Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.651
Filtrar
1.
Ren Fail ; 46(1): 2337288, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38628140

RESUMO

The mechanisms underlying the complex correlation between immunoglobulin A nephropathy (IgAN) and inflammatory bowel disease (IBD) remain unclear. This study aimed to identify the optimal cross-talk genes, potential pathways, and mutual immune-infiltrating microenvironments between IBD and IgAN to elucidate the linkage between patients with IBD and IgAN. The IgAN and IBD datasets were obtained from the Gene Expression Omnibus (GEO). Three algorithms, CIBERSORTx, ssGSEA, and xCell, were used to evaluate the similarities in the infiltrating microenvironment between the two diseases. Weighted gene co-expression network analysis (WGCNA) was implemented in the IBD dataset to identify the major immune infiltration modules, and the Boruta algorithm, RFE algorithm, and LASSO regression were applied to filter the cross-talk genes. Next, multiple machine learning models were applied to confirm the optimal cross-talk genes. Finally, the relevant findings were validated using histology and immunohistochemistry analysis of IBD mice. Immune infiltration analysis showed no significant differences between IBD and IgAN samples in most immune cells. The three algorithms identified 10 diagnostic genes, MAPK3, NFKB1, FDX1, EPHX2, SYNPO, KDF1, METTL7A, RIDA, HSDL2, and RIPK2; FDX1 and NFKB1 were enhanced in the kidney of IBD mice. Kyoto Encyclopedia of Genes and Genomes analysis showed 15 mutual pathways between the two diseases, with lipid metabolism playing a vital role in the cross-talk. Our findings offer insights into the shared immune mechanisms of IgAN and IBD. These common pathways, diagnostic cross-talk genes, and cell-mediated abnormal immunity may inform further experimental studies.


Assuntos
Glomerulonefrite por IGA , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Glomerulonefrite por IGA/genética , Rim , Algoritmos , Perfilação da Expressão Gênica , Doenças Inflamatórias Intestinais/genética , Hidroxiesteroide Desidrogenases , Proteínas
2.
Org Biomol Chem ; 22(15): 3009-3018, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529785

RESUMO

Catalytic activity is undoubtedly a key focus in enzyme engineering. The complicated reaction conditions hinder some enzymes from industrialization even though they have relatively promising activity. This has occurred to some dehydrogenases. Hydroxysteroid dehydrogenases (HSDHs) specifically catalyze the conversion between hydroxyl and keto groups, and hold immense potential in the synthesis of steroid medicines. We underscored the importance of 7α-HSDH activity, and analyzed the overall robustness and underlying mechanisms. Employing a high-throughput screening approach, we comprehensively assessed a mutation library, and obtained a mutant with enhanced enzymatic activity and overall stability/tolerance. The superior mutant (I201M) was identified to harbor improved thermal stability, substrate susceptibility, cofactor affinity, as well as the yield. This mutant displayed a 1.88-fold increase in enzymatic activity, a 1.37-fold improvement in substrate tolerance, and a 1.45-fold increase in thermal stability when compared with the wild type (WT) enzyme. The I201M mutant showed a 2.25-fold increase in the kcat/KM ratio (indicative of a stronger binding affinity for the cofactor). This mutant did not exhibit the highest enzyme activity compared with all the tested mutants, but these improved characteristics contributed synergistically to the highest yield. When a substrate at 100 mM was present, the 24 h yield by I201M reached 89.7%, significantly higher than the 61.2% yield elicited by the WT enzyme. This is the first report revealing enhancement of the catalytic efficiency, cofactor affinity, substrate tolerance, and thermal stability of NAD(H)-dependent 7α-HSDH through a single-point mutation. The mutated enzyme reached the highest enzymatic activity of 7α-HSDH ever reported. High enzymatic activity is undoubtedly crucial for enabling the industrialization of an enzyme. Our findings demonstrated that, when compared with other mutants boasting even higher enzymatic activity, mutants with excellent overall robustness were superior for industrial applications. This principle was exemplified by highly active enzymes such as 7α-HSDH.


Assuntos
Hidroxiesteroide Desidrogenases , Mutação Puntual , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Mutação , Catálise , Cinética
3.
Toxicol Lett ; 395: 40-49, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555059

RESUMO

Pentachlorophenol (PCP) is a widely used pesticide. However, whether PCP and its metabolite chloranil have endocrine-disrupting effects by inhibiting placental 3ß-hydroxysteroid dehydrogenase 1 (3ß-HSD1) remains unclear. The study used in vitro assays with human and rat placental microsomes to measure 3ß-HSD activity as well as human JAr cells to evaluate progesterone production. The results showed that PCP exhibited moderate inhibition of human 3ß-HSD1, with an IC50 value of 29.83 µM and displayed mixed inhibition in terms of mode of action. Conversely, chloranil proved to be a potent inhibitor, demonstrating an IC50 value of 147 nM, and displaying a mixed mode of action. PCP significantly decreased progesterone production by JAr cells at 50 µM, while chloranil markedly reduced progesterone production at ≥1 µM. Interestingly, PCP and chloranil moderately inhibited rat placental homolog 3ß-HSD4, with IC50 values of 27.94 and 23.42 µM, respectively. Dithiothreitol (DTT) alone significantly increased human 3ß-HSD1 activity. Chloranil not PCP mediated inhibition of human 3ß-HSD1 activity was completely reversed by DTT and that of rat 3ß-HSD4 was partially reversed by DTT. Docking analysis revealed that both PCP and chloranil can bind to the catalytic domain of 3ß-HSDs. The difference in the amino acid residue Cys83 in human 3ß-HSD1 may explain why chloranil is a potent inhibitor through its interaction with the cysteine residue of human 3ß-HSD1. In conclusion, PCP is metabolically activated to chloranil as a potent inhibitor of human 3ß-HSD1.


Assuntos
Pentaclorofenol , Placenta , Humanos , Feminino , Ratos , Gravidez , Animais , Placenta/metabolismo , Pentaclorofenol/toxicidade , Pentaclorofenol/metabolismo , Cloranila/metabolismo , Progesterona/metabolismo , Ativação Metabólica , Modelos Moleculares , Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases
4.
Zhongguo Zhong Yao Za Zhi ; 49(2): 370-378, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403313

RESUMO

Digitoxin, an important secondary metabolite of Digitalis purpurea, is a commonly used cardiotonic in clinical practice. 3ß-Hydroxysteroid dehydrogenase(3ßHSD) is a key enzyme involved in the biosynthesis of digitoxin. It belongs to the short-chain dehydrogenase/reductase(SDR) family, playing a role in the biosynthesis of cardiac glycosides by oxidizing and isomerizing the precursor sterol. In this study, two 3ßHSD genes were cloned from D. purpurea. The results showed that the open reading frame(ORF) of Dp3ßHSD1 was 780 bp, encoding 259 amino acid residues. The ORF of Dp3ßHSD2 was 774 bp and encoded 257 residues. Dp3ßHSD1/2 had the cofactor binding site TGxxxA/GxG and the catalytic site YxxxK. In vitro experiments confirmed that Dp3ßHSD1/2 catalyzed the generation of progesterone from pregnenolone, and Dp3ßHSD1 had stronger catalytic capacity than Dp3ßHSD2. The expression level of Dp3ßHSD1 was much higher than that of Dp3ßHSD2 in leaves, and digitoxin was only accumulated in leaves. The results implied that Dp3ßHSD1 played a role in the dehydrogenation of pregnenolone to produce progesterone in the biosynthesis of digitoxin. This study provides a reference for further exploring the biosynthetic pathway of cardiac glycosides in D. purpurea.


Assuntos
Digitoxina , Progesterona , Clonagem Molecular , Pregnenolona/metabolismo , Hidroxiesteroide Desidrogenases
5.
Environ Sci Pollut Res Int ; 31(10): 15065-15077, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286926

RESUMO

The use of additives, especially colorants, in food and pharmaceutical industry is increasing dramatically. Currently, additives are classified as contaminants of emerging concern (CECs). Concerns have been raised about the potential hazards of food additives to reproductive organs and fertility. The present study investigates the reproductive toxicity of tartrazine (TRZ), a synthetic colorant, in male rats and aims to explore the curative effect of Ginkgo biloba extract (EGb) against TRZ-induced testicular toxicity. Twenty-four rats were divided into four groups: the control (0.5 ml distilled water), the EGb group (100 mg/kg EGb alone), the TRZ group (7.5 mg/kg TRZ alone), and the TRZ-EGb group (7.5 mg/kg TRZ plus 100 mg/kg EGb). The doses were administered orally in distilled water once daily for 28 days. Toxicity studies of TRZ investigated testicular redox state, serum gonadotropins, and testosterone levels, testicular 17 ß-hydroxysteroid dehydrogenase activity, sperm count and quality, levels of inflammatory cytokines, and caspase-3 expression as an apoptotic marker. Also, histopathological alterations of the testes were examined. TRZ significantly affected the testicular redox status as indicated by the increase in malondialdehyde and the decrease in reduced glutathione, superoxide dismutase, and catalase. It also disrupted serum gonadotropins (follicle stimulating hormone and luteinizing hormone) and testosterone levels and the activity of testicular 17ß-hydroxysteroid dehydrogenase. Additionally, TRZ adversely affected sperm count, motility, viability, and abnormality. Levels of tumor necrosis factor-α, interleukin-1ß, interleukin-6, and expression of caspase-3 were increased in the testes. Histopathological examination of the testes supported the alterations mentioned above. Administration of EGb significantly ameliorated TRZ-induced testicular toxicity in rats. In conclusion, EGb protected against TRZ-induced testicular toxicity through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.


Assuntos
Antioxidantes , Extrato de Ginkgo , Testículo , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Caspase 3/metabolismo , Tartrazina/toxicidade , Estresse Oxidativo , Ginkgo biloba , Extratos Vegetais/metabolismo , Hormônio Luteinizante , Anti-Inflamatórios/farmacologia , Testosterona , Hidroxiesteroide Desidrogenases/metabolismo , Hidroxiesteroide Desidrogenases/farmacologia , Água/metabolismo , Sementes
6.
J Steroid Biochem Mol Biol ; 236: 106424, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37939739

RESUMO

Bisphenol A (BPA) is a widely used plastic material and its potential endocrine disrupting effect has restricted its use and increasing use of BPA alternatives has raised health concerns. However, the effect of bisphenol alternatives on steroidogenesis remains unclear. The objective of this study was to compare inhibitory potencies of 10 BPA alternatives in the inhibition of gonadal 3ß-hydroxysteroid dehydrogenase (3ß-HSD) in three species (human, rat and mouse). The inhibitory potency for human 3ß-HSD2, rat 3ß-HSD1, and mouse 3ß-HSD6 ranged from bisphenol FL (IC50, 3.32 µM for human, 5.19 µM for rat, and 3.26 µM for mouse) to bisphenol E, F, and thiodiphenol (ineffective at 100 µM). Most BPA alternatives were mixed inhibitors of gonadal 3ß-HSD and they dose-dependently inhibited progesterone formation in KGN cells. Molecular docking analysis showed that all BPA analogs bind to steroid and NAD+ active sites. Lipophilicity of BPA alternatives was inversely correlated with IC50 values. In conclusion, BPA alternatives mostly can inhibit gonadal 3ß-HSDs and lipophilicity determines their inhibitory strength.


Assuntos
Compostos Benzidrílicos , Hidroxiesteroide Desidrogenases , Fenóis , Testículo , Ratos , Humanos , Camundongos , Animais , Masculino , Simulação de Acoplamento Molecular , Testículo/metabolismo , Relação Estrutura-Atividade , Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo
7.
Reprod Sci ; 31(1): 150-161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37648943

RESUMO

Metabolic inactivation of progesterone within uterine myocytes by 20α-hydroxysteroid dehydrogenase (20α-HSD) has been postulated as a mechanism contributing to functional progesterone withdrawal at term. In humans, 20α-HSD is encoded by the gene AKR1C1. Myometrial AKR1C1 mRNA abundance has been reported to increase significantly during labor at term. In spontaneous preterm labor, however, we previously found no increase in AKR1C1 mRNA level in the myometrium except for preterm labor associated with clinical chorioamnionitis. This suggests that increased 20α-HSD activity is a mechanism through which inflammation drives progesterone withdrawal in preterm labor. In this study, we have determined the effects of various treatments of therapeutic relevance on AKR1C1 expression in pregnant human myometrium in an ex vivo culture system. AKR1C1 expression increased spontaneously during 48 h culture (p < 0.0001), consistent with the myometrium transitioning to a labor-like phenotype ex vivo, as reported previously. Serum supplementation, prostaglandin F2α, phorbol myristate acetate, and mechanical stretch had no effect on the culture-induced increase, whereas progesterone (p = 0.0058) and cAMP (p = 0.0202) further upregulated AKR1C1 expression. In contrast, culture-induced upregulation of AKR1C1 expression was dose-dependently repressed by three histone/protein deacetylase inhibitors: trichostatin A at 5 (p = 0.0172) and 25 µM (p = 0.0115); suberoylanilide hydroxamic acid at 0.5 (p = 0.0070), 1 (p = 0.0045), 2.5 (p = 0.0181), 5 (p = 0.0066) and 25 µM (p = 0.0014); and suberoyl bis-hydroxamic acid at 5 (p = 0.0480) and 25 µM (p = 0.0238). We propose the inhibition of histone/protein deacetylation helps to maintain the anti-inflammatory, pro-quiescence signaling of progesterone in pregnant human myometrium by blocking its metabolic inactivation. Histone deacetylase inhibitors may represent a class of agents that preserve or restore the progesterone sensitivity of the pregnant uterus.


Assuntos
Trabalho de Parto Prematuro , Progesterona , Feminino , Humanos , Recém-Nascido , Gravidez , Histonas/metabolismo , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Miométrio/metabolismo , Trabalho de Parto Prematuro/metabolismo , Progesterona/metabolismo , RNA Mensageiro/metabolismo
8.
Anal Sci ; 40(1): 67-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37831314

RESUMO

Two novel abiraterone (Abi, 3ß-OH-Abi) metabolites in human serum were identified as 3α-OH-Abi and Δ5-Abi (D5A). Both metabolites were confirmed by their retention times on LC/MS and their product-ion mass spectra on LC-MS/MS compared to those of authentic compounds, which were chemically synthesized. The plausible metabolic pathways of these two metabolites are as follows: Abi is first oxidized to D5A by 3ß-hydroxysteroid dehydrogenase (3ß-HSD) and then irreversibly converted to Δ4-Abi (D4A) by ∆5-∆4 isomerase. Presumably, D5A detection is difficult because of its rapid conversion to D4A and its low concentration in serum samples. In contrast, the low concentration 3α-OH-Abi was generated by reducing the remaining D5A using 3α-hydroxysteroid dehydrogenase (3α-HSD).


Assuntos
Hidroxiesteroide Desidrogenases , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Redes e Vias Metabólicas
9.
Int J Biol Macromol ; 258(Pt 1): 128847, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123031

RESUMO

Hydroxysteroid dehydrogenases (HSDHs) are crucial for bile acid metabolism and influence the size of the bile acid pool and gut microbiota composition. HSDHs with high activity, thermostability, and substrate selectivity are the basis for constructing engineered bacteria for disease treatment. In this study, we designed mutations at the cofactor binding site involving Thr15 and Arg16 residues of HSDH St-2-2. The T15A, R16A, and R16Q mutants exhibited 7.85-, 2.50-, and 4.35-fold higher catalytic activity than the wild type, respectively, while also displaying an altered substrate preference (from taurocholic acid (TCA) to taurochenodeoxycholic acid (TCDCA)). These mutants showed lower Km and higher kcat values, indicating stronger binding to the substrate and resulting in 3190-, 3123-, and 3093-fold higher kcat/Km values for TCDCA oxidation. Furthermore, the Tm values of the T15A, R16A, and R16Q mutants were found to increase by 4.3 °C, 6.0 °C, and 7.0 °C, respectively. Molecular structure analysis indicated that reshaped internal hydrogens and surface mutations could improve catalytic activity and thermostability, and altered interactions among the catalytic triad, cofactor binding sites, and substrates could change substrate preference. This work provides valuable insights into modifying substrate preference as well as enhancing the catalytic activity and thermostability of HSDHs by targeting the cofactor binding site.


Assuntos
Bactérias , Hidroxiesteroide Desidrogenases , Bactérias/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Ácidos e Sais Biliares , Sítios de Ligação , Cinética
10.
Org Lett ; 26(1): 127-131, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38127069

RESUMO

A highly selective hydrogenation of 3-keto in steroids to 3-hydroxyl steroids catalyzed by hydroxysteroid dehydrogenases (HSDHs) was demonstrated. The Ct3α-HSDH-catalyzed hydrogenation generated 3α-hydroxyl steroids as the main enantiopure isomers in high yields, while the Ss3ß-HSDH catalytic system afforded 3ß-hydroxyl steroids in excellent yields. In both catalytic systems, the hydrogenation proceeded regioselectively at 3-keto with 7-, 11-, 17-, and 20-keto almost unreacted, and chemoselectively with the C═C bond and ester group unattacked. Our HSDH-promoted hydrogenation showed advantages like high regio-, chemo-, and enantioselectivity, good yields, mild conditions, a wide substrate scope, and being suitable for gram-scale synthesis. Notably, bioactive molecules like dehydroepiandrosterone, brienolone, and alfaxalone were obtained facilely in high yields via our hydrogenation approach.


Assuntos
Hidroxiesteroide Desidrogenases , Esteroides , Hidroxiesteroide Desidrogenases/metabolismo , Hidrogenação , Estereoisomerismo , Catálise
12.
Eur Rev Med Pharmacol Sci ; 27(6 Suppl): 127-136, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38112953

RESUMO

OBJECTIVE: Lipedema is a debilitating chronic condition predominantly affecting women, characterized by the abnormal accumulation of fat in a symmetrical, bilateral pattern in the extremities, often coinciding with hormonal imbalances. PATIENTS AND METHODS: Despite the conjectured role of sex hormones in its etiology, a definitive link has remained elusive. This study explores the case of a patient possessing a mutation deletion within the C-terminal region of Aldo-keto reductases Member C2 (AKR1C2), Ser320PheTer2, that could lead to heightened enzyme activity. A cohort of 19 additional lipedema patients and 2 additional affected family members14 were enrolled in this study. The two additional affected family members are relatives of the patient with the AKR1C1 L213Q variant, which is included in the 19 cohorts and described in literature. RESULTS: Our investigation revealed that AKR1C2 was overexpressed, as quantified by qPCR, in 5 out of 21 (24%) lipedema patients who did not possess mutations in the AKR1C2 gene. Collectively, these findings implicate AKR1C2 in the pathogenesis of lipedema, substantiating its causative role. CONCLUSIONS: This study demonstrates that the activating mutation in the enzyme or its overexpression is a causative factor in the development of lipedema. Further exploration and replication in diverse populations will bolster our understanding of this significant connection.


Assuntos
Hidroxiesteroide Desidrogenases , Lipedema , Humanos , Feminino , Aldo-Ceto Redutases/genética , Hidroxiesteroide Desidrogenases/genética , Mutação
13.
Biomed Environ Sci ; 36(11): 1015-1027, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38098322

RESUMO

Objective: This study aimed to compare 9 perfluoroalkyl sulfonic acids (PFSA) with carbon chain lengths (C4-C12) to inhibit human placental 3ß-hydroxysteroid dehydrogenase 1 (3ß-HSD1), aromatase, and rat 3ß-HSD4 activities. Methods: Human and rat placental 3ß-HSDs activities were determined by converting pregnenolone to progesterone and progesterone secretion in JEG-3 cells was determined using HPLC/MS-MS, and human aromatase activity was determined by radioimmunoassay. Results: PFSA inhibited human 3ß-HSD1 structure-dependently in the order: perfluorooctanesulfonic acid (PFOS, half-maximum inhibitory concentration, IC 50: 9.03 ± 4.83 µmol/L) > perfluorodecanesulfonic acid (PFDS, 42.52 ± 8.99 µmol/L) > perfluoroheptanesulfonic acid (PFHpS, 112.6 ± 29.39 µmol/L) > perfluorobutanesulfonic acid (PFBS) = perfluoropentanesulfonic acid (PFPS) = perfluorohexanesulfonic acid (PFHxS) = perfluorododecanesulfonic acid (PFDoS) (ineffective at 100 µmol/L). 6:2FTS (1H, 1H, 2H, 2H-perfluorooctanesulfonic acid) and 8:2FTS (1H, 1H, 2H, 2H-perfluorodecanesulfonic acid) did not inhibit human 3ß-HSD1. PFOS and PFHpS are mixed inhibitors, whereas PFDS is a competitive inhibitor. Moreover, 1-10 µmol/L PFOS and PFDS significantly reduced progesterone biosynthesis in JEG-3 cells. Docking analysis revealed that PFSA binds to the steroid-binding site of human 3ß-HSD1 in a carbon chain length-dependent manner. All 100 µmol/L PFSA solutions did not affect rat 3ß-HSD4 and human placental aromatase activity. Conclusion: Carbon chain length determines inhibitory potency of PFSA on human placental 3ß-HSD1 in a V-shaped transition at PFOS (C8), with inhibitory potency of PFOS > PFDS > PFHpS > PFBS = PFPS = PFHxS = PFDoS = 6:2FTS = 8:2FTS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Gravidez , Feminino , Ratos , Animais , Placenta , Progesterona/metabolismo , Progesterona/farmacologia , Aromatase/metabolismo , Aromatase/farmacologia , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Hidroxiesteroide Desidrogenases/metabolismo , Hidroxiesteroide Desidrogenases/farmacologia
14.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966114

RESUMO

Half of all men with advanced prostate cancer (PCa) inherit at least 1 copy of an adrenal-permissive HSD3B1 (1245C) allele, which increases levels of 3ß-hydroxysteroid dehydrogenase 1 (3ßHSD1) and promotes intracellular androgen biosynthesis. Germline inheritance of the adrenally permissive allele confers worse outcomes in men with advanced PCa. We investigated whether HSD3B1 (1245C) drives resistance to combined androgen deprivation and radiotherapy. Adrenally permissive 3ßHSD1 enhanced resistance to radiotherapy in PCa cell lines and xenograft models engineered to mimic the human adrenal/gonadal axis during androgen deprivation. The allele-specific effects on radiosensitivity were dependent on availability of DHEA, the substrate for 3ßHSD1. In lines expressing the HSD3B1 (1245C) allele, enhanced expression of DNA damage response (DDR) genes and more rapid DNA double-strand break (DSB) resolution were observed. A correlation between androgen receptor (AR) expression and increased DDR gene expression was confirmed in 680 radical prostatectomy specimens. Treatment with the nonsteroidal antiandrogen enzalutamide reversed the resistant phenotype of HSD3B1 (1245C) PCa in vitro and in vivo. In conclusion, 3ßHSD1 promotes prostate cancer resistance to combined androgen deprivation and radiotherapy by upregulating DNA DSB repair. This work supports prospective validation of early combined androgen blockade for high-risk men harboring the HSD3B1 (1245C) allele.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , DNA , Genótipo , Hidroxiesteroide Desidrogenases/genética , Complexos Multienzimáticos/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
15.
J Agric Food Chem ; 71(49): 19672-19681, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38016669

RESUMO

Enzymatic synthesis of ursodeoxycholic acid (UDCA) catalyzed by an NADH-dependent 7ß-hydroxysteroid dehydrogenase (7ß-HSDH) is more economic compared with an NADPH-dependent 7ß-HSDH when considering the much higher cost of NADP+/NADPH than that of NAD+/NADH. However, the poor catalytic performance of NADH-dependent 7ß-HSDH significantly limits its practical applications. Herein, machine-learning-guided protein engineering was performed on an NADH-dependent Rt7ß-HSDHM0 from Ruminococcus torques. We combined random forest, Gaussian Naïve Bayes classifier, and Gaussian process regression with limited experimental data, resulting in the best variant Rt7ß-HSDHM3 (R40I/R41K/F94Y/S196A/Y253F) with improvements in specific activity and half-life (40 °C) by 4.1-fold and 8.3-fold, respectively. The preparative biotransformation using a "two stage in one pot" sequential process coupled with Rt7ß-HSDHM3 exhibited a space-time yield (STY) of 192 g L-1 d-1, which is so far the highest productivity for the biosynthesis of UDCA from chenodeoxycholic acid (CDCA) with NAD+ as a cofactor. More importantly, the cost of raw materials for the enzymatic production of UDCA employing Rt7ß-HSDHM3 decreased by 22% in contrast to that of Rt7ß-HSDHM0, indicating the tremendous potential of the variant Rt7ß-HSDHM3 for more efficient and economic production of UDCA.


Assuntos
NAD , Ácido Ursodesoxicólico , Ácido Ursodesoxicólico/metabolismo , NADP/metabolismo , Teorema de Bayes , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo
16.
J Transl Med ; 21(1): 825, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978513

RESUMO

BACKGROUND: Causative genetic variants cannot yet be found for many disorders with a clear heritable component, including chronic fatigue disorders like myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). These conditions may involve genes in difficult-to-align genomic regions that are refractory to short read approaches. Structural variants in these regions can be particularly hard to detect or define with short reads, yet may account for a significant number of cases. Long read sequencing can overcome these difficulties but so far little data is available regarding the specific analytical challenges inherent in such regions, which need to be taken into account to ensure that variants are correctly identified. Research into chronic fatigue disorders faces the additional challenge that the heterogeneous patient populations likely encompass multiple aetiologies with overlapping symptoms, rather than a single disease entity, such that each individual abnormality may lack statistical significance within a larger sample. Better delineation of patient subgroups is needed to target research and treatment. METHODS: We use nanopore sequencing in a case of unexplained severe fatigue to identify and fully characterise a large inversion in a highly homologous region spanning the AKR1C gene locus, which was indicated but could not be resolved by short-read sequencing. We then use GC-MS/MS serum steroid analysis to investigate the functional consequences. RESULTS: Several commonly used bioinformatics tools are confounded by the homology but a combined approach including visual inspection allows the variant to be accurately resolved. The DNA inversion appears to increase the expression of AKR1C2 while limiting AKR1C1 activity, resulting in a relative increase of inhibitory GABAergic neurosteroids and impaired progesterone metabolism which could suppress neuronal activity and interfere with cellular function in a wide range of tissues. CONCLUSIONS: This study provides an example of how long read sequencing can improve diagnostic yield in research and clinical care, and highlights some of the analytical challenges presented by regions containing tandem arrays of genes. It also proposes a novel gene associated with a novel disease aetiology that may be an underlying cause of complex chronic fatigue. It reveals biomarkers that could now be assessed in a larger cohort, potentially identifying a subset of patients who might respond to treatments suggested by the aetiology.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Espectrometria de Massas em Tandem , Biomarcadores , Hidroxiesteroide Desidrogenases
17.
Hum Exp Toxicol ; 42: 9603271231205859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37807851

RESUMO

2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a potential environmental toxin that has the ability to affect male reproductive tract. Rhamnazin is a naturally present flavone that displays multiple medicinal properties. Therefore, the current study was designed to determine the mitigative role of rhamnazin against TCDD induced reproductive damage. 48 adult male albino rats were randomly separated into four groups: control, TCDD (10 µgkg-1), TCDD + rhamnazin (10 µgkg-1 + 5 mgkg-1 respectively) and rhamnazin (5 mgkg-1). The trial was conducted for 56 days. TCDD intoxication notably affected superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR) and catalase (CAT) activities, besides reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations were augmented. TCDD administration also lowered sperm motility, viability, sperm number, while it augmented the sperm morphological (tail, neck/midpiece and head) anomalies. Moreover, it decreased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and plasma testosterone. Moreover, TCDD reduced steroidogenic enzymes i.e., 17-beta hydroxysteroid dehydrogenase (17ß-HSD), steroidogenic acute regulatory protein (StAR) and 3-beta hydroxysteroid dehydrogenase (3ß-HSD) as well as B-cell lymphoma 2 (Bcl-2) expressions, but increased the expressions of Bcl-2-associated X protein (Bax) and cysteine-aspartic acid protease (Caspase-3). Furthermore, TCDD exposure also induced histopathological anomalies in testicular tissues. However, the supplementation of rhamnazin recovered all the mentioned damages in the testicles. The outcomes revealed that rhamnazin can ameliorate TCDD induced reproductive toxicity due to its anti-oxidant, anti-apoptotic and androgenic nature.


Assuntos
Dibenzodioxinas Policloradas , Testículo , Ratos , Animais , Masculino , Testículo/patologia , Dibenzodioxinas Policloradas/toxicidade , Motilidade dos Espermatozoides , Sêmen/metabolismo , Testosterona , Antioxidantes/farmacologia , Hidroxiesteroide Desidrogenases/metabolismo , Estresse Oxidativo
18.
World J Surg Oncol ; 21(1): 293, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37718459

RESUMO

BACKGROUND: Human hydroxysteroid dehydrogenase-like 2 (HSDL2), which regulates cancer progression, is involved in lipid metabolism. However, the role of HSDL2 in cholangiocarcinoma (CCA) and the mechanism by which it regulates CCA progression by modulating ferroptosis are unclear. METHODS: HSDL2 expression levels in CCA cells and tissues were determined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. The overall survival and disease-free survival of patients with high vs. low HSDL2 expression were evaluated using Kaplan-Meier curves. The proliferation, migration, and invasion of CCA cells were assessed using Cell Counting Kit-8, colony formation, 5-ethynyl-2'-deoxyuridine DNA synthesis, and transwell assays. The effect of p53 on tumor growth was explored using a xenograft mouse model. The expression of SLC7A11 in patients with CCA was analyzed using immunofluorescence. Ferroptosis levels were measured by flow cytometry, malondialdehyde assay, and glutathione assay. HSDL2-regulated signaling pathways were analyzed by transcriptome sequencing. The correlation between p53 and SLC7A11 was assessed using bioinformatics and luciferase reporter assays. RESULTS: HSDL2 expression was lower in primary human CCA tissues than in matched adjacent non-tumorous bile duct tissues. HSDL2 downregulation was a significant risk factor for shorter overall survival and disease-free survival in patients with CCA. In addition, HSDL2 knockdown enhanced the proliferation, migration, and invasion of CCA cells. The transcriptome analysis of HSDL2 knockdown cells showed that differentially expressed genes were significantly enriched in the p53 signaling pathway, and HSDL2 downregulation increased SLC7A11 levels. These findings were consistent with the qRT-PCR and western blotting results. Other experiments showed that p53 expression modulated the effect of HSDL2 on CCA proliferation in vivo and in vitro and that p53 bound to the SLC7A11 promoter to inhibit ferroptosis. CONCLUSIONS: HSDL2 knockdown promotes CCA progression by inhibiting ferroptosis through the p53/SLC7A11 axis. Thus, HSDL2 is a potential prognostic marker and therapeutic target for CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ferroptose , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Colangiocarcinoma/genética , Modelos Animais de Doenças , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Sistema y+ de Transporte de Aminoácidos/genética , Hidroxiesteroide Desidrogenases
19.
Methods Mol Biol ; 2704: 25-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642836

RESUMO

Interest about the isolation and characterization of steroid-catabolizing bacteria has increased over time due to the massive release of these recalcitrant compounds and their deleterious effects or their biotransformation derivatives as endocrine disruptors for wildlife, as well as their potential use in biotechnological approaches for the synthesis of pharmacological compounds. Thus, in this chapter, an isolation protocol to select environmental bacteria able to degrade sterols, bile acids, and androgens is shown. Moreover, procedures for the determination of cholesterol oxidase or different hydroxysteroid dehydrogenase activities in Pseudomonas putida DOC21, Rhodococcus sp. HE24.12, Gordonia sp. HE24.4J and Gordonia sp. HE24.3 are also detailed.


Assuntos
Fitosteróis , Pseudomonas putida , Rhodococcus , Esteróis , Ácidos e Sais Biliares , Colesterol Oxidase , Hidroxiesteroide Desidrogenases
20.
Neoplasma ; 70(3): 319-332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37498066

RESUMO

Aldo-keto reductases (ARKs), a group of reductases that rely on nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) to catalyze carbonyl, are widely found in various organisms, which play an important role in the physiological and pathological processes of human. Aldo-keto reductase family 1 member C2 (AKR1C2) as a member of the human ARKs family, can regulate steroid hormones and is abnormally expressed in many cancers. According to whether the tumor can be affected by hormones, we divide malignancies into hormone-dependent and hormone-independent types. Studies have shown that AKR1C2 is involved in regulating tumor invasion, migration, and other malignant phenotypes, eliminating reactive oxygen species (ROS), promoting chemotherapy resistance of tumor cells, and has prognostic value in some cancers. Here, we focus on the role and clinical significance of AKR1C2 in different types of tumors.


Assuntos
Neoplasias , Humanos , Prognóstico , Aldo-Ceto Redutases/genética , Neoplasias/tratamento farmacológico , Resistência a Medicamentos , Hormônios , Hidroxiesteroide Desidrogenases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...