinogalactan and lipoarabinomannan polysaccharides of mycobacteria. The first step of the proposed decaprenyl-phospho-arabinose biosynthesis pathway in Mycobacterium tuberculosis and related actinobacteria is the formation of D-ribose 5-phosphate from sedoheptulose 7-phosphate, catalysed by the Rv1449 transketolase, and/or the isomerization of d-ribulose 5-phosphate, catalysed by the Rv2465 d-ribose 5-phosphate isomerase. d-Ribose 5-phosphate is a substrate for the Rv1017 phosphoribosyl pyrophosphate synthetase which forms 5-phosphoribosyl 1-pyrophosphate (PRPP). The activated 5-phosphoribofuranosyl residue of PRPP is transferred by the Rv3806 5-phosphoribosyltransferase to decaprenyl phosphate, thus forming 5'-phosphoribosyl-monophospho-decaprenol. The dephosphorylation of 5'-phosphoribosyl-monophospho-decaprenol to decaprenyl-phospho-ribose by the putative Rv3807 phospholipid phosphatase is the committed step of the pathway. A subsequent 2'-epimerization of decaprenyl-phospho-ribose by the heteromeric Rv3790/Rv3791 2'-epimerase leads to the formation of the decaprenyl-phospho-arabinose precursor for the synthesis of the cell-wall arabinans in Actinomycetales. The mycobacterial 2'-epimerase Rv3790 subunit is similar to the fungal D-arabinono-1,4-lactone oxidase, the last enzyme in the biosynthesis of D-erythroascorbic acid, thus pointing to an evolutionary link between the D-arabinofuranose- and L-ascorbic acid-related pathways. Decaprenyl-phospho-arabinose has been a lead compound for the chemical synthesis of substrates for mycobacterial arabinosyltransferases and of new inhibitors and potential antituberculosis drugs. The peculiar (omega,mono-E,octa-Z) configuration of decaprenol has yielded insights into lipid biosynthesis, and has led to the identification of the novel Z-polyprenyl diphosphate synthases of mycobacteria. Mass spectrometric methods were developed for the analysis of anomeric linkages and of dolichol phosphate-related lipids. In the field of immunology, the renaissance in mycobacterial polyisoprenoid research has led to the identification of mimetic mannosyl-beta-1-phosphomycoketides of pathogenic mycobacteria as potent lipid antigens presented by CD1c proteins to human T cells.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Arabinose/química , Mycobacterium/metabolismo , Animais , Parede Celular/metabolismo , Química Farmacêutica/métodos , Desenho de Fármacos , Etambutol/química , Humanos , Sistema Imunitário , Lipídeos/química , Modelos Químicos , Fosforribosil Pirofosfato/química , Linfócitos T/metabolismo
15.
Biochemistry ; 45(50): 14933-43, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154531

RESUMO

Two families of ATP phosphoribosyl transferases (ATP-PRT) join ATP and 5-phosphoribosyl-1 pyrophosphate (PRPP) in the first reaction of histidine biosynthesis. These consist of a homohexameric form found in all three kingdoms and a hetero-octameric form largely restricted to bacteria. Hetero-octameric ATP-PRTs consist of four HisGS catalytic subunits related to periplasmic binding proteins and four HisZ regulatory subunits that resemble histidyl-tRNA synthetases. To clarify the relationship between the two families of ATP-PRTs and among phosphoribosyltransferases in general, we determined the steady state kinetics for the hetero-octameric form and characterized the active site by mutagenesis. The KmPRPP (18.4 +/- 3.5 microM) and kcat (2.7 +/- 0.3 s-1) values for the PRPP substrate are similar to those of hexameric ATP-PRTs, but the Km for ATP (2.7 +/- 0.3 mM) is 4-fold higher, suggestive of tighter regulation by energy charge. Histidine and AMP were determined to be noncompetitive (Ki = 81.1 microM) and competitive (Ki = 1.44 mM) inhibitors, respectively, with values that approximate their intracellular concentrations. Mutagenesis experiments aimed at investigating the side chains recognizing PRPP showed that 5'-phosphate contacts (T159A and T162A) had the largest (25- and 155-fold, respectively) decreases in kcat/Km, while smaller decreases were seen with mutants making cross subunit contacts (K50A and K8A) to the pyrophosphate moiety or contacts to the 2'-OH group. Despite their markedly different quaternary structures, hexameric and hetero-octameric ATRP-PRTs exhibit similar functional parameters and employ mechanistic strategies reminiscent of the broader PRT superfamily.


Assuntos
ATP Fosforribosiltransferase/química , Proteínas de Bactérias/química , Lactococcus lactis/enzimologia , Complexos Multiproteicos/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico/genética , Histidina/biossíntese , Histidina/química , Lactococcus lactis/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Ligação Proteica/genética , Estrutura Quaternária de Proteína/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade por Substrato/genética
16.
Biochemistry ; 45(16): 5330-42, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16618122

RESUMO

A ping-pong bi-bi kinetic mechanism ascribed to yeast orotate phosphoribosyltransferase (OPRTase) [Victor, J., Greenberg, L. B., and Sloan, D. L. (1979) J. Biol. Chem. 254, 2647-2655] has been shown to be inoperative [Witte, J. F., Tsou, R., and McClard, R. W. (1999) Arch. Biochem. Biophys. 361, 106-112]. Radiolabeled orotidine 5'-phosphate (OMP), generated in situ from [7-(14)C]-orotate and alpha-d-5-phoshorylribose 1-diphosphate (PRPP), binds tightly enough to OPRTase (a dimer composed of identical subunits) that the complex survives gel-filtration chromatography. When a sample of OMP.OPRTase is extensively dialyzed, a 1:1 (per OPRTase dimer) complex is detected by (31)P NMR. Titration of the apoenzyme with OMP yields a (31)P NMR spectrum with peaks for both free and enzyme-bound OMP when OMP is in excess; the complex maintains an OMP/enzyme ratio of 1:1 even when OMP is in substantial excess. A red shift in the UV spectrum of the OMP.OPRTase complex was exploited to measure K(d(OMP)) = 0.84 muM and to verify the 1:1 binding stoichiometry. PRPP forms a Mg(2+)-dependent 1:1 complex with the enzyme as observed by (31)P NMR. Isothermal titration calorimetry (ITC) experiments revealed 1:1 stoichiometries for both OMP and Mg(2+)-PRPP with OPRTase yielding K(d) values of 0.68 and 10 microM, respectively. The binding of either 1 equiv of OMP or PRPP is mutually exclusive. ITC experiments demonstrate that the binding of OMP is largely driven by increased entropy, suggesting substantial distal disordering of the protein. Analytical gel-filtration chromatography confirms that the OMP.OPRTase complex involves the dimeric form of enzyme. The off rate for release of OMP, determined by magnetization inversion transfer, was determined to be 27 s(-)(1). This off rate is somewhat less than the k(cat) in the biosynthetic direction (about 39 s(-)(1)); thus, the release of OMP from OMP.OPRTase may not be kinetically relevant to the steady-state reaction cycle. The body of available data can be explained in terms of alternating site catalysis with either a classical Theorell-Chance mechanism or, far more likely, a novel "double Theorell-Chance" mechanism unique to alternating site catalysis, leading us to propose co-temporal binding of orotate and the release of diphosphate as well as the binding of PRPP and the release of OMP that occur via ternary complexes in alternating site fashion across the two highly cooperative subunits of the enzyme. This novel "double Theorell-Chance" mechanism yields a steady-state rate equation indistinguishable in form from the observed classical ping-pong bi-bi kinetics.


Assuntos
Orotato Fosforribosiltransferase/metabolismo , Fosforribosil Pirofosfato/metabolismo , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Calorimetria , Catálise , Cromatografia em Gel , Cinética , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Orotato Fosforribosiltransferase/genética , Fosforribosil Pirofosfato/química , Especificidade por Substrato , Titulometria , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
17.
J Mol Biol ; 355(4): 784-97, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16337227

RESUMO

Mycobacterium tuberculosis, the cause of tuberculosis, presents a major threat to human health worldwide. Biosynthetic enzymes that are essential for the survival of the bacterium, especially in activated macrophages, are important potential drug targets. Although the tryptophan biosynthesis pathway is thought to be non-essential for many pathogens, this appears not to be the case for M.tuberculosis, where a trpD gene knockout fails to cause disease in mice. We therefore chose the product of the trpD gene, anthranilate phosphoribosyltransferase, which catalyses the second step in tryptophan biosynthesis, for structural analysis. The structure of TrpD from M.tuberculosis was solved by X-ray crystallography, at 1.9 A resolution for the native enzyme (R = 0.191, Rfree = 0.230) and at 2.3 A resolution for the complex with its substrate phosphoribosylpyrophosphate (PRPP) and Mg2+ (R = 0.194, Rfree = 0.255). The enzyme is folded into two domains, separated by a hinge region. PRPP binds in the C-terminal domain, together with a pair of Mg ions. In the substrate complex, two flexible loops change conformation compared with the apo protein, to close over the PRPP and to complete an extensive network of hydrogen-bonded interactions. A nearby pocket, adjacent to the hinge region, is postulated by in silico docking as the binding site for anthranilate. A bound molecule of benzamidine, which was essential for crystallization and is also found in the hinge region, appears to reduce flexibility between the two domains.


Assuntos
Antranilato Fosforribosiltransferase/química , Antranilato Fosforribosiltransferase/metabolismo , Pulmão/microbiologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/fisiologia , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Sequência de Aminoácidos , Benzamidinas/química , Sítios de Ligação , Catálise , Cátions Bivalentes/química , Sequência Conservada , Cristalografia por Raios X , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Triptofano/biossíntese , ortoaminobenzoatos/química
18.
Biochem Biophys Res Commun ; 337(1): 281-8, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16185654

RESUMO

Endogenous ligands acting on a human P2Y12 receptor, one of the G-protein coupled receptors, were searched by in silico screening against our own database, which contains more than 500 animal metabolites. The in silico screening using the docking software AutoDock resulted in selection of cysteinylleukotrienes (CysLTs) and 5-phosphoribosyl 1-pyrophosphate (PRPP), with high free energy changes, in addition to the known P2Y12 ligands such as 2MeSADP and ADP. These candidates were subjected to an in vitro Ca2+ assay using the CHO cells stably expressing P2Y12-G16alpha fusion proteins. We found that CysLTE4 and PRPP acted on the P2Y12 receptor as agonists with the EC50 values of 1.3 and 7.8 nM, respectively. Furthermore, we analyzed the phylogenetic relationship of the P2Y, P2Y-like, and CysLT receptors based on sequence alignment followed by evolutionary analyses. The analyses showed that the P2Y12, P2Y13, P2Y14, GPR87, CysLT-1, and CysLT-2 receptors formed a P2Y-related receptor subfamily with common sequence motifs in the transmembrane regions.


Assuntos
Leucotrieno E4/farmacologia , Proteínas de Membrana/agonistas , Fosforribosil Pirofosfato/farmacologia , Agonistas do Receptor Purinérgico P2 , Motivos de Aminoácidos , Animais , Células CHO , Cálcio/metabolismo , Biologia Computacional , Cricetinae , Cricetulus , Humanos , Leucotrieno E4/química , Leucotrienos/farmacologia , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Fosforribosil Pirofosfato/química , Filogenia , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2/classificação , Receptores Purinérgicos P2Y12
19.
J Mol Biol ; 351(1): 170-81, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15990111

RESUMO

Human hypoxanthine-guanine phosphoribosyltransferase (HGPRT) catalyses the synthesis of the purine nucleoside monophosphates, IMP and GMP, by the addition of a 6-oxopurine base, either hypoxanthine or guanine, to the 1-beta-position of 5-phospho-alpha-d-ribosyl-1-pyrophosphate (PRib-PP). The mechanism is sequential, with PRib-PP binding to the free enzyme prior to the base. After the covalent reaction, pyrophosphate is released followed by the nucleoside monophosphate. A number of snapshots of the structure of this enzyme along the reaction pathway have been captured. These include the structure in the presence of the inactive purine base analogue, 7-hydroxy [4,3-d] pyrazolo pyrimidine (HPP) and PRib-PP.Mg2+, and in complex with IMP or GMP. The third structure is that of the immucillinHP.Mg(2+).PP(i) complex, a transition-state analogue. Here, the first crystal structure of free human HGPRT is reported to 1.9A resolution, showing that significant conformational changes have to occur for the substrate(s) to bind and for catalysis to proceed. Included in these changes are relative movement of subunits within the tetramer, rotation and extension of an active-site alpha-helix (D137-D153), reorientation of key active-site residues K68, D137 and K165, and the rearrangement of three active-site loops (100-128, 165-173 and 186-196). Toxoplasma gondii HGXPRT is the only other 6-oxopurine phosphoribosyltransferase structure solved in the absence of ligands. Comparison of this structure with human HGPRT reveals significant differences in the two active sites, including the structure of the flexible loop containing K68 (human) or K79 (T.gondii).


Assuntos
Hipoxantina Fosforribosiltransferase/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Guanosina Monofosfato/química , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Inosina Monofosfato/química , Fosforribosil Pirofosfato/química , Ligação Proteica , Conformação Proteica , Pirazóis/química , Pirimidinas/química
20.
Biochim Biophys Acta ; 1700(1): 11-8, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15210120

RESUMO

The kinetic mechanism for the reaction catalyzed by the hypoxanthine phosphoribosyltransferase (HPRT) from Trypanosoma cruzi was analyzed to determine the feasibility of designing a parasite-specific mechanism-based inhibitor of this enzyme. The results show that the HPRT from T. cruzi follows an essentially ordered bi-bi reaction, and like its human counterpart also likely forms a dead end complex with purine substrates and the product pyrophosphate. Computational fitting of the kinetics data to multiple initial velocity equations gave results that are consistent with the dead end complex arising when the hypoxanthine- or guanine-bound form of the enzyme binds pyrophosphate rather than the phosphoribosylpyrophosphate substrate of the productive forward reaction. Limited proteolytic digestion was employed to provide additional support for formation of the dead end complex and to estimate the K(d) values for substrates of both the forward and reverse reactions. Due to similarities with the kinetic mechanism of the human HPRT, the results reported here for the HPRT from T. cruzi indicate that the design of a mechanism-based inhibitor of the trypanosomal HPRT, that would not also inhibit the human enzyme, may be difficult. However, the results also show that a potent selective inhibitor of the trypanosomal HPRT might be achieved via the design of a bi-substrate type inhibitor that incorporates analogs of moieties for a purine base and pyrophosphate.


Assuntos
Hipoxantina Fosforribosiltransferase/metabolismo , Trypanosoma cruzi/enzimologia , Animais , Difosfatos/química , Difosfatos/metabolismo , Hipoxantina/química , Hipoxantina/metabolismo , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Cinética , Estrutura Molecular , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...