Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS One ; 16(2): e0247683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33621267

RESUMO

Essential fructosuria (EF) is a benign, asymptomatic, autosomal recessive condition caused by loss-of-function variants in the ketohexokinase gene and characterized by intermittent appearance of fructose in the urine. Despite a basic understanding of the genetic and molecular basis of EF, relatively little is known about the long-term clinical consequences of ketohexokinase gene variants. We examined the frequency of ketohexokinase variants in the UK Biobank sample and compared the cardiometabolic profiles of groups of individuals with and without these variants alone or in combination. Study cohorts consisted of groups of participants defined based on the presence of one or more of the five ketohexokinase gene variants tested for in the Affymetrix assays used by the UK Biobank. The rs2304681:G>A (p.Val49Ile) variant was present on more than one-third (36.8%) of chromosomes; other variant alleles were rare (<1%). No participants with the compound heterozygous genotype present in subjects exhibiting the EF phenotype in the literature (Gly40Arg/Ala43Thr) were identified. The rs2304681:G>A (p.Val49Ile), rs41288797 (p.Val188Met), and rs114353144 (p.Val264Ile) variants were more common in white versus non-white participants. Otherwise, few statistically or clinically significant differences were observed after adjustment for multiple comparisons. These findings reinforce the current understanding of EF as a rare, benign, autosomal recessive condition.


Assuntos
Alelos , Frutoquinases/genética , Variação Genética , Idoso , Bancos de Espécimes Biológicos , Feminino , Frutoquinases/deficiência , Erros Inatos do Metabolismo da Frutose , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Reino Unido
2.
Cell Metab ; 32(1): 117-127.e3, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32502381

RESUMO

Intake of fructose-containing sugars is strongly associated with metabolic syndrome. Compared with other sugars, dietary fructose is uniquely metabolized by fructokinase. However, the tissue-specific role of fructokinase in sugar-induced metabolic syndrome, and the specific roles of glucose and fructose in driving it, is not fully understood. Here, we show that in mice receiving excess fructose-glucose solutions, whole-body deletion of fructokinase, and thus full blockade of fructose metabolism, is sufficient to prevent metabolic syndrome. This protection is not only due to reduced fructose metabolism, but also due to decreased sugar intake. Furthermore, by using tissue-specific fructokinase-deficient mice, we determined that while sugar intake is controlled by intestinal fructokinase activity, metabolic syndrome is driven by fructose metabolism in the liver. Our findings show a two-pronged role for fructose metabolism in sugar-induced metabolic syndrome, one arm via the intestine that mediates sugar intake and a second arm in the liver that drives metabolic dysfunction.


Assuntos
Frutoquinases/metabolismo , Síndrome Metabólica/metabolismo , Açúcares/metabolismo , Animais , Frutoquinases/deficiência , Intestinos/enzimologia , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
3.
Calcif Tissue Int ; 106(5): 541-552, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31996963

RESUMO

Fructose is metabolized in the cytoplasm by the enzyme ketohexokinase (KHK), and excessive consumption may affect bone health. Previous work in calcium-restricted, growing mice demonstrated that fructose disrupted intestinal calcium transport. Thus, we hypothesized that the observed effects on bone were dependent on fructose metabolism and took advantage of a KHK knockout (KO) model to assess direct effects of high plasma fructose on the long bones of growing mice. Four groups (n = 12) of 4-week-old, male, C57Bl/6 background, congenic mice with intact KHK (wild-type, WT) or global knockout of both isoforms of KHK-A/C (KHK-KO), were fed 20% glucose (control diet) or fructose for 8 weeks. Dietary fructose increased by 40-fold plasma fructose in KHK-KO compared to the other three groups (p < 0.05). Obesity (no differences in epididymal fat or body weight) or altered insulin was not observed in either genotype. The femurs of KHK-KO mice with the highest levels of plasma fructose were shorter (2%). Surprisingly, despite the long-term blockade of KHK, fructose feeding resulted in greater bone mineral density, percent volume, and number of trabeculae as measured by µCT in the distal femur of KHK-KO. Moreover, higher plasma fructose concentrations correlated with greater trabecular bone volume, greater work-to-fracture in three-point bending of the femur mid-shaft, and greater plasma sclerostin. Since the metabolism of fructose is severely inhibited in the KHK-KO condition, our data suggest mechanism(s) that alter bone growth may be related to the plasma concentration of fructose.


Assuntos
Desenvolvimento Ósseo , Frutoquinases/deficiência , Frutose/efeitos adversos , Animais , Densidade Óssea , Dieta , Frutoquinases/genética , Frutose/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Am J Physiol Endocrinol Metab ; 315(3): E386-E393, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29870677

RESUMO

Fructose consumption in humans and animals has been linked to enhanced de novo lipogenesis, dyslipidemia, and insulin resistance. Hereditary deficiency of ketohexokinase (KHK), the first enzymatic step in fructose metabolism, leads to essential fructosuria in humans, characterized by elevated levels of blood and urinary fructose following fructose ingestion but is otherwise clinically benign. To address whether KHK deficiency is associated with altered glucose and lipid metabolism, a Khk knockout (KO) mouse line was generated and characterized. NMR spectroscopic analysis of plasma following ingestion of [6-13C] fructose revealed striking differences in biomarkers of fructose metabolism. Significantly elevated urine and plasma 13C-fructose levels were observed in Khk KO vs. wild-type (WT) control mice, as was reduced conversion of 13C-fructose into plasma 13C-glucose and 13C-lactate. In addition, the observation of significant levels of fructose-6-phosphate in skeletal muscle tissue of Khk KO, but not WT, mice suggests a potential mechanism, whereby fructose is metabolized via muscle hexokinase in the absence of KHK. Khk KO mice on a standard chow diet displayed no metabolic abnormalities with respect to ambient glucose, glucose tolerance, body weight, food intake, and circulating trigylcerides, ß-hydroxybutyrate, and lactate. When placed on a high-fat and high-fructose (HF/HFruc) diet, Khk KO mice had markedly reduced liver weight, triglyceride levels, and insulin levels. Together, these results suggest that Khk KO mice may serve as a good model for essential fructosuria in humans and that inhibition of KHK offers the potential to protect from diet-induced hepatic steatosis and insulin resistance.


Assuntos
Dieta , Frutoquinases/deficiência , Erros Inatos do Metabolismo da Frutose/genética , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/genética , Dieta Hiperlipídica , Ingestão de Alimentos/genética , Frutoquinases/genética , Frutoquinases/metabolismo , Erros Inatos do Metabolismo da Frutose/metabolismo , Frutosefosfatos/sangue , Intolerância à Glucose/genética , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Camundongos Knockout
5.
Am J Physiol Endocrinol Metab ; 315(3): E394-E403, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29664676

RESUMO

Fructose is a major component of Western diets and is implicated in the pathogenesis of obesity and type 2 diabetes. In response to an oral challenge, the majority of fructose is cleared during "first-pass" liver metabolism, primarily via phosphorylation by ketohexokinase (KHK). A rare benign genetic deficiency in KHK, called essential fructosuria (EF), leads to altered fructose metabolism. The only reported symptom of EF is the appearance of fructose in the urine following either oral or intravenous fructose administration. Here we develop and use a mathematical model to investigate the adaptations to altered fructose metabolism in people with EF. First, the model is calibrated to fit available data in normal healthy subjects. Then, to mathematically represent EF subjects, we systematically implement metabolic adaptations such that model simulations match available data for this phenotype. We hypothesize that these modifications represent the major metabolic adaptations present in these subjects. This modeling approach suggests that several other aspects of fructose metabolism, beyond hepatic KHK deficiency, are altered and contribute to the etiology of this benign condition. Specifically, we predict that fructose absorption into the portal vein is altered, peripheral metabolism is slowed, renal reabsorption of fructose is mostly ablated, and alternate pathways for hepatic metabolism of fructose are upregulated. Moreover, these findings have implications for drug discovery and development, suggesting that the therapeutic targeting of fructose metabolism could lead to unexpected metabolic adaptations, potentially due to a physiological response to high-fructose conditions.


Assuntos
Frutoquinases/deficiência , Erros Inatos do Metabolismo da Frutose/metabolismo , Frutose/metabolismo , Adaptação Fisiológica , Algoritmos , Simulação por Computador , Diabetes Mellitus Tipo 2 , Frutoquinases/metabolismo , Erros Inatos do Metabolismo da Frutose/enzimologia , Voluntários Saudáveis , Humanos , Fígado/metabolismo , Modelos Teóricos
6.
J Neurophysiol ; 117(2): 646-654, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852737

RESUMO

Fructose stimulates vasopressin in humans and can be generated endogenously by activation of the polyol pathway with hyperosmolarity. We hypothesized that fructose metabolism in the hypothalamus might partly control vasopressin responses after acute dehydration. Wild-type and fructokinase-knockout mice were deprived of water for 24 h. The supraoptic nucleus was evaluated for vasopressin and markers of the aldose reductase-fructokinase pathway. The posterior pituitary vasopressin and serum copeptin levels were examined. Hypothalamic explants were evaluated for vasopressin secretion in response to exogenous fructose. Water restriction increased serum and urine osmolality and serum copeptin in both groups of mice, although the increase in copeptin in wild-type mice was larger than that in fructokinase-knockout mice. Water-restricted, wild-type mice showed an increase in vasopressin and aldose reductase mRNA, sorbitol, fructose and uric acid in the supraoptic nucleus. In contrast, fructokinase-knockout mice showed no change in vasopressin or aldose reductase mRNA, and no changes in sorbitol or uric acid, although fructose levels increased. With water restriction, vasopressin in the pituitary of wild-type mice was significantly less than that of fructokinase-knockout mice, indicating that fructokinase-driven vasopressin secretion overrode synthesis. Fructose increased vasopressin release in hypothalamic explants that was not observed in fructokinase-knockout mice. In situ hybridization documented fructokinase mRNA in the supraoptic nucleus, paraventricular nucleus and suprachiasmatic nucleus. Acute dehydration activates the aldose reductase-fructokinase pathway in the hypothalamus and partly drives the vasopressin response. Exogenous fructose increases vasopressin release in hypothalamic explants dependent on fructokinase. Nevertheless, circulating vasopressin is maintained and urinary concentrating is not impaired. NEW & NOTEWORTHY: This study increases our understanding of the mechanisms leading to vasopressin release under conditions of water restriction (acute dehydration). Specifically, these studies suggest that the aldose reductase-fructokinase pathways may be involved in vasopressin synthesis in the hypothalamus and secretion by the pituitary in response to acute dehydration. Nevertheless, mice undergoing water restriction remain capable of maintaining sufficient vasopressin (copeptin) levels to allow normal urinary concentration. Further studies of the aldose reductase-fructokinase system in vasopressin regulation appear indicated.


Assuntos
Desidratação/fisiopatologia , Frutoquinases/deficiência , Frutose/farmacologia , Regulação da Expressão Gênica , Hipotálamo , Vasopressinas/metabolismo , Análise de Variância , Animais , Ensaio de Imunoadsorção Enzimática , Frutoquinases/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Temperatura Alta/efeitos adversos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo , Fatores de Tempo , Vasopressinas/genética , Privação de Água
7.
Am J Physiol Gastrointest Liver Physiol ; 309(9): G779-90, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26316589

RESUMO

Elevated blood fructose concentrations constitute the basis for organ dysfunction in fructose-induced metabolic syndrome. We hypothesized that diet-induced changes in blood fructose concentrations are regulated by ketohexokinase (KHK) and the fructose transporter GLUT5. Portal and systemic fructose concentrations determined by HPLC in wild-type mice fed for 7 days 0% free fructose were <0.07 mM, were independent of time after feeding, were similar to those of GLUT5(-/-), and did not lead to hyperglycemia. Postprandial fructose levels, however, increased markedly in those fed isocaloric 20% fructose, causing significant hyperglycemia. Deletion of KHK prevented fructose-induced hyperglycemia, but caused dramatic hyperfructosemia (>1 mM) with reversed portal to systemic gradients. Systemic fructose in wild-type and KHK(-/-) mice changed by 0.34 and 1.8 mM, respectively, for every millimolar increase in portal fructose concentration. Systemic glucose varied strongly with systemic, but not portal, fructose levels in wild-type, and was independent of systemic and portal fructose in KHK(-/-), mice. With ad libitum feeding for 12 wk, fructose-induced hyperglycemia in wild-type, but not hyperfructosemia in KHK(-/-) mice, increased HbA1c concentrations. Increasing dietary fructose to 40% intensified the hyperfructosemia of KHK(-/-) and the fructose-induced hyperglycemia of wild-type mice. Fructose perfusion or feeding in rats also caused duration- and dose-dependent hyperfructosemia and hyperglycemia. Significant levels of blood fructose are maintained independent of dietary fructose, KHK, and GLUT5, probably by endogenous synthesis of fructose. KHK prevents hyperfructosemia and fructose-induced hyperglycemia that would markedly increase HbA1c levels. These findings explain the hyperfructosemia of human hereditary fructosuria as well as the hyperglycemia of fructose-induced metabolic syndrome.


Assuntos
Carboidratos da Dieta/sangue , Frutoquinases/deficiência , Frutose/sangue , Proteínas Facilitadoras de Transporte de Glucose/deficiência , Animais , Glicemia/metabolismo , Cromatografia Líquida de Alta Pressão , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/toxicidade , Frutoquinases/genética , Frutose/administração & dosagem , Frutose/toxicidade , Genótipo , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportador de Glucose Tipo 5 , Hemoglobinas Glicadas/metabolismo , Coração , Hiperglicemia/sangue , Hiperglicemia/induzido quimicamente , Absorção Intestinal , Mucosa Intestinal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Veia Porta , Ratos Endogâmicos F344 , Fatores de Tempo
8.
Am J Physiol Regul Integr Comp Physiol ; 309(5): R499-509, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26084694

RESUMO

Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations.


Assuntos
Carboidratos da Dieta/metabolismo , Enterócitos/enzimologia , Frutoquinases/metabolismo , Frutose/metabolismo , Gluconeogênese , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Intestino Delgado/enzimologia , Animais , Frutoquinases/deficiência , Frutoquinases/genética , Regulação Enzimológica da Expressão Gênica , Gluconeogênese/genética , Proteínas Facilitadoras de Transporte de Glucose/deficiência , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportador de Glucose Tipo 5 , Hidrólise , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
9.
Nature ; 522(7557): 444-449, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26083752

RESUMO

Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Frutoquinases/metabolismo , Frutose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfoproteínas/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Processamento Alternativo , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Frutoquinases/deficiência , Frutoquinases/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/deficiência , Ribonucleoproteína Nuclear Pequena U2/genética
10.
Kidney Int ; 86(2): 294-302, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24336030

RESUMO

The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.


Assuntos
Desidratação/enzimologia , Frutoquinases/metabolismo , Rim/lesões , Aldeído Redutase/metabolismo , Animais , Pressão Sanguínea , Desidratação/complicações , Modelos Animais de Doenças , Frutoquinases/deficiência , Frutoquinases/genética , Rim/patologia , Rim/fisiopatologia , Córtex Renal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Renal Crônica/enzimologia , Insuficiência Renal Crônica/etiologia , Ácido Úrico/metabolismo
11.
Nat Commun ; 4: 2434, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24022321

RESUMO

Carbohydrates with high glycaemic index are proposed to promote the development of obesity, insulin resistance and fatty liver, but the mechanism by which this occurs remains unknown. High serum glucose concentrations are known to induce the polyol pathway and increase fructose generation in the liver. Here we show that this hepatic, endogenously produced fructose causes systemic metabolic changes. We demonstrate that mice unable to metabolize fructose are protected from an increase in energy intake and body weight, visceral obesity, fatty liver, elevated insulin levels and hyperleptinaemia after exposure to 10% glucose for 14 weeks. In normal mice, glucose consumption is accompanied by aldose reductase and polyol pathway activation in steatotic areas. In this regard, we show that aldose reductase-deficient mice are protected against glucose-induced fatty liver. We conclude that endogenous fructose generation and metabolism in the liver represents an important mechanism by which glucose promotes the development of metabolic syndrome.


Assuntos
Frutose/biossíntese , Frutose/metabolismo , Fígado/metabolismo , Fígado/patologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Aldeído Redutase/metabolismo , Animais , Metabolismo Energético , Fígado Gorduroso/metabolismo , Comportamento Alimentar , Frutoquinases/deficiência , Frutoquinases/metabolismo , Glucose/metabolismo , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polímeros/metabolismo
14.
Am J Clin Nutr ; 58(5 Suppl): 788S-795S, 1993 11.
Artigo em Inglês | MEDLINE | ID: mdl-8213611

RESUMO

A review is presented of genetic defects affecting fructose metabolism in humans. Presently, six conditions have been recognized: fructose malabsorption, fructokinase deficiency, aldolase A and aldolase B deficiency, fructose-1,6-diphosphatase deficiency and D-glyceric aciduria. Clinical presentations of these conditions, enzymatic and/or molecular defects, pathophysiological consequences, and modes of treatments are discussed.


Assuntos
Erros Inatos do Metabolismo da Frutose/metabolismo , Frutoquinases/deficiência , Deficiência de Frutose-1,6-Difosfatase/metabolismo , Frutose-Bifosfato Aldolase/deficiência , Humanos , Síndromes de Malabsorção/metabolismo
15.
Pediatr Med Chir ; 4(3): 195-202, 1982.
Artigo em Italiano | MEDLINE | ID: mdl-7170190

RESUMO

We observed eight infants with hereditary fructose intolerance which had been diagnosed by the fructose tolerance test and an aldolase assay on biopsied liver. None of these had been diagnosed before their admission to our department. The most frequent symptoms were vomiting and failure to thrive. All the patients had hepatomegaly. Laboratory findings were indicative of disturbed hepatic function. Hypoglycemia was found in only 3 out of 8 patients. The course was lethal in 2 patients; the 6 survivors are doing well following a fructose-free diet. The importance of practising paediatricians having the detailed nutritional history of the patient and precise knowledge of infant food formulae is stressed. The danger of using fructose continuing solutions for infusion therapy is pointed out. We also report a case of F-1,6-diphosphatase deficiency.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Intolerância à Frutose/diagnóstico , Feminino , Frutoquinases/deficiência , Frutose/metabolismo , Intolerância à Frutose/enzimologia , Intolerância à Frutose/genética , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA