Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 725
Filtrar
1.
J Virol ; 98(3): e0127823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38345384

RESUMO

Cytomegalovirus (CMV), a type of herpes virus, is the predominant cause of congenital anomalies due to intrauterine infections in humans. Adverse outcomes related to intrauterine infections with human cytomegalovirus (HCMV) vary widely, depending on factors such as fetal infection timing, infection route, and viral virulence. The precise mechanism underlying HCMV susceptibility remains unclear. In this study, we compared the susceptibility of neonatal human dermal fibroblast cells (NHDFCs) and human induced pluripotent stem cells (hiPSCs) derived from NHDFCs, which are genetically identical to HCMV, using immunostaining, microarray, in situ hybridization, quantitative PCR, and scanning electron microscopy. These cells were previously used to compare CMV susceptibility, but the underlying mechanisms were not fully elucidated. HCMV susceptibility of hiPSCs was significantly lower in the earliest phase. No shared gene ontologies were observed immediately post-infection between the two cell types using microarray analysis. Early-stage expression of HCMV antigens and the HCMV genome was minimal in immunostaining and in in situ hybridization in hiPSCs. This strongly suggests that HCMV does not readily bind to hiPSC surfaces. Scanning electron microscopy performed using the NanoSuit method confirmed the scarcity of HCMV particles on hiPSC surfaces. The zeta potential and charge mapping of the charged surface in NHDFCs and hiPSCs exhibited minimal differences when assessed using zeta potential analyzer and scanning ion conductance microscopy; however, the expression of heparan sulfate (HS) was significantly lower in hiPSCs compared with that in NHDFCs. Thus, HS expression could be a primary determinant of HCMV resistance in hiPSCs at the attachment level. IMPORTANCE: Numerous factors such as attachment, virus particle entry, transcription, and virus particle egress can affect viral susceptibility. Since 1984, pluripotent cells are known to be CMV resistant; however, the exact mechanism underlying this resistance remains elusive. Some researchers suggest inhibition in the initial phase of HCMV binding, while others have suggested the possibility of a sufficient amount of HCMV entering the cells to establish latency. This study demonstrates that HCMV particles rarely attach to the surfaces of hiPSCs. This is not due to limitations in the electrostatic interactions between the surface of hiPSCs and HCMV particles, but due to HS expression. Therefore, HS expression should be recognized as a key factor in determining the susceptibility of HCMV in congenital infection in vitro and in vivo. In the future, drugs targeting HS may become crucial for the treatment of congenital CMV infections. Thus, further research in this area is warranted.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Heparitina Sulfato , Células-Tronco Pluripotentes Induzidas , Humanos , Recém-Nascido , Membrana Celular/química , Membrana Celular/metabolismo , Citomegalovirus/fisiologia , Heparitina Sulfato/análise , Heparitina Sulfato/metabolismo , Infecções por Herpesviridae , Células-Tronco Pluripotentes Induzidas/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibroblastos/química , Fibroblastos/metabolismo , Fibroblastos/virologia , Pele/citologia
2.
Anal Methods ; 15(11): 1461-1469, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36876452

RESUMO

The fine structure of heparan sulfate (HS), the glycosaminoglycan polysaccharide component of cell surface and extracellular matrix HS proteoglycans, coordinates the complex cell signalling processes that control homeostasis and drive development in multicellular animals. In addition, HS is involved in the infection of mammals by viruses, bacteria and parasites. The current detection limit for fluorescently labelled HS disaccharides (low femtomole; 10-15 mol), has effectively hampered investigations of HS composition in small, functionally-relevant populations of cells and tissues that may illuminate the structural requirements for infection and other biochemical processes. Here, an ultra-high sensitivity method is described that utilises a combination of reverse-phase HPLC, with tetraoctylammonium bromide (TOAB) as the ion-pairing reagent and laser-induced fluorescence detection of BODIPY-FL-labelled disaccharides. The method provides an unparalleled increase in the sensitivity of detection by ∼six orders of magnitude, enabling detection in the zeptomolar range (∼10-21 moles; <1000 labelled molecules). This facilitates determination of HS disaccharide compositional analysis from minute samples of selected tissues, as demonstrated by analysis of HS isolated from the midguts of Anopheles gambiae mosquitoes that was achieved without approaching the limit of detection.


Assuntos
Culicidae , Dissacarídeos , Animais , Dissacarídeos/análise , Dissacarídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Heparitina Sulfato/análise , Heparitina Sulfato/química , Mamíferos
3.
Biochem J ; 480(1): 41-56, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511224

RESUMO

Glycosaminoglycan (GAG) is a polysaccharide present on the cell surface as an extracellular matrix component, and is composed of repeating disaccharide units consisting of an amino sugar and uronic acid except in the case of the keratan sulfate. Sulfated GAGs, such as heparan sulfate, heparin, and chondroitin sulfate mediate signal transduction of growth factors, and their functions vary with the type and degree of sulfated modification. We have previously identified human and mouse cochlins as proteins that bind to sulfated GAGs. Here, we prepared a recombinant cochlin fused to human IgG-Fc or Protein A at the C-terminus as a detection and purification tag and investigated the ligand specificity of cochlin. We found that cochlin can be used as a specific probe for highly sulfated heparan sulfate and chondroitin sulfate E. We then used mutant analysis to identify the mechanism by which cochlin recognizes GAGs and developed a GAG detection system using cochlin. Interestingly, a mutant lacking the vWA2 domain bound to various types of GAGs. The N-terminal amino acid residues of cochlin contributed to its binding to heparin. Pathological specimens from human myocarditis patients were stained with a cochlin-Fc mutant. The results showed that both tryptase-positive and tryptase-negative mast cells were stained with this mutant. The identification of detailed modification patterns of GAGs is an important method to elucidate the molecular mechanisms of various diseases. The method developed for evaluating the expression of highly sulfated GAGs will help understand the biological and pathological importance of sulfated GAGs in the future.


Assuntos
Sulfatos de Condroitina , Proteínas da Matriz Extracelular , Heparitina Sulfato , Animais , Humanos , Camundongos , Biomarcadores Tumorais/química , Proteínas de Ligação ao Cálcio/química , Sulfatos de Condroitina/análise , Heparitina Sulfato/análise , Imuno-Histoquímica/métodos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Triptases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética
4.
J Chromatogr A ; 1689: 463748, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36586283

RESUMO

Glycosaminoglycans (GAGs), which are one of the major components of proteoglycans, play a pivotal role in physiological processes such as signal transduction, cell adhesion, growth, and differentiation. Characterization of GAGs is challenging due to the tremendous structural diversity of heteropolysaccharides with numerous sulfate or carboxyl groups. In this present study, we examined the analysis of 2-aminobenzamide (2-AB) labeled GAG disaccharides by high-performance liquid chromatography (HPLC) using a reverse-phase (RP)-column with adamantyl groups. Under the analytical conditions, 17 types of 2-AB labeled GAG disaccharides derived from heparan sulfate, chondroitin/dermatan sulfates, and hyaluronan were sequentially separated in a single analysis. The analysis time was fast with high retention time reproducibility. Moreover, the RP-HPLC column with adamantyl groups allowed the quantification of GAGs in various biological samples, such as serum, cultured cells, and culture medium.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Glicosaminoglicanos/química , Sulfatos de Condroitina/química , Ácido Hialurônico/análise , Ácido Hialurônico/química , Dermatan Sulfato/análise , Dermatan Sulfato/química , Dermatan Sulfato/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Dissacarídeos/química , Reprodutibilidade dos Testes , Heparitina Sulfato/análise
5.
Methods Mol Biol ; 2597: 159-176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374421

RESUMO

Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates are composed of alternating glucosamine and uronic acids that can be heterogeneously N- and O-sulfated. The arrangement and orientation of the sulfated sugar residues specify the location of distinct ligand binding sites on the cell surface, and their capacity to bind ligands impacts cell growth and development, the ability to form tissues and organs, and normal physiology. The heterogeneous nature of GAGs and their inherent structural diversity across different tissues, cell types, and disease states creates challenges to characterizing their structure and function. Here, we describe detailed methods to investigate GAG-protein interactions in vitro and evaluate the structural composition of two classes of sulfated GAGs, heparan sulfate and chondroitin/dermatan sulfate, using liquid chromatography, mass spectrometry, and radiolabeling techniques. Overall, these methods facilitate the evaluation of GAG structure and function to uncover the unique roles these molecules play in cell biology and human disease.


Assuntos
Glicosaminoglicanos , Heparitina Sulfato , Humanos , Animais , Glicosaminoglicanos/química , Heparitina Sulfato/análise , Heparitina Sulfato/química , Sulfatos de Condroitina/química , Cromatografia Líquida , Ácidos Urônicos , Sulfatos
6.
Actas Dermosifiliogr ; 113(7): 712-716, 2022.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35331724

RESUMO

Superficial fungal infections are common in dermatology and are often caused by opportunistic species in the Candida and Malassezia genera. The aim of this study was to analyze changes in the expression of genes coding for enzymes involved in the biosynthesis of glycosaminoglycans (GAGs) chains following the adherence of Candida and Malassezia yeasts to skin cell lines. Gene expression was analyzed using reverse transcriptase-quantitative polymerase chain reaction assays. Interactions between the yeasts and the skin cells induced the following changes in genes involved in the biosynthesis of heparan sulfate and chondroitin sulfate: downregulation of CHPF in keratinocytes and downregulation of EXT1, EXT2, CHSY3, and CHPF in fibroblasts. Adherence to fibroblasts had an even greater effect on GAG biosynthetic enzymes, inducing the downregulation of 13 genes and the upregulation of two (CHST15 and CHST7). Interactions between yeasts and skin cells might affect the binding affinity of GAG chains, possibly changing their ability to function as receptors for pathogens and interfering with a key stage at the start of infection.


Assuntos
Sulfatos de Condroitina , Malassezia , Candida albicans/genética , Candida albicans/metabolismo , Sulfatos de Condroitina/análise , Glicosaminoglicanos/análise , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/análise , Heparitina Sulfato/metabolismo , Humanos , Malassezia/genética , Malassezia/metabolismo , Glicoproteínas de Membrana , Sulfotransferases
7.
Clin Biochem ; 97: 78-81, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34329621

RESUMO

In the field of laboratory medicine, proficiency testing is a vehicle used to improve the reliability of reported results. When proficiency tests are unavailable for a given analyte, an alternative approach is required to ensure adherence to the International Organization for Standardization (ISO) 15189:2012 standard. In this study, we report the results of a split-sample testing program performed as an alternative to a formal PT. This testing method was based on recommendations provided in the Clinical and Laboratory Standards Institute (CLSI) QMS24 guideline. Two different laboratories measured, in duplicate, the heparan sulfate concentration in five samples using ultra-performance liquid chromatography and tandem mass spectrometry. The data analysis to determine the criterion used for the comparability assessment between the two laboratories was based on Appendix E of the QMS24 guideline. Mean interlaboratory differences fell within the maximum allowable differences calculated from the application of the QMS24 guideline, indicating that the results obtained by the two laboratories were comparable across the concentrations tested. Application of the QMS24 split-sample testing procedure allows laboratories to objectively assess test results, thus providing the evidence needed to face an accreditation audit with confidence. However, due to the limitations of statistical analyses in small samples (participants and/or materials), laboratory specialists should assess whether the maximum allowable differences obtained are suitable for the intended use, and make adjustments if necessary.


Assuntos
Laboratórios Clínicos/normas , Ensaio de Proficiência Laboratorial/métodos , Controle de Qualidade , Cromatografia Líquida/normas , Heparitina Sulfato/análise , Heparitina Sulfato/sangue , Humanos , Espectrometria de Massas em Tandem/normas
8.
Neurochem Res ; 46(3): 595-610, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33398638

RESUMO

Astrocytes are major producers of the extracellular matrix (ECM), which is involved in the plasticity of the developing brain. In utero alcohol exposure alters neuronal plasticity. Glycosaminoglycans (GAGs) are a family of polysaccharides present in the extracellular space; chondroitin sulfate (CS)- and heparan sulfate (HS)-GAGs are covalently bound to core proteins to form proteoglycans (PGs). Hyaluronic acid (HA)-GAGs are not bound to core proteins. In this study we investigated the contribution of astrocytes to CS-, HS-, and HA-GAG production by comparing the makeup of these GAGs in cortical astrocyte cultures and the neonatal rat cortex. We also explored alterations induced by ethanol in GAG and core protein levels in astrocytes. Finally, we investigated the relative expression in astrocytes of CS-PGs of the lectican family of proteins, major components of the brain ECM, in vivo using translating ribosome affinity purification (TRAP) (in Aldh1l1-EGFP-Rpl10a mice. Cortical astrocytes produce low levels of HA and show low expression of genes involved in HA biosynthesis compared to the whole developing cortex. Astrocytes have high levels of chondroitin-0-sulfate (C0S)-GAGs (possibly because of a higher sulfatase enzyme expression) and HS-GAGs. Ethanol upregulates C4S-GAGs as well as brain-specific lecticans neurocan and brevican, which are highly enriched in astrocytes of the developing cortex in vivo. These results begin to elucidate the role of astrocytes in the biosynthesis of CS- HS- and HA-GAGs, and suggest that ethanol-induced alterations of neuronal development may be in part mediated by increased astrocyte GAG levels and neurocan and brevican expression.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Dissacarídeos/metabolismo , Etanol/farmacologia , Glicosaminoglicanos/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/química , Astrócitos/efeitos dos fármacos , Brevicam/metabolismo , Córtex Cerebral/química , Córtex Cerebral/efeitos dos fármacos , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/metabolismo , Dissacarídeos/análise , Feminino , Glicosaminoglicanos/análise , Heparitina Sulfato/análise , Heparitina Sulfato/metabolismo , Ácido Hialurônico/análise , Ácido Hialurônico/metabolismo , Neurocam/metabolismo , Gravidez , Ratos Sprague-Dawley
9.
Glycoconj J ; 38(1): 25-33, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33411075

RESUMO

Oviductus ranae (O.ran.) has been widely used as a tonic and a traditional animal-based Chinese medicine. O.ran. extracts have been reported to have numerous biological activities, including activities that are often associated with mammalian glycosaminoglycans such as anti-inflammatory, antiosteoperotic, and anti-asthmatic. Glycosaminoglycans are complex linear polysaccharides ubiquitous in mammals that possess a wide range of biological activities. However, their presence and possible structural characteristics within O.ran. were previously unknown. In this study, glycosaminoglycans were isolated from O.ran. and their disaccharide compositions were analyzed by liquid chromatography-ion trap/time-of-flight mass spectrometry (LC-MS-ITTOF). Heparan sulfate (HS)/heparin (HP), chondroitin sulfate (CS)/dermatan sulfate (DS) and hyaluronic acid (HA) were detected in O.ran. with varied disaccharide compositions. HS species contain highly acetylated disaccharides, and have various structures in their constituent chains. CS/DS chains also possess a heterogeneous structure with different sulfation patterns and densities. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of O.ran..


Assuntos
Glicosaminoglicanos/análise , Glicosaminoglicanos/química , Materia Medica/química , Sulfatos de Condroitina/análise , Cromatografia Líquida , Dermatan Sulfato/análogos & derivados , Dermatan Sulfato/análise , Dissacarídeos/análise , Dissacarídeos/isolamento & purificação , Glicosaminoglicanos/isolamento & purificação , Heparina/análise , Heparitina Sulfato/análise , Espectrometria de Massas/métodos , Sensibilidade e Especificidade
10.
J Chromatogr A ; 1610: 460548, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31547957

RESUMO

The analysis of heparan sulfate disaccharides poses a real challenge both from chromatographic and mass spectrometric point of view. This necessitates the constant improvement of their analytical methodology. In the present study, the chromatographic effects of solvent composition, salt concentration, and salt type were systematically investigated in isocratic HILIC-WAX separations of heparan sulfate disaccharides. The combined use of 75% acetonitrile with ammonium formate had overall benefits regarding intensity, detection limits, and peak shape for all salt concentrations investigated. Results obtained with the isocratic measurements suggested the potential use of a salt gradient method in order to maximize separation efficiency. A 3-step gradient from 14 mM to 65 mM ammonium formate concentration proved to be ideal for separation and quantitation. The LOD of the resulting method was 0.8-1.5 fmol for the individual disaccharides and the LOQ was between 2.5-5 fmol. Outstanding linearity could be observed up to 2 pmol. This novel combination provided sufficient sensitivity for disaccharide analysis, which was demonstrated by the analysis of heparan sulfate samples from porcine and bovine origin.


Assuntos
Cromatografia Líquida/métodos , Heparitina Sulfato/isolamento & purificação , Cloreto de Sódio/química , Animais , Bovinos , Dissacarídeos/análise , Dissacarídeos/química , Dissacarídeos/isolamento & purificação , Formiatos/química , Heparitina Sulfato/análise , Heparitina Sulfato/química , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Modelos Lineares , Solventes/química , Suínos
11.
J Surg Res ; 246: 274-283, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31614325

RESUMO

BACKGROUND: Fluid therapy influences glycocalyx shedding; however, the effect of this intervention on glycocalyx shedding in patients with glioma remains unclear. In this study, we have investigated glycocalyx shedding and cerebral metabolism during colloid loading in patients with and without glioma. METHODS: Forty patients undergoing general anesthesia were assigned to the glioma brain group (n = 20) or the normal brain group (n = 20); patients in the normal brain group were undergoing partial hepatectomy to treat liver cancer. All patients were subjected to 15 mL/kg hydroxyethyl starch (HES) loading after the induction of anesthesia. Glycocalyx shedding, reflected by syndecan-1 and heparan sulfate levels at the jugular venous bulb, was measured in both groups. We also evaluated cerebral metabolism parameters, including jugular venous oxygen saturation (SjvO2), arterial-jugular venous differences in oxygen (CajvO2), glucose (A-JvGD), lactate (A-JvLD), the cerebral extraction ratio for oxygen (CERO2), and the oxygen-glucose index. RESULTS: Our results showed that patients in the glioma brain group had lower preoperative basal syndecan-1 shedding in plasma than patients in the normal brain group. The hematocrit (Hct)-corrected syndecan-1 level was significantly increased after 15 mL/kg HES fluid administration (19.78 ± 3.83 ng/mL) compared with the Hct-correct baseline syndecan-1 level (15.67 ± 2.35 ng/mL) in patients in the glioma brain group. Similarly, for patients in the normal brain group, Hct-corrected syndecan-1 level was significantly increased after HES loading (34.71 ± 12.83 ng/mL) compared with the baseline syndecan-1 level (26.07 ± 12.52 ng/mL). However, there were no intergroup or intragroup differences in Hct-corrected heparan sulfate levels at any time point. Our study also showed that the SjvO2 was lower and CajvO2 and CERO2 were higher in the glioma brain group at 30 min after HES loading. Intragroup analysis showed that CERO2 and CajvO2 increased after general anesthesia compared with the baseline values in the glioma brain group. In contrast, cerebral metabolism in the normal brain group was unchanged during perioperative period. There were no significant differences in oxygen-glucose index between the two groups throughout the study period. CONCLUSIONS: Preoperative 15 mL/kg HES loading had similar effects on systemic glycocalyx shedding in both the glioma brain and normal brain groups, although patients in the normal brain group had higher levels of plasma syndecan-1. Furthermore, the intraoperative anesthetic management may substantially influence cerebral metabolism in patients with glioma.


Assuntos
Encéfalo/metabolismo , Hidratação/efeitos adversos , Glicocálix/efeitos dos fármacos , Derivados de Hidroxietil Amido/efeitos adversos , Cuidados Pré-Operatórios/efeitos adversos , Adulto , Encéfalo/efeitos dos fármacos , Encéfalo/cirurgia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Hidratação/métodos , Glioma/metabolismo , Glioma/cirurgia , Glicocálix/metabolismo , Heparitina Sulfato/análise , Heparitina Sulfato/metabolismo , Humanos , Derivados de Hidroxietil Amido/administração & dosagem , Cuidados Intraoperatórios/efeitos adversos , Cuidados Intraoperatórios/métodos , Veias Jugulares/química , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Cuidados Pré-Operatórios/métodos , Estudos Prospectivos , Sindecana-1/sangue , Sindecana-1/metabolismo
12.
Anal Chem ; 91(18): 11738-11746, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31423779

RESUMO

Heparan sulfate (HS) mediates a wide range of protein binding interactions key to normal and pathological physiology. Though liquid chromatography coupled with mass spectrometry (LC-MS) based disaccharide composition analysis is able to profile changes in HS composition, the heterogeneity of modifications and the labile sulfate group present major challenges for liquid chromatography tandem mass spectrometry (LC-MS/MS) sequencing of the HS oligosaccharides that represent protein binding determinants. Here, we report online LC-MS/MS sequencing of HS oligosaccharides using hydrophilic interaction liquid chromatography (HILIC) and negative electron transfer dissociation (NETD). A series of synthetic HS oligosaccharides varying in chain length (tetramers and hexamers), number of sulfate groups (3-7), sulfate patterns (sulfate positional isomers), and uronic acid epimerization (epimers) were separated and sequenced. The LC elution order of isomeric compounds was associated with their fine structure. The application of an online cation exchange device (ion suppressor) enhanced the precursor charge states, and the subsequent NETD produced abundant glycosidic fragments, allowing the characterization of both lowly sulfated and highly sulfated HS oligosaccharides. Furthermore, the diagnostic cross-ring ions differentiated the 6-O sulfation and 3-O sulfation, allowing unambiguous structural assignment. Collectively, this LC-NETD-MS/MS method is a powerful tool for sequencing of heterogeneous HS mixtures and is applicable for the differentiation of both isomers and epimers, for the characterization of saccharide mixtures with a varying extent of sulfation and even for the determination of both predominant and rare modification motifs. Thus, LC-NETD-MS/MS has great potential for further application to biological studies.


Assuntos
Cromatografia Líquida/métodos , Heparitina Sulfato/química , Oligossacarídeos/análise , Espectrometria de Massas em Tandem/métodos , Compostos de Amônio/química , Heparitina Sulfato/análise , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Estereoisomerismo , Sulfatos/química , Ácidos Urônicos/química
13.
Crit Care ; 23(1): 259, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337421

RESUMO

BACKGROUND: Intravenous fluids, an essential component of sepsis resuscitation, may paradoxically worsen outcomes by exacerbating endothelial injury. Preclinical models suggest that fluid resuscitation degrades the endothelial glycocalyx, a heparan sulfate-enriched structure necessary for vascular homeostasis. We hypothesized that endothelial glycocalyx degradation is associated with the volume of intravenous fluids administered during early sepsis resuscitation. METHODS: We used mass spectrometry to measure plasma heparan sulfate (a highly sensitive and specific index of systemic endothelial glycocalyx degradation) after 6 h of intravenous fluids in 56 septic shock patients, at presentation and after 24 h of intravenous fluids in 100 sepsis patients, and in two groups of non-infected patients. We compared plasma heparan sulfate concentrations between sepsis and non-sepsis patients, as well as between sepsis survivors and sepsis non-survivors. We used multivariable linear regression to model the association between volume of intravenous fluids and changes in plasma heparan sulfate. RESULTS: Consistent with previous studies, median plasma heparan sulfate was elevated in septic shock patients (118 [IQR, 113-341] ng/ml 6 h after presentation) compared to non-infected controls (61 [45-79] ng/ml), as well as in a second cohort of sepsis patients (283 [155-584] ng/ml) at emergency department presentation) compared to controls (177 [144-262] ng/ml). In the larger sepsis cohort, heparan sulfate predicted in-hospital mortality. In both cohorts, multivariable linear regression adjusting for age and severity of illness demonstrated a significant association between volume of intravenous fluids administered during resuscitation and plasma heparan sulfate. In the second cohort, independent of disease severity and age, each 1 l of intravenous fluids administered was associated with a 200 ng/ml increase in circulating heparan sulfate (p = 0.006) at 24 h after enrollment. CONCLUSIONS: Glycocalyx degradation occurs in sepsis and septic shock and is associated with in-hospital mortality. The volume of intravenous fluids administered during sepsis resuscitation is independently associated with the degree of glycocalyx degradation. These findings suggest a potential mechanism by which intravenous fluid resuscitation strategies may induce iatrogenic endothelial injury.


Assuntos
Endotélio/fisiopatologia , Hidratação/efeitos adversos , Glicocálix/efeitos dos fármacos , Sepse/tratamento farmacológico , Administração Intravenosa , Adulto , Idoso , Angiopoietina-2/análise , Angiopoietina-2/sangue , Fator Natriurético Atrial/análise , Fator Natriurético Atrial/sangue , Biomarcadores/análise , Biomarcadores/sangue , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Feminino , Hidratação/métodos , Hidratação/estatística & dados numéricos , Glicocálix/metabolismo , Heparitina Sulfato/análise , Heparitina Sulfato/sangue , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/análise , Peptídeo Natriurético Encefálico/sangue , Ressuscitação/efeitos adversos , Ressuscitação/métodos , Ressuscitação/estatística & dados numéricos , Sepse/sangue , Sepse/fisiopatologia , Sindecana-1/análise , Sindecana-1/sangue , Trombomodulina/análise , Trombomodulina/sangue , Ativador de Plasminogênio Tecidual/análise , Ativador de Plasminogênio Tecidual/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/análise , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue
14.
Glycoconj J ; 36(3): 211-218, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31016560

RESUMO

Colla corii asini (CCA) made from donkey-hide has been widely used as a health-care food and an ingredient of traditional Chinese medicine. Heparan sulfate (HS)/heparin is a structurally complex class of glycosaminoglycans (GAGs) that have been implicated in a wide range of biological activities. However, their presence within CCA, and their possible structural characteristics, were previously unknown. In this study, GAG fractions containing HS/heparin were isolated from CCA and their disaccharide compositions were analyzed by high sensitivity liquid chromatography-ion trap/time-of-flight mass spectrometry (LC-MS-ITTOF). This revealed that, in addition to the eight commonly seen HS disaccharides, the four rare N-unsubstituted disaccharides were also detected in significant quantities. The disaccharide compositions varied significantly between HS/heparin fractions indicating chains with differing domain structures. This novel structural information may lead to a better understanding of the biological activities (i.e. anticoagulation and antitumor action) of CCA.


Assuntos
Gelatina/química , Heparina/química , Heparitina Sulfato/química , Heparina/análise , Heparitina Sulfato/análise , Espectrometria de Massas por Ionização por Electrospray
15.
Glycoconj J ; 36(2): 165-174, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30963354

RESUMO

Retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), are major causes of blindness worldwide. Humans cannot regenerate retina, however, axolotl (Ambystoma mexicanum), a laboratory-bred salamander, can regenerate retinal tissue throughout adulthood. Classic signaling pathways, including fibroblast growth factor (FGF), are involved in axolotl regeneration. Glycosaminoglycan (GAG) interaction with FGF is required for signal transduction in this pathway. GAGs are anionic polysaccharides in extracellular matrix (ECM) that have been implicated in limb and lens regeneration of amphibians, however, GAGs have not been investigated in the context of retinal regeneration. GAG composition is characterized native and decellularized axolotl and porcine retina using liquid chromatography mass spectrometry. Pig was used as a mammalian vertebrate model without the ability to regenerate retina. Chondroitin sulfate (CS) was the main retinal GAG, followed by heparan sulfate (HS), hyaluronic acid, and keratan sulfate in both native and decellularized axolotl and porcine retina. Axolotl retina exhibited a distinctive GAG composition pattern in comparison with porcine retina, including a higher content of hyaluronic acid. In CS, higher levels of 4- and 6- O-sulfation were observed in axolotl retina. The HS composition was greater in decellularized tissues in both axolotl and porcine retina by 7.1% and 15.4%, respectively, and different sulfation patterns were detected in axolotl. Our findings suggest a distinctive GAG composition profile of the axolotl retina set foundation for role of GAGs in homeostatic and regenerative conditions of the axolotl retina and may further our understanding of retinal regenerative models.


Assuntos
Sulfatos de Condroitina/análise , Heparitina Sulfato/análise , Ácido Hialurônico/análise , Sulfato de Queratano/análise , Retina/química , Ambystoma mexicanum , Animais , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Ácido Hialurônico/metabolismo , Sulfato de Queratano/metabolismo , Retina/metabolismo , Suínos
16.
Anal Chem ; 91(1): 846-853, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30516363

RESUMO

Glycosaminoglycans (GAGs) are biologically and pharmacologically important linear, anionic polysaccharides containing various repeating disaccharides sequences. The analysis of these polysaccharides generally relies on their chemical or enzymatic breakdown to disaccharide units that are separated, by chromatography or electrophoresis, and detected, by UV, fluorescence, or mass spectrometry (MS). Isoelectric focusing (IEF) is an important analytical technique with high resolving power for the separation of analytes exhibiting differences in isoelectric points. One format of IEF, the capillary isoelectric focusing (cIEF), is an attractive approach in that it can be coupled with mass spectrometry (cIEF-MS) to provide online focusing and detection of complex mixtures. In the past three decades, numerous studies have applied cIEF-MS methods to the analysis of protein and peptide mixtures by positive-ion mode mass spectrometry. However, polysaccharide chemists largely rely on negative-ion mode mass spectrometry for the analysis of highly sulfated GAGs. The current study reports a negative-ion mode cIEF-MS method using an electrokinetically pumped sheath liquid nanospray capillary electrophoresis-mass spectrometry (CE-MS) coupling technology. The feasibility of this negative-ion cIEF-MS method and its potential applications are demonstrated using chondroitin sulfate and heparan sulfate oligosaccharides mixtures.


Assuntos
Dissacarídeos/análise , Focalização Isoelétrica/métodos , Espectrometria de Massas/métodos , Proteínas de Bactérias/química , Sequência de Carboidratos , Condroitina ABC Liase/química , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/química , Dissacarídeos/química , Escherichia coli/enzimologia , Heparina Liase/química , Heparitina Sulfato/análise , Heparitina Sulfato/química , Ponto Isoelétrico , Pedobacter/enzimologia , Proteus vulgaris/enzimologia
17.
Molecules ; 23(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544937

RESUMO

Multiple osteochondromas (MO) is a hereditary disorder associated with benign cartilaginous tumors, known to be characterized by absence or highly reduced amount of heparan sulfate (HS) in the extracellular matrix of growth plate cartilage, which alters proper signaling networks leading to improper bone growth. Although recent studies demonstrated accumulation of HS in the cytoplasm of MO chondrocytes, nothing is known on the structural alterations which prevent HS from undergoing its physiologic pathway. In this work, osteochondroma (OC), peripheral chondrosarcoma, and healthy cartilaginous human samples were processed following a procedure previously set up to structurally characterize and compare HS from pathologic and physiologic conditions, and to examine the phenotypic differences that arise in the presence of either exostosin 1 or 2 (EXT1 or EXT2) mutations. Our data suggest that HS chains from OCs are prevalently below 10 kDa and slightly more sulfated than healthy ones, whereas HS chains from peripheral chondrosarcomas (PCSs) are mostly higher than 10 kDa and remarkably more sulfated than all the other samples. Although deeper investigation is still necessary, the approach here applied pointed out, for the first time, structural differences among OC, PCS, and healthy HS chains extracted from human cartilaginous excisions, and could help in understanding how the structural features of HS are modulated in the presence of pathological situations also involving different tissues.


Assuntos
Neoplasias Ósseas/química , Cartilagem/patologia , Condrossarcoma/química , Heparitina Sulfato/química , Osteocondroma/química , Adolescente , Adulto , Neoplasias Ósseas/patologia , Cartilagem/química , Cartilagem/embriologia , Criança , Pré-Escolar , Condrossarcoma/patologia , Cromatografia Líquida de Alta Pressão , Feminino , Heparitina Sulfato/análise , Humanos , Imageamento por Ressonância Magnética , Espectrometria de Massas/métodos , Mutação , N-Acetilglucosaminiltransferases/genética , Osteocondroma/patologia
18.
Eur Surg Res ; 59(3-4): 115-125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089286

RESUMO

PURPOSE: Ischaemia-reperfusion injury (IRI) is a main cause of morbidity after pulmonary resection surgery. The degradation of glycocalyx, a dynamic layer of macromolecules at the luminal surface of the endothelium, seems to participate in tissue dysfunction after IRI. Lidocaine has a proven anti-inflammatory activity in several tissues but its modulation of glycocalyx has not been investigated. This work aimed to investigate the potential involvement of glycocalyx in lung IRI in a lung auto-transplantation model and the possible effect of lidocaine in modulating IRI. METHODS: Three groups (sham-operated, control, and lidocaine), each consisting of 6 Large White pigs, were subjected to lung auto-transplantation. All groups received the same anaesthesia. In addition, the lidocaine group received a continuous IV administration of lidocaine (1.5 mg/kg/h). Lung tissue and plasma samples were taken before pulmonary artery clamp, before reperfusion, and 30 and 60 min post-reperfusion in order to analyse pulmonary oedema, glycocalyx components, adhesion molecules, and myeloperoxidase level. RESULTS: Ischaemia caused pulmonary oedema, which was greater after reperfusion. This effect was accompanied by decreased levels of syndecan-1 and heparan sulphate in the lung samples, together with increased levels of both glycocalyx components in the plasma samples. After reperfusion, neutrophil activation and the expression of adhesion molecules were increased. All these alterations were significantly lower or absent in the lidocaine group. CONCLUSION: Lung IRI caused glycocalyx degradation that contributed to neutrophil activation and adhesion. The administration of lidocaine was able to protect the lung from glycocalyx degradation.


Assuntos
Glicocálix/metabolismo , Transplante de Pulmão/efeitos adversos , Traumatismo por Reperfusão/etiologia , Animais , Adesão Celular , Heparitina Sulfato/análise , Lidocaína/farmacologia , Masculino , Ativação de Neutrófilo , Suínos
19.
Cell Physiol Biochem ; 48(4): 1480-1491, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30107380

RESUMO

BACKGROUND/AIMS: The up-regulation of hepatocyte growth factor/receptor, HGF/Met, signal transduction is observed in most of human cancers. Specific heparan sulfate structures enhance the HGF/Met signaling at both cell and animal-based model systems. Biochemical studies indicate that heparan sulfate interacts with HGF and a natural occurring splicing variant NK1 of HGF with similar affinity. However, it is currently unknown if cell surface heparan sulfate binds to Met at physiological conditions and if specific cell surface heparan sulfate structures are required for effective HGF/Met or NK1/Met signaling. METHODS: An established flow sorting strategy was used to isolate a soluble Met recombinant protein-binding positive or negative CHO cell clones different only in specific heparan sulfate structures. The cell surface bindings were imaged by confocal microscopy and flow cytometry analysis. Glucosamine vs. galactosamine contents from media-, cell surface-, and cell association glycosaminoglycans were quantified by HPLC. 35S-sulfate labeled glycosaminoglycans were characterized by anion exchange and size-exclusion HPLC. Heparan sulfate disaccharide compositions were determined by HPLC-MS analysis. Western blot analyses of MAPK-p42/44 were used to monitor HGF- and NK1-facillated Met signaling. RESULTS: CHO-Positive but not CHO-Negative cell surface heparan sulfate bound to Met recombinant protein and HGF/NK1 further promoted the binding. Overall glycosaminoglycan analysis results indicated that the CHO-Negative cells had reduced amount of heparan sulfate, shorter chain length, and less 6-O-sulfated disaccharides compared to that of CHO-Positive cells. Moreover, CHO-Negative cells were defective in NK1/Met but not HGF/Met signaling. CONCLUSIONS: This study demonstrated that soluble Met recombinant protein bound to cell surface HS at physiological conditions and a Met /HGF or NK1/HS ternary signaling complex might be involved in Met signaling. Shorter HS chains and reduced 6-O-sulfation might be responsible for reduced Met binding and the diminished NK1-initiated signaling in the CHO-Negative cells. The unique CHO-Positive and CHO-Negative cell clones established in current study should be effective tools for studying the role of specific glycosaminoglycan structures in regulating Met signaling. Such knowledge should be useful in developing glycosaminoglycan-based compounds that target HGF/Met signaling.


Assuntos
Heparitina Sulfato/análise , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais , Animais , Células CHO , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Dissacarídeos/análise , Glicosaminoglicanos/análise , Glicosaminoglicanos/química , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Fator de Crescimento de Hepatócito/química , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligação Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores da Neurocinina-1/genética
20.
Biosci Rep ; 38(4)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30054430

RESUMO

Breast cancer remains a leading cause of cancer-related mortality in women. In recent years, regulation of genes involved in heparan sulphate (HS) biosynthesis have received increased interest as regulators of breast cancer cell adhesion and invasion. The exostosin (EXT) proteins are glycosyltransferases involved in elongation of HS, a regulator of intracellular signaling, cell-cell interactions, and tissue morphogenesis. The EXT family contains five members: EXT1, EXT2, and three EXT-like (EXTL) members: EXTL1, EXTL2, and EXTL3. While the expression levels of these enzymes change in tumor cells, little is known how this changes the structure and function of HS. In the present study, we investigated gene expression profiles of the EXT family members, their glycosyltransferase activities and HS structure in the estrogen receptor (ER), and progesterone receptor (PR) positive MCF7 cells, and the ER, PR, and human epidermal growth factor receptor-2 (HER2) negative MDA-MB-231 and HCC38 epithelial breast carcinoma cell lines. The gene expression profiles for MDA-MB-231 and HCC38 cells were very similar. In both cell lines EXTL2 was found to be up-regulated whereas EXT2 was down-regulated. Interestingly, despite having similar expression of HS elongation enzymes the two cell lines synthesized HS chains of significantly different lengths. Furthermore, both MDA-MB-231 and HCC38 exhibited markedly decreased levels of HS 6-O-sulphated disaccharides. Although the gene expression profiles of the elongation enzymes did not correlate with the length of HS chains, our results indicated specific differences in EXT enzyme levels and HS fine structure characteristic of the carcinogenic properties of the breast carcinoma cells.


Assuntos
Neoplasias da Mama/genética , N-Acetilglucosaminiltransferases/genética , RNA Mensageiro/genética , Transcriptoma , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Heparitina Sulfato/análise , Humanos , N-Acetilglucosaminiltransferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...