Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
J Insect Physiol ; 155: 104653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763361

RESUMO

The impacts of climate change on the development of insects are of great concern due to potential alterations in population dynamics and pest pressure. The carrot weevil, Listronotus oregonensis, is a major agricultural pest, and its development is influenced by temperature and photoperiod. In this study, our aim was to investigate the impact of temperature increases on the voltinism and reproductive diapause of the carrot weevil under field conditions and bioclimatic models. Field observations were conducted over two growing seasons using structures that allowed for temperature increases. The developmental stages of the carrot weevil, including female reproductive status, oviposition and larval stage, were monitored weekly to measure the proportion of individuals undergoing an additional generation. Concurrently, bioclimatic models were used to simulate the probability of a second generation under current (1981-2010) and future (2041-2070) climates, considering a lower and a higher change in emission scenarios. Results showed that rising temperatures led to an increase in the proportion of carrot weevils undergoing inhibition of the reproductive diapause and a higher number of eggs laid in the field. The models indicated a substantial rise in the probability of a second generation developing, from 24% to 37% to 62%-99% under current and future climates, respectively. These findings demonstrate the potential for significant alterations in carrot weevil population dynamics, resulting in increased pest pressure on crops. Further research is needed to fully understand the implications of these findings and to develop effective adaptation measures to mitigate the negative impacts of global warming on insect populations and agriculture.


Assuntos
Mudança Climática , Diapausa de Inseto , Gorgulhos , Animais , Gorgulhos/fisiologia , Gorgulhos/crescimento & desenvolvimento , Diapausa de Inseto/fisiologia , Feminino , Reprodução , Oviposição , Temperatura , Larva/crescimento & desenvolvimento , Larva/fisiologia
2.
Pest Manag Sci ; 80(6): 2626-2638, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38343001

RESUMO

BACKGROUND: Montana accounts for approximately 45% of US dry pea production and the pea leaf weevil (PLW; Sitona lineatus (L.)) is the most common insect pest in this region. After crop emergence adult PLW feed on the foliage to mature and subsequently mate, and the soil-dwelling larvae feed and develop on the nitrogen-fixing root nodules. Producers commonly apply prophylactic insecticide treatments to the seed at planting as well as one or two post-emergent insecticide sprays to control PLW damage. To develop alternative management strategies based on integrated pest management (IPM), this field study evaluated pulse crops grown in Montana for adult feeding preference and larval development. Ten different field pea varieties, along with two faba bean, lentil and chickpea varieties, were evaluated during the 2020 and 2021 field seasons at the Montana State University Arthur H. Post Agronomy Farm. RESULTS: Significant PLW pest pressure was observed within the research plots during both experimental years. Field pea and faba bean were preferred by the foliage feeding adult stage, with all but one variety averaging 39.2 to 86.3 average notches per plant. The pea variety Lifter was significantly preferred over all other comparisons, averaging 142.4 and 95.0 notches per plant in 2020 and 2021, respectively. Adult PLW feeding on lentil and chickpea was minimal, averaging 3.3 to 8.2 and 0.5 to 1.6 notches per plant, respectively. Numbers of larvae were highest on the roots of pea varieties, a known reproductive host, and almost nil on lentil and chickpea roots. Faba bean is also known as reproductive host, but, unexpectedly, larval populations were also low on the two faba bean varieties. CONCLUSIONS: The results from this study provide some limited evidence for alternative IPM strategies for field peas based on host plant tolerance or resistance within the range of varieties tested. Adult preference and larval development of PLW varied between the different pulse crops with field peas and faba beans being the most susceptible and lentils and chickpeas being the least susceptible. Host plant resistance against PLW could provide more sustainable IPM approaches in the future. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Larva , Pisum sativum , Gorgulhos , Animais , Gorgulhos/crescimento & desenvolvimento , Gorgulhos/fisiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Pisum sativum/crescimento & desenvolvimento , Montana , Lens (Planta)/crescimento & desenvolvimento , Cicer/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Vicia faba/crescimento & desenvolvimento , Comportamento Alimentar
3.
J Therm Biol ; 100: 103062, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503800

RESUMO

Temperature shocks have profound effects on biological and physiological functions at all levels of organization. However, the recovery periods from these shocks and their subsequent impacts remain unknown. Herein, our study investigated the effect of short temperature stress on survival, dormancy recovery time, nutritional indices, life traits and development rate for T. castaneum (larvae and adults) and S. oryzae adults. The results showed significant effects on survival rates of T. castaneum (larvae and adults) and S. oryzae adults. When both insects had been exposed to high-temperature shock, survival rates decreased with higher temperatures and longer periods of exposure. Furthermore, recovery times varied between and within the insect species, as prolonged exposure to thermal shocks increased recovery periods. Moreover, dormancy time resulting from the high-temperature shocks significantly affected food deterrence and food intake, regardless of the stage of development, species, exposure periods and temperature-exposure conditions. Subsequently, differences in body growth rates and food consumption rates are an appropriate indicator of differences in food conversion rates under high-temperature shocks, regardless of the species and developmental stages. On the other hand, our results indicated that as high-temperature shocks increased, the total development period increased of T. castaneum. Likewise, the pupal stage increased with increasing high-temperature shocks, and the larval stage decreased with increasing thermal shocks and increasing the periods of exposure. In summary, our study showed the importance of dormancy recovery time and its subsequent effects for improving disinfestation effectiveness of heat treatment, and understanding insect response to high temperatures.


Assuntos
Termotolerância , Tribolium/fisiologia , Gorgulhos/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Tribolium/crescimento & desenvolvimento , Gorgulhos/crescimento & desenvolvimento
4.
World J Microbiol Biotechnol ; 37(10): 173, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519907

RESUMO

It has been planned to minimize the yield and quality impairment of the seed corn, which is strategically important in the world, by pests under storage conditions with a biological product produced with a biotechnological approach. In this context, the present study aimed to control the maize weevil Sitophilus zeamais, known as a warehouse pest, using a nanoformulation. In the study, the chitinase enzyme from Lactobacillus coryniformis was purified first using ammonium sulfate precipitation and then by using the HiTrap Capto DEAE column, and the molecular mass of the purified enzyme was determined to be ~ 33 kDa, and the optimum pH and the values as pH 6.0 and 65-75 °C, respectively. Five different doses of nanoformulation (2, 4, 6, 8 and 10 mg/L) were applied to corn grains by the spraying method with three repetitions so that the insect can ingest the formulation through feeding. The effects of the applications on the death rate and mean time of death of Sitophilus zeamais were determined. According to these findings, it was concluded that the best practice was nanoformulation with 6 mg/L, considering both the mortality rate (100%) and the average death time (2.4 days). Chitinase from L. coryniformis is a promising candidate for corn lice control and management.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Quitinases/química , Quitinases/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Lactobacillus/enzimologia , Gorgulhos/efeitos dos fármacos , Animais , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Lactobacillus/química , Nanopartículas/química , Gorgulhos/crescimento & desenvolvimento , Óxido de Zinco/química
5.
J Invertebr Pathol ; 184: 107655, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34411606

RESUMO

The pupal soil cell of the pecan weevil, Curculio caryae (Coleoptera: Curculionidae), was reported previously to exhibit antibiosis to an entomopathogenic fungus, Beauveria bassiana. The objectives of this study were to examine 1) if the antimicrobial effect occurs in other insects that form pupal cells, 2) whether the effect extends to plant pathogenic fungi, and 3) identify the source of antibiosis in pupal soil cells of C. caryae. Antibiosis of pupal cells against B. bassiana was confirmed in-vitro in three additional curculionids, Diaprepes abbreviatus, Conotrachelus nenuphar, and Pissodes nemorensis, all of which had fewer fungal colonies relative to controls. Pupal soil cells were found to suppress phytopathogenic fungi in-vitro, including suppression of Alternaria solani by D. abbreviatus pupal cell, and that of Monilinia fructicola by C. caryae. The detection of antibiosis of soil cells formed by surface-sterilized insects using sterile soil implies the antimicrobial effect stemmed from inside the insect. Further, a novel biotic mechanism was identified: a bacterium related to Serratia nematodiphila was isolated from C. caryae pupal soil cells and was found to be associated with antibiosis. The bacterial cultures with or without autoclave had similar effects but were not as potent as pupal soil cells for suppressing B. bassiana. Also, autoclaved soil cells and autoclaved bacterial culture suppressed M. fructicola but were not as inhibitory as non-autoclaved soil cells. This indicates that antibiosis may be due to bacterial metabolites, although other factors may also be involved. Our findings suggest potential to develop the antibiotic compounds as novel bio-fungicides to control plant diseases.


Assuntos
Antibiose , Beauveria/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Serratia/fisiologia , Microbiologia do Solo , Gorgulhos/microbiologia , Animais , Fungicidas Industriais/química , Pupa/crescimento & desenvolvimento , Pupa/microbiologia , Serratia/química , Especificidade da Espécie , Gorgulhos/crescimento & desenvolvimento
6.
Biomed Res Int ; 2021: 9940591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381841

RESUMO

This study is aimed at identifying the chemical composition of the essential oil extracted from the Syzygium aromaticum seeds, as well as investigating its biological activities, insecticide effect, and allelopathic properties. The extraction yield was about 14.3 and 7.14% for grounded and ungrounded seeds, respectively. The GC-MS analysis allowed the identification of 17 heterogeneous compounds, including eugenol (68.7-87.4%), as major compound, cyperene (20.5-7.2%), phenethyl isovalerate (6.4-3.6%), and cis-thujopsene (1.9-0.8%), respectively, for grounded and ungrounded seeds. Concerning the antibacterial activity, the diameter of the inhibition zone reached 35 mm when the essential oil extracted from grounded seeds was applied against Escherichia coli. Regarding the antioxidant activity via the DPPH radical scavenging test, the IC50 varied from 1.2 ± 0.1 to 2.8 ± 0.5 µg/mL. With respect to reducing power, the efficient concentration EC50 ranged from 32 to 50 µg/mL. The essential oil exhibited also an allelopathic effect against seeds of Hyoscyamus niger, as well as an insecticide effect against Sitophilus oryzae with a DL50 value of 252.4 µL/L air. These findings enhance the use of this spice as a natural food preservative and encourage its use in several fields, including pharmaceutical, cosmetics, agriculture, and therapy, that could be a strategic way to guarantee the consumer's health.


Assuntos
Antibacterianos/química , Antioxidantes/química , Inseticidas/química , Óleos Voláteis/química , Syzygium/química , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Inocuidade dos Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Hyoscyamus/efeitos dos fármacos , Hyoscyamus/crescimento & desenvolvimento , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Sementes/química , Gorgulhos/efeitos dos fármacos , Gorgulhos/crescimento & desenvolvimento
7.
J Insect Sci ; 21(3)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34047334

RESUMO

The present investigation was carried out to study the biological parameters and orientation of Sitophilus oryzae (L.) toward wheat cultivar HPW-236 and mixed grains of different cultivars (HPW-155, HPW-236, HPW-249, HPW-349, HPW-360, HS-490, and VL-892). The incubation period, larval period, pupal period, and total life cycle period of S. oryzae was longer when fed on mixed grains as compared to HPW-236. Also, the weevils were more oriented toward HPW-236 and lower germination rates were observed from HPW-236 than mixed cultivars when exposed to S. oryzae. We also evaluated quantitative losses caused by S. oryzae in different cultivars of wheat recommended in the northwestern Himalayas under free-choice conditions. The weevil inflicted greater damage and weight loss in grains of HPW-236 while it was negligible in the case of HPW-360 and HPW-249. HPW-236 which is the most cultivated variety of wheat in northwestern Himalayas proved to be highly susceptible to the weevil and provided a more suitable environment for weevil's development. Therefore, this particular cultivar can be avoided for prolong storage and the farmers should prefer cultivars such as HPW-360 and HPW-249, which proved to be least affected the weevil.


Assuntos
Controle de Pragas , Triticum , Gorgulhos , Animais , Produtos Agrícolas , Grão Comestível , Gorgulhos/crescimento & desenvolvimento , Gorgulhos/fisiologia
8.
J Insect Sci ; 21(2)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822128

RESUMO

The coffee berry borer (CBB), Hypothenemus hampei Ferrari (Coleoptera: Curculionidae), is the most important coffee pest in most of the coffee growing countries. CBB females leave old dry berries after harvest and search for dry noninfested berries on the plant or on the ground to lay eggs or to use as refuge until new berries are available on the coffee trees in the following season. The CBB infestation level and emergence from berries on the ground or on the plants were evaluated in two fields post-harvest in the Spring in Brazil over two seasons. Twenty infested or noninfested berries in separate cages (250 ml plastic cups) were placed on the plants or on the ground under the tree canopy, in each field. The number of infested berries and CBB females that emerged from the infested berries were recorded weekly. CBB emergence was higher from berries on the ground than those on the coffee trees in both seasons, whereas CBB infestation was higher on coffee berries on the plants than those on the ground in season I. Insolation (hours of sunlight) and temperature were the main covariates that affected emergence and infestation by this insect. The results are discussed for monitoring CBB during the time of dispersal with implications on integrated management of this pest.


Assuntos
Coffea , Dinâmica Populacional , Gorgulhos/crescimento & desenvolvimento , Animais , Clima , Produtos Agrícolas , Monitorização de Parâmetros Ecológicos , Análise Fatorial , Controle de Pragas , Plantas , Sementes , Luz Solar , Temperatura , Gorgulhos/fisiologia
9.
Arthropod Struct Dev ; 61: 101029, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33607463

RESUMO

Ambrosia beetles from the genus Xyleborus are important vectors of fungal pathogens in forest and agricultural systems, yet the influence of temperature on their morphological development has been poorly studied. Because host colonization and ambrosial fungi cultivation is mostly restricted to females, it is possible to speculate on strong sexual dimorphism expression in secondary sexual characters and ecological segregation between sexes. Here, we determined the effect of different growing temperatures (17, 23, 26 and 29 °C) on mandible ontogeny of larvae and adult individuals of X. affinis, and sexual dimorphism in adults, in shape and size variation using geometric morphometrics. Mandible shape change showed significant differences in magnitude and direction through larval ontogeny among temperature treatments. Sexual shape and size dimorphism were found in adult mandibles, and the degree of sexual dimorphism was dependent on growth temperature, with a significant effect of the interaction between temperature and sex on mandible shape and size variation. Higher morphological differences were observed at the base of mandibles among temperature treatments in adults and a gradual narrowing trend with temperature increments. These findings could have consequences on feeding performance and fungus cultivation inside colonies, potentially influencing their ability to establish populations in new geographical areas.


Assuntos
Temperatura , Gorgulhos , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Feminino , Masculino , Caracteres Sexuais , Gorgulhos/anatomia & histologia , Gorgulhos/crescimento & desenvolvimento
10.
Plant Cell Rep ; 40(3): 507-516, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33389048

RESUMO

KEY MESSAGE: Transgenic sugarcane expressing V-ATPase subunit E dsRNA affects growth and survival of Sphenophorus levis. Plants being sessile organisms are constantly confronted with several biotic and abiotic stresses. Sugarcane (Saccharum spp) is a major tropical crop widely cultivated for its sugar and other by-products. In Brazil, sugarcane plantations account for significant production losses due to Sphenophorus levis (sugarcane weevil) infestations. With the existing control measures being less effective, there arises a necessity for advanced strategies. Our bioassay injection experiments with V-ATPase E dsRNA in S. levis larvae showed significant mortality and reduction in transcription levels. Furthermore, we down-regulated the V-ATPase E gene of S. levis in transgenic sugarcane using an RNAi approach. The resultant RNAi transgenic lines exhibited reduction in larval growth and survival, without compromising plant performance under controlled environment. Our results illustrate that RNAi-mediated down-regulation of key genes is a promising approach in imparting resistance to sugarcane weevil.


Assuntos
Saccharum/genética , ATPases Vacuolares Próton-Translocadoras/genética , Gorgulhos/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Quimera , Expressão Gênica , Controle de Insetos , Proteínas de Insetos/genética , Larva , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Cadeia Dupla/genética , Reação em Cadeia da Polimerase em Tempo Real , Saccharum/fisiologia , Gorgulhos/genética
11.
J Insect Sci ; 21(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33394047

RESUMO

Parasites obtain energy and nutrients from the host, and their body size is also usually limited by host size. However, the regulatory mechanisms that control the plasticity of parasite body sizes and the stoichiometric relationships with their hosts remain unclear. Here we investigated the concentrations of 14 elements (C, H, O, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, and Zn) in the acorns of three oak species (Quercus spp.), in their endoparasitic weevil (Curculio davidi Fairmaire) (Coleoptera: Curculionidae) larvae and in the larval feces, and the weight of weevil larvae within different hosts in a warm-temperate zone of China. Our results showed that the three acorn species exhibited significant differences in C, H, O, P, K, Mg, and Mn concentrations. However, in the weevil larvae, only P, Mn, and C:P ratio revealed significant differences. Weevil larvae preferentially absorbed and retained N, Zn, Na, and P, whereas Mn, K, Ca, and O were passively absorbed and transported. The weevil larvae weight was associated with acorn stoichiometry, and positively correlated with acorn size. Weevil larvae P decreased, but Mn and C:P increased with their weight, implying highly variable in somatic stoichiometry are coupled with the plasticity of body size. Interestingly, weevil larvae weight was negatively correlated with acorn infection rate, indicating small-size parasitic insects might have higher fitness level in parasite-host systems than larger-size ones. Our results suggest that variation in P, Mn, and C:P in parasites may play critical roles in shaping their body size and in improving their fitness.


Assuntos
Cadeia Alimentar , Herbivoria , Nutrientes/fisiologia , Quercus , Gorgulhos/fisiologia , Adaptação Fisiológica , Fenômenos Fisiológicos da Nutrição Animal , Animais , Tamanho Corporal , China , Larva/crescimento & desenvolvimento , Larva/fisiologia , Especificidade da Espécie , Gorgulhos/crescimento & desenvolvimento
12.
Arch Insect Biochem Physiol ; 106(2): e21760, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33231898

RESUMO

The Chinese white pine beetle Dendroctonus armandi (Tsai and Li) is a significant pest of the Qinling and Bashan Mountains pine forests of China. The Chinese white pine beetle can overcome the defences of Chinese white pine Pinus armandi (Franch) through pheromone-assisted aggregation that results in a mass attack of host trees. We isolated five full-length complementary DNAs encoding mevalonate pathway-related enzyme genes from the Chinese white pine beetle (D. armandi), which are acetoacetyl-CoA thiolase (AACT), geranylgeranyl diphosphate synthase (GGPPS), mevalonate kinase (MK), mevalonate diphosphate decarboxylase (MPDC), and phosphomevalonate kinase (PMK). Bioinformatic analyses were performed on the full-length deduced amino acid sequences. Differential expression of these five genes was observed between sexes, and within these significant differences among topically applied juvenile hormone III (JH III), fed on phloem of P. armandi, tissue distribution, and development stage. Mevalonate pathway genes expression were induced by JH III and feeding.


Assuntos
Genes de Insetos , Proteínas de Insetos/genética , Redes e Vias Metabólicas/genética , Ácido Mevalônico/metabolismo , Transcriptoma , Gorgulhos/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Masculino , Filogenia , Pupa/enzimologia , Pupa/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Gorgulhos/enzimologia , Gorgulhos/crescimento & desenvolvimento
13.
Arch Insect Biochem Physiol ; 105(2): e21730, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32737998

RESUMO

The cotton boll weevil, Anthonomus grandis, is a major pest of cotton crops in South America. In this work, partial biochemical characterizations of (hemi) cellulases and pectinases activities in the digestive system (head- and gut- extracts) of A. grandis were evaluated. Gut extract section from third instar larvae exhibited endoglucanase, xylanase, ß-glucosidase, and pectinase activities. The endoglucanase and xylanase activities were localized in the foregut, whereas ß-glucosidase activity was mainly detected in the hindgut. In addition, no difference in pectinase activity was observed across the gut sections. Thus, A. grandis digestive system is a potentially interesting reservoir for further lignocellulolytic enzymes research.


Assuntos
Sistema Digestório/enzimologia , Gorgulhos/enzimologia , Animais , Líquidos Corporais/enzimologia , Celulases/química , Celulose/metabolismo , Sistema Digestório/crescimento & desenvolvimento , Cabeça , Larva/enzimologia , Larva/crescimento & desenvolvimento , Poligalacturonase/química , Gorgulhos/crescimento & desenvolvimento
14.
Proc Natl Acad Sci U S A ; 117(32): 19347-19358, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723830

RESUMO

Bacterial intracellular symbiosis (endosymbiosis) is widespread in nature and impacts many biological processes. In holometabolous symbiotic insects, metamorphosis entails a complete and abrupt internal reorganization that creates a constraint for endosymbiont transmission from larvae to adults. To assess how endosymbiosis copes-and potentially evolves-throughout this major host-tissue reorganization, we used the association between the cereal weevil Sitophilus oryzae and the bacterium Sodalis pierantonius as a model system. S. pierantonius are contained inside specialized host cells, the bacteriocytes, that group into an organ, the bacteriome. Cereal weevils require metabolic inputs from their endosymbiont, particularly during adult cuticle synthesis, when endosymbiont load increases dramatically. By combining dual RNA-sequencing analyses and cell imaging, we show that the larval bacteriome dissociates at the onset of metamorphosis and releases bacteriocytes that undergo endosymbiosis-dependent transcriptomic changes affecting cell motility, cell adhesion, and cytoskeleton organization. Remarkably, bacteriocytes turn into spindle cells and migrate along the midgut epithelium, thereby conveying endosymbionts to midgut sites where future mesenteric caeca will develop. Concomitantly, endosymbiont genes encoding a type III secretion system and a flagellum apparatus are transiently up-regulated while endosymbionts infect putative stem cells and enter their nuclei. Infected cells then turn into new differentiated bacteriocytes and form multiple new bacteriomes in adults. These findings show that endosymbiosis reorganization in a holometabolous insect relies on a synchronized host-symbiont molecular and cellular "choreography" and illustrates an adaptive feature that promotes bacteriome multiplication to match increased metabolic requirements in emerging adults.


Assuntos
Enterobacteriaceae/fisiologia , Simbiose , Gorgulhos/crescimento & desenvolvimento , Gorgulhos/microbiologia , Animais , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Sistema Digestório/microbiologia , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/fisiologia , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Feminino , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologia , Masculino , Metamorfose Biológica , Gorgulhos/fisiologia
15.
Sci Rep ; 10(1): 12180, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699306

RESUMO

Leaf rolls by herbivorous insects evolved in various lepidopteran groups, aphids, and some attelabid weevil species. Leaf rolls are known to have a positive effect on the survival of immature insects, protecting them from natural enemies such as birds, ants, predatory wasps, and parasitoids as well as environmental stress. On the other hand, leaf rolls are considered to have a negative effect on immature survival, attracting natural enemies because of their noticeability and subsequent learning or specialization. In this study, we directly tested the effects of leaf rolls using an attelabid species by comparing the fate of immature insects between artificial leaf rolls and unrolled leaves. The results showed the following positive effects of leaf rolls: avoidance of parasitism by eulophid wasps and avoidance of egg predation by unknown predators. On the other hand, a negative effect of leaf rolls was also detected, specifically and increase in mortality via leaf roll herbivory. This study indicated that leaf shelters are not only protective refuges but are also sometimes risky hiding places, although total survival rates increased in leaf shelters.


Assuntos
Gorgulhos/fisiologia , Animais , Comportamento Animal , Betulaceae/parasitologia , Feminino , Herbivoria , Larva/crescimento & desenvolvimento , Larva/fisiologia , Oviposição , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia , Folhas de Planta/química , Folhas de Planta/parasitologia , Comportamento Predatório , Vespas/fisiologia , Gorgulhos/crescimento & desenvolvimento
16.
J Sci Food Agric ; 100(3): 1132-1141, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31680255

RESUMO

BACKGROUND: Production and marketing of cereal grains are some of the main activities in developing countries to ensure food security. However, the food gap is complicated further by high postharvest loss of grains during storage. This study aimed to compare low-cost modified-atmosphere hermetic storage structures with traditional practice to minimize quantitative and qualitative losses of grains during storage. The study was conducted in two phases: in the first phase, seven hermetic storage structures with or without smoke infusion were compared, and one selected structure was further validated at scaled-up capacity in the second phase. RESULTS: Grains stored in PVC bag-supported structures (with or without smoke infusion) resulted in low live weevil population, low percentage of damaged grains and reduced weight loss with better retention of crude protein and fat contents. Results from validation study also demonstrated that maize and sorghum stored in improved storage structures experienced, respectively, 9.8% and 10.4% weevil damage as compared with 47.3% and 42.3% when stored in traditional storage structures. The same was true in terms of crude protein and fat contents. CONCLUSIONS: The study demonstrated that storage structures supported with PVC bags are efficient and low-cost structures for reducing storage-related losses and supporting food security efforts as compared to traditional methods. Furthermore, the bags can be made locally and with various storage capacities to store either shelled or unshelled products. © 2019 Society of Chemical Industry.


Assuntos
Armazenamento de Alimentos/métodos , Sorghum/química , Zea mays/química , Animais , Atmosfera , Armazenamento de Alimentos/economia , Armazenamento de Alimentos/instrumentação , Sorghum/parasitologia , Gorgulhos/crescimento & desenvolvimento , Gorgulhos/fisiologia , Zea mays/parasitologia , Cimento de Óxido de Zinco e Eugenol/análise
17.
Bull Entomol Res ; 110(2): 207-218, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31439073

RESUMO

Although the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae) is the most destructive insect pest of coffee worldwide, there is much to learn about its thermal biology. This study aimed to develop temperature-based models for H. hampei development and to provide the thermal requirements of immature stages in the laboratory. Using a new observation method, larval development and survival were monitored daily on fresh Arabica coffee seeds, under seven constant temperatures in the range 15-35°C, with 80 ± 5% RH and 12:12 L:D photoperiod. Linear and non-linear functions were fitted to the development data plotted against temperature, using Insect Life Cycle Modelling software (ILCYM). Temperature significantly affected the development time of all immature stages. Egg incubation period ranged 4.6-16.8 days, under temperature between 30 and 15°C. No development occurred at 35°C and the larval stage did not develop to pupa at 15°C. The minimum temperature threshold (Tmin) estimated from linear regression was 10.5, 13.0, 15.0 and 13.0°C, for egg, larva, pupa and the total development from egg to adult, respectively. The maximum temperature threshold (Tmax) estimated from the Sharpe and DeMichele function was 32°C for egg to adult development. The thermal constant (k) was estimated at 78.1, 188.7, 36.5 and 312.5 degree days, for egg, larva, pupa and for egg to adult, respectively. Our results will help understand and predict the pest population dynamics and distribution in coffee plantations as impacted by temperature, and as such, will contribute to a more efficient management of the pest.


Assuntos
Modelos Biológicos , Temperatura , Gorgulhos/crescimento & desenvolvimento , Animais , Coffea/parasitologia , Feminino , Aquecimento Global
18.
Insect Sci ; 27(5): 1031-1042, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31633276

RESUMO

Parasites and pathogens can follow different patterns of infection depending on the host developmental stage or sex. In fact, immune function is energetically costly for hosts and trade-offs exist between immune defenses and life history traits as growth, development and reproduction and organisms should thus optimize immune defense through their life cycle according to their developmental stage. Identifying the most susceptible target and the most virulent pathogen is particularly important in the case of insect pests, in order to develop effective control strategies targeting the most vulnerable individuals with the most effective control agent. Here, we carried out laboratory tests to identify the most susceptible target of infection by infecting different stages of the red palm weevil Rhynchophorus ferrugineus (larvae, pupae, male, and female adults) with both a generic pathogen, antibiotic-resistant Gram-negative bacteria Escherichia coli XL1-Blue, and two specific strains of entomopathogenic nematodes (EPNs), Steinernema carpocapsae ItS-CAO1 and Heterorhabditis bacteriophora ItH-LU1. By evaluating bacterial clearance, host mortality and parasite progeny release, we demonstrate that larvae are more resistant than adults to bacterial challenge and they release less EPNs progeny after infection despite a higher mortality compared to adults. Considering the two EPN strains, S. carpocapsae was more virulent than H. bacteriophora both in terms of host mortality and more abundant progeny released by hosts after death. The outcomes attained with unspecific and specific pathogens provide useful information for a more efficient and sustainable management of this invasive pest.


Assuntos
Escherichia coli/fisiologia , Interações Hospedeiro-Patógeno , Imunocompetência , Rabditídios/fisiologia , Gorgulhos/imunologia , Animais , Feminino , Interações Hospedeiro-Parasita , Controle de Insetos , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/microbiologia , Larva/parasitologia , Masculino , Controle Biológico de Vetores , Pupa/crescimento & desenvolvimento , Pupa/imunologia , Pupa/microbiologia , Pupa/parasitologia , Gorgulhos/crescimento & desenvolvimento , Gorgulhos/microbiologia , Gorgulhos/parasitologia
19.
Nat Plants ; 5(9): 959-964, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477889

RESUMO

The shapes of plant leaves are remarkably diverse, but their ecological functions are largely unknown. Reports on the effects of leaf shape on biotic interactions such as herbivory are especially scarce, partly because herbivorous insects rarely rely on leaf shape for host selection. Here, we show that leaf shape acts as a physical deterrent against a leaf-processing herbivore. Plants in the genus Isodon (Lamiaceae) host a specialized leaf-rolling weevil (Apoderus praecellens) whose ovipositing females process an entire leaf into a leaf roll to serve as larval food and shelter. Among the species of Isodon, I. umbrosus var. hakusanensis is exceptional in that it has deeply lobed leaves. Because leaf processing follows a consistent sequence of complex behaviours, the unusual shape of I. umbrosus leaves may disrupt this process. Under both natural and laboratory conditions, female weevils preferred I. trichocarpus, a close relative with non-lobed leaves, over I. umbrosus. Nutritional properties of the leaves do not explain this preference because weevil larvae developed equally well on both hosts. Modifying the non-lobed I. trichocarpus leaves to mimic the shape of I. umbrosus leaves also discouraged leaf processing. Leaf processing often terminated because weevils failed to complete the inspection routine on I. umbrosus leaves. Leaf shape may be an important but overlooked factor that affects the interactions between plants and leaf-processing herbivores.


Assuntos
Herbivoria , Lamiaceae/anatomia & histologia , Oviposição , Folhas de Planta/anatomia & histologia , Gorgulhos/fisiologia , Animais , Feminino , Larva/crescimento & desenvolvimento , Gorgulhos/crescimento & desenvolvimento
20.
Sci Rep ; 9(1): 12804, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488852

RESUMO

Coffee production is a global industry valued at approximately 173 billion US dollars. One of the main challenges facing coffee production is the management of the coffee berry borer (CBB), Hypothenemus hampei, which is considered the primary arthropod pest of coffee worldwide. Current control strategies are inefficient for CBB management. Although biotechnological alternatives, including RNA interference (RNAi), have been proposed in recent years to control insect pests, characterizing the genetics of the target pest is essential for the successful application of these emerging technologies. In this study, we employed RNA-seq to obtain the transcriptome of three developmental stages of the CBB (larva, female and male) to increase our understanding of the CBB life cycle in relation to molecular features. The CBB transcriptome was sequenced using Illumina Hiseq and assembled de novo. Differential gene expression analysis was performed across the developmental stages. The final assembly produced 29,434 unigenes, of which 4,664 transcripts were differentially expressed. Genes linked to crucial physiological functions, such as digestion and detoxification, were determined to be tightly regulated between the reproductive and nonreproductive stages of CBB. The data obtained in this study help to elucidate the critical roles that several genes play as regulatory elements in CBB development.


Assuntos
Coffea/parasitologia , Genes de Insetos , Gorgulhos/crescimento & desenvolvimento , Gorgulhos/genética , Animais , Feminino , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , RNA-Seq , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...