Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 82(9): 2656-2668, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26896135

RESUMO

Nitrate-dependent ferrous iron [Fe(II)] oxidation (NDFO) is a well-recognized chemolithotrophic pathway in anoxic sediments. The neutrophilic chemolithoautotrophic enrichment culture KS originally obtained from a freshwater sediment (K. L. Straub, M. Benz, B. Schink, and F. Widdel, Appl Environ Microbiol 62:1458-1460, 1996) has been used as a model system to study NDFO. However, the primary Fe(II) oxidizer in this culture has not been isolated, despite extensive efforts to do so. Here, we present a metagenomic analysis of this enrichment culture in order to gain insight into electron transfer pathways and the roles of different bacteria in the culture. We obtained a near-complete genome of the primary Fe(II) oxidizer, a species in the family Gallionellaceae, and draft genomes from its flanking community members. A search of the putative extracellular electron transfer pathways in these genomes led to the identification of a homolog of the MtoAB complex [a porin-multiheme cytochromec system identified in neutrophilic microaerobic Fe(II)-oxidizing Sideroxydans lithotrophicus ES-1] in a Gallionellaceae sp., and findings of other putative genes involving cytochromecand multicopper oxidases, such as Cyc2 and OmpB. Genome-enabled metabolic reconstruction revealed that this Gallionellaceae sp. lacks nitric oxide and nitrous oxide reductase genes and may partner with flanking populations capable of complete denitrification to avoid toxic metabolite accumulation, which may explain its resistance to growth in pure culture. This and other revealed interspecies interactions and metabolic interdependencies in nitrogen and carbon metabolisms may allow these organisms to cooperate effectively to achieve robust chemolithoautotrophic NDFO. Overall, the results significantly expand our knowledge of NDFO and suggest a range of genetic targets for further exploration.


Assuntos
Compostos Ferrosos/metabolismo , Gallionellaceae/genética , Gallionellaceae/metabolismo , Nitratos/metabolismo , Processos Autotróficos , Simulação por Computador , Meios de Cultura , DNA Bacteriano/genética , Transporte de Elétrons , Água Doce , Gallionellaceae/enzimologia , Sedimentos Geológicos/química , Hidrogênio/metabolismo , Redes e Vias Metabólicas , Metagenômica/métodos , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência , Análise de Sequência de DNA
2.
Appl Environ Microbiol ; 80(19): 6146-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25085483

RESUMO

Glacial comminution of bedrock generates fresh mineral surfaces capable of sustaining chemotrophic microbial communities under the dark conditions that pervade subglacial habitats. Geochemical and isotopic evidence suggests that pyrite oxidation is a dominant weathering process generating protons that drive mineral dissolution in many subglacial systems. Here, we provide evidence correlating pyrite oxidation with chemosynthetic primary productivity and carbonate dissolution in subglacial sediments sampled from Robertson Glacier (RG), Alberta, Canada. Quantification and sequencing of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) transcripts suggest that populations closely affiliated with Sideroxydans lithotrophicus, an iron sulfide-oxidizing autotrophic bacterium, are abundant constituents of microbial communities at RG. Microcosm experiments indicate sulfate production during biological assimilation of radiolabeled bicarbonate. Geochemical analyses of subglacial meltwater indicate that increases in sulfate levels are associated with increased calcite and dolomite dissolution. Collectively, these data suggest a role for biological pyrite oxidation in driving primary productivity and mineral dissolution in a subglacial environment and provide the first rate estimate for bicarbonate assimilation in these ecosystems. Evidence for lithotrophic primary production in this contemporary subglacial environment provides a plausible mechanism to explain how subglacial communities could be sustained in near-isolation from the atmosphere during glacial-interglacial cycles.


Assuntos
Bactérias/enzimologia , Sedimentos Geológicos/microbiologia , Ribulose-Bifosfato Carboxilase/genética , Sulfatos/metabolismo , Alberta , Processos Autotróficos , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , Ecossistema , Gallionellaceae/enzimologia , Gallionellaceae/genética , Gallionellaceae/isolamento & purificação , Camada de Gelo/microbiologia , Ferro/metabolismo , Dados de Sequência Molecular , Oxirredução , Ribulose-Bifosfato Carboxilase/metabolismo , Análise de Sequência de DNA , Sulfetos/metabolismo
3.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 69(Pt 4): 399-404, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23545645

RESUMO

FeoB is a transmembrane protein involved in ferrous iron uptake in prokaryotic organisms. FeoB comprises a cytoplasmic soluble domain termed NFeoB and a C-terminal polytopic transmembrane domain. Recent structures of NFeoB have revealed two structural subdomains: a canonical GTPase domain and a five-helix helical domain. The GTPase domain hydrolyses GTP to GDP through a well characterized mechanism, a process which is required for Fe(2+) transport. In contrast, the precise role of the helical domain has not yet been fully determined. Here, the structure of the cytoplasmic domain of FeoB from Gallionella capsiferriformans is reported. Unlike recent structures of NFeoB, the G. capsiferriformans NFeoB structure is highly unusual in that it does not contain a helical domain. The crystal structures of both apo and GDP-bound protein forms a domain-swapped dimer.


Assuntos
GTP Fosfo-Hidrolases/química , Gallionellaceae/enzimologia , Proteínas de Membrana/química , Multimerização Proteica , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína
4.
Appl Environ Microbiol ; 77(9): 2877-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21378050

RESUMO

The so-called Fe/Mn-oxidizing bacteria have long been recognized for their potential to form extracellular iron hydroxide or manganese oxide structures in aquatic environments. Bacterial species belonging to the genus Gallionella, one type of such bacteria, oxidize iron and produce uniquely twisted extracellular stalks consisting of iron oxide-encrusted inorganic/organic fibers. This paper describes the ultrastructure of Gallionella cells and stalks and the visualized structural and spatial localization of constitutive elements within the stalks. Electron microscopy with energy-dispersive X-ray microanalysis showed the export site of the stalk fibers from the cell and the uniform distribution of iron, silicon, and phosphorous in the stalks. Electron energy-loss spectroscopy revealed that the stalk fibers had a central carbon core of bacterial exopolymers and that aquatic iron interacted with oxygen at the surface of the carbon core, resulting in deposition of iron oxides at the surface. This new knowledge of the structural and spatial associations of iron with oxygen and carbon provides deeper insights into the unique inorganic/organic hybrid structure of the stalks.


Assuntos
Gallionellaceae/enzimologia , Gallionellaceae/ultraestrutura , Substâncias Macromoleculares/ultraestrutura , Nanofibras/ultraestrutura , Biopolímeros/análise , Carbono/análise , Gallionellaceae/química , Ferro/análise , Substâncias Macromoleculares/química , Microscopia Eletrônica , Nanofibras/química , Fósforo/análise , Silício/análise , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA