Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
Org Biomol Chem ; 22(15): 3009-3018, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529785

RESUMO

Catalytic activity is undoubtedly a key focus in enzyme engineering. The complicated reaction conditions hinder some enzymes from industrialization even though they have relatively promising activity. This has occurred to some dehydrogenases. Hydroxysteroid dehydrogenases (HSDHs) specifically catalyze the conversion between hydroxyl and keto groups, and hold immense potential in the synthesis of steroid medicines. We underscored the importance of 7α-HSDH activity, and analyzed the overall robustness and underlying mechanisms. Employing a high-throughput screening approach, we comprehensively assessed a mutation library, and obtained a mutant with enhanced enzymatic activity and overall stability/tolerance. The superior mutant (I201M) was identified to harbor improved thermal stability, substrate susceptibility, cofactor affinity, as well as the yield. This mutant displayed a 1.88-fold increase in enzymatic activity, a 1.37-fold improvement in substrate tolerance, and a 1.45-fold increase in thermal stability when compared with the wild type (WT) enzyme. The I201M mutant showed a 2.25-fold increase in the kcat/KM ratio (indicative of a stronger binding affinity for the cofactor). This mutant did not exhibit the highest enzyme activity compared with all the tested mutants, but these improved characteristics contributed synergistically to the highest yield. When a substrate at 100 mM was present, the 24 h yield by I201M reached 89.7%, significantly higher than the 61.2% yield elicited by the WT enzyme. This is the first report revealing enhancement of the catalytic efficiency, cofactor affinity, substrate tolerance, and thermal stability of NAD(H)-dependent 7α-HSDH through a single-point mutation. The mutated enzyme reached the highest enzymatic activity of 7α-HSDH ever reported. High enzymatic activity is undoubtedly crucial for enabling the industrialization of an enzyme. Our findings demonstrated that, when compared with other mutants boasting even higher enzymatic activity, mutants with excellent overall robustness were superior for industrial applications. This principle was exemplified by highly active enzymes such as 7α-HSDH.


Assuntos
Hidroxiesteroide Desidrogenases , Mutação Puntual , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Mutação , Catálise , Cinética
2.
Reprod Sci ; 31(1): 150-161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37648943

RESUMO

Metabolic inactivation of progesterone within uterine myocytes by 20α-hydroxysteroid dehydrogenase (20α-HSD) has been postulated as a mechanism contributing to functional progesterone withdrawal at term. In humans, 20α-HSD is encoded by the gene AKR1C1. Myometrial AKR1C1 mRNA abundance has been reported to increase significantly during labor at term. In spontaneous preterm labor, however, we previously found no increase in AKR1C1 mRNA level in the myometrium except for preterm labor associated with clinical chorioamnionitis. This suggests that increased 20α-HSD activity is a mechanism through which inflammation drives progesterone withdrawal in preterm labor. In this study, we have determined the effects of various treatments of therapeutic relevance on AKR1C1 expression in pregnant human myometrium in an ex vivo culture system. AKR1C1 expression increased spontaneously during 48 h culture (p < 0.0001), consistent with the myometrium transitioning to a labor-like phenotype ex vivo, as reported previously. Serum supplementation, prostaglandin F2α, phorbol myristate acetate, and mechanical stretch had no effect on the culture-induced increase, whereas progesterone (p = 0.0058) and cAMP (p = 0.0202) further upregulated AKR1C1 expression. In contrast, culture-induced upregulation of AKR1C1 expression was dose-dependently repressed by three histone/protein deacetylase inhibitors: trichostatin A at 5 (p = 0.0172) and 25 µM (p = 0.0115); suberoylanilide hydroxamic acid at 0.5 (p = 0.0070), 1 (p = 0.0045), 2.5 (p = 0.0181), 5 (p = 0.0066) and 25 µM (p = 0.0014); and suberoyl bis-hydroxamic acid at 5 (p = 0.0480) and 25 µM (p = 0.0238). We propose the inhibition of histone/protein deacetylation helps to maintain the anti-inflammatory, pro-quiescence signaling of progesterone in pregnant human myometrium by blocking its metabolic inactivation. Histone deacetylase inhibitors may represent a class of agents that preserve or restore the progesterone sensitivity of the pregnant uterus.


Assuntos
Trabalho de Parto Prematuro , Progesterona , Feminino , Humanos , Recém-Nascido , Gravidez , Histonas/metabolismo , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Miométrio/metabolismo , Trabalho de Parto Prematuro/metabolismo , Progesterona/metabolismo , RNA Mensageiro/metabolismo
3.
Eur Rev Med Pharmacol Sci ; 27(6 Suppl): 127-136, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38112953

RESUMO

OBJECTIVE: Lipedema is a debilitating chronic condition predominantly affecting women, characterized by the abnormal accumulation of fat in a symmetrical, bilateral pattern in the extremities, often coinciding with hormonal imbalances. PATIENTS AND METHODS: Despite the conjectured role of sex hormones in its etiology, a definitive link has remained elusive. This study explores the case of a patient possessing a mutation deletion within the C-terminal region of Aldo-keto reductases Member C2 (AKR1C2), Ser320PheTer2, that could lead to heightened enzyme activity. A cohort of 19 additional lipedema patients and 2 additional affected family members14 were enrolled in this study. The two additional affected family members are relatives of the patient with the AKR1C1 L213Q variant, which is included in the 19 cohorts and described in literature. RESULTS: Our investigation revealed that AKR1C2 was overexpressed, as quantified by qPCR, in 5 out of 21 (24%) lipedema patients who did not possess mutations in the AKR1C2 gene. Collectively, these findings implicate AKR1C2 in the pathogenesis of lipedema, substantiating its causative role. CONCLUSIONS: This study demonstrates that the activating mutation in the enzyme or its overexpression is a causative factor in the development of lipedema. Further exploration and replication in diverse populations will bolster our understanding of this significant connection.


Assuntos
Hidroxiesteroide Desidrogenases , Lipedema , Humanos , Feminino , Aldo-Ceto Redutases/genética , Hidroxiesteroide Desidrogenases/genética , Mutação
4.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966114

RESUMO

Half of all men with advanced prostate cancer (PCa) inherit at least 1 copy of an adrenal-permissive HSD3B1 (1245C) allele, which increases levels of 3ß-hydroxysteroid dehydrogenase 1 (3ßHSD1) and promotes intracellular androgen biosynthesis. Germline inheritance of the adrenally permissive allele confers worse outcomes in men with advanced PCa. We investigated whether HSD3B1 (1245C) drives resistance to combined androgen deprivation and radiotherapy. Adrenally permissive 3ßHSD1 enhanced resistance to radiotherapy in PCa cell lines and xenograft models engineered to mimic the human adrenal/gonadal axis during androgen deprivation. The allele-specific effects on radiosensitivity were dependent on availability of DHEA, the substrate for 3ßHSD1. In lines expressing the HSD3B1 (1245C) allele, enhanced expression of DNA damage response (DDR) genes and more rapid DNA double-strand break (DSB) resolution were observed. A correlation between androgen receptor (AR) expression and increased DDR gene expression was confirmed in 680 radical prostatectomy specimens. Treatment with the nonsteroidal antiandrogen enzalutamide reversed the resistant phenotype of HSD3B1 (1245C) PCa in vitro and in vivo. In conclusion, 3ßHSD1 promotes prostate cancer resistance to combined androgen deprivation and radiotherapy by upregulating DNA DSB repair. This work supports prospective validation of early combined androgen blockade for high-risk men harboring the HSD3B1 (1245C) allele.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , DNA , Genótipo , Hidroxiesteroide Desidrogenases/genética , Complexos Multienzimáticos/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
5.
J Agric Food Chem ; 71(49): 19672-19681, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38016669

RESUMO

Enzymatic synthesis of ursodeoxycholic acid (UDCA) catalyzed by an NADH-dependent 7ß-hydroxysteroid dehydrogenase (7ß-HSDH) is more economic compared with an NADPH-dependent 7ß-HSDH when considering the much higher cost of NADP+/NADPH than that of NAD+/NADH. However, the poor catalytic performance of NADH-dependent 7ß-HSDH significantly limits its practical applications. Herein, machine-learning-guided protein engineering was performed on an NADH-dependent Rt7ß-HSDHM0 from Ruminococcus torques. We combined random forest, Gaussian Naïve Bayes classifier, and Gaussian process regression with limited experimental data, resulting in the best variant Rt7ß-HSDHM3 (R40I/R41K/F94Y/S196A/Y253F) with improvements in specific activity and half-life (40 °C) by 4.1-fold and 8.3-fold, respectively. The preparative biotransformation using a "two stage in one pot" sequential process coupled with Rt7ß-HSDHM3 exhibited a space-time yield (STY) of 192 g L-1 d-1, which is so far the highest productivity for the biosynthesis of UDCA from chenodeoxycholic acid (CDCA) with NAD+ as a cofactor. More importantly, the cost of raw materials for the enzymatic production of UDCA employing Rt7ß-HSDHM3 decreased by 22% in contrast to that of Rt7ß-HSDHM0, indicating the tremendous potential of the variant Rt7ß-HSDHM3 for more efficient and economic production of UDCA.


Assuntos
NAD , Ácido Ursodesoxicólico , Ácido Ursodesoxicólico/metabolismo , NADP/metabolismo , Teorema de Bayes , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo
6.
Neoplasma ; 70(3): 319-332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37498066

RESUMO

Aldo-keto reductases (ARKs), a group of reductases that rely on nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) to catalyze carbonyl, are widely found in various organisms, which play an important role in the physiological and pathological processes of human. Aldo-keto reductase family 1 member C2 (AKR1C2) as a member of the human ARKs family, can regulate steroid hormones and is abnormally expressed in many cancers. According to whether the tumor can be affected by hormones, we divide malignancies into hormone-dependent and hormone-independent types. Studies have shown that AKR1C2 is involved in regulating tumor invasion, migration, and other malignant phenotypes, eliminating reactive oxygen species (ROS), promoting chemotherapy resistance of tumor cells, and has prognostic value in some cancers. Here, we focus on the role and clinical significance of AKR1C2 in different types of tumors.


Assuntos
Neoplasias , Humanos , Prognóstico , Aldo-Ceto Redutases/genética , Neoplasias/tratamento farmacológico , Resistência a Medicamentos , Hormônios , Hidroxiesteroide Desidrogenases/genética
7.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298287

RESUMO

Glucocorticoids are metabolized by the CYP3A isoform of cytochrome P450 and by 11-ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD-1). Experimental data suggest that post-traumatic stress disorder (PTSD) is associated with an increase in hepatic 11ß-HSD-1 activity and a concomitant decrease in hepatic CYP3A activity. Trans-resveratrol, a natural polyphenol, has been extensively studied for its antipsychiatric properties. Recently, protective effects of trans-resveratrol were found in relation to PTSD. Treatment of PTSD rats with trans-resveratrol allowed the rats to be divided into two phenotypes. The first phenotype is treatment-sensitive rats (TSR), and the second phenotype is treatment-resistant rats (TRRs). In TSR rats, trans-resveratrol ameliorated anxiety-like behavior and reversed plasma corticosterone concentration abnormalities. In contrast, in TRR rats, trans-resveratrol aggravated anxiety-like behavior and decreased plasma corticosterone concentration. In TSR rats, hepatic 11ß-HSD-1 activity was suppressed, with a concomitant increase in CYP3A activity. In TRR rats, the activities of both enzymes were suppressed. Thus, the resistance of PTSD rats to trans-resveratrol treatment is associated with abnormalities in hepatic metabolism of glucocorticoids. The free energy of binding of resveratrol, cortisol, and corticosterone to the human CYP3A protein was determined using the molecular mechanics Poisson-Boltzmann surface area approach, indicating that resveratrol could affect CYP3A activity.


Assuntos
Glucocorticoides , Transtornos de Estresse Pós-Traumáticos , Ratos , Humanos , Animais , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Corticosterona , Resveratrol/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Citocromo P-450 CYP3A , 11-beta-Hidroxiesteroide Desidrogenases , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(4): 544-551, 2023 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-37202189

RESUMO

OBJECTIVE: To analyze the expression of hydroxysteroid dehydrogenase like 2 (HSDL2) in rectal cancer tissues and the effect of changes in HSDL2 expression level on proliferation of rectal cancer cells. METHODS: Clinical data and tissue samples of 90 patients with rectal cancer admitted to our hospital from January 2020 to June 2022 were collected from the prospective clinical database and biological specimen database. The expression level of HSDL2 in rectal cancer and adjacent tissues was detected by immunohistochemistry, and based on the median level of HSDL2 expression, the patients were divided into high expression group (n=45) and low expression group (n=45) for analysis the correlation between HSDL2 expression level and the clinicopathological parameters. GO and KEGG enrichment analyses were performed to explore the role of HSDL2 in rectal cancer progression. The effects of changes in HSDL2 expression levels on rectal cancer cell proliferation, cell cycle and protein expressions were investigated in SW480 cells with lentivirus-mediated HSDL2 silencing or HSDL2 overexpression using CCK-8 assay, flow cytometry and Western blotting. RESULTS: The expressions of HSDL2 and Ki67 were significantly higher in rectal cancer tissues than in the adjacent tissues (P < 0.05). Spearman correlation analysis showed that the expression of HSDL2 protein was positively correlated with Ki67, CEA and CA19-9 expressions (P < 0.01). The rectal cancer patients with high HSDL2 expressions had significantly higher likelihood of having CEA ≥5 µg/L, CA19-9 ≥37 kU/L, T3-4 stage, and N2-3 stage than those with a low HSDL2 expression (P < 0.05). GO and KEGG analysis showed that HSDL2 was mainly enriched in DNA replication and cell cycle. In SW480 cells, HSDL2 overexpression significantly promoted cell proliferation, increased cell percentage in S phase, and enhanced the expression levels of CDK6 and cyclinD1 (P < 0.05), and HSDL2 silencing produced the opposite effects (P < 0.05). CONCLUSION: The high expression of HSDL2 in rectal cancer participates in malignant progression of the tumor by promoting the proliferation and cell cycle progress of the cancer cells.


Assuntos
Antígeno CA-19-9 , Neoplasias Retais , Humanos , Antígeno Ki-67/metabolismo , Estudos Prospectivos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Retais/genética , Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo
9.
Reprod Sci ; 30(8): 2512-2523, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36765000

RESUMO

The mechanism by which human labor is initiated in the presence of elevated circulating progesterone levels remains unknown. Recent evidence indicates that the progesterone-metabolizing enzyme, 20α-hydroxysteroid dehydrogenase (20α-HSD), encoded by the gene AKR1C1, may contribute to functional progesterone withdrawal. We found that AKR1C1 expression significantly increased with labor onset in term myometrium, but not in preterm myometrium. Among preterm laboring deliveries, clinically diagnosed chorioamnionitis was associated with significantly elevated AKR1C1 expression. AKR1C1 expression positively correlated with BMI before labor and negatively correlated with BMI during labor. Analysis by fetal sex showed that AKR1C1 expression was significantly higher in women who delivered male babies compared to women who delivered female babies at term, but not preterm. Further, in pregnancies where the fetus was female, AKR1C1 expression positively correlated with the mother's age and BMI at the time of delivery. In conclusion, the increase in myometrial AKR1C1 expression with term labor is consistent with 20α-HSD playing a role in local progesterone metabolism to promote birth. Interestingly, this role appears to be specific to term pregnancies where the fetus is male. Upregulated AKR1C1 expression in the myometrium at preterm in-labor with clinical chorioamnionitis suggests that increased 20α-HSD activity is a mechanism through which inflammation drives progesterone withdrawal in preterm labor. The link between AKR1C1 expression and maternal BMI may provide insight into why maternal obesity is often associated with dysfunctional labor. Higher myometrial AKR1C1 expression in male pregnancies may indicate fetal sex-related differences in the mechanisms that precipitate labor onset at term.


Assuntos
Corioamnionite , Trabalho de Parto Prematuro , Nascimento Prematuro , Recém-Nascido , Humanos , Feminino , Masculino , Gravidez , Progesterona/metabolismo , Miométrio/metabolismo , Índice de Massa Corporal , Nascimento Prematuro/metabolismo , Corioamnionite/metabolismo , Trabalho de Parto Prematuro/metabolismo , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-36754112

RESUMO

Glucocorticoids (GCs) are an essential mediator hormone that can regulate animal growth, behavior, the phenotype of offspring, and so on, while GCs in poultry are predominantly corticosterones. The biological activity of GCs is mainly regulated by the intracellular metabolic enzymes, including 11ß-hydroxysteroid dehydrogenases 1 (11ß-HSD1), 11ß-hydroxysteroid dehydrogenases 2 (11ß-HSD2), and 20-hydroxysteroid dehydrogenase (20-HSD). To investigate the embryonic mechanisms of phenotypic differences between breeds, we compared the expression of corticosterone metabolic enzyme genes in the yolk-sac membrane and chorioallantoic membrane (CAM). We described the tissue distribution and ontogenic patterns of corticosterone metabolic enzymes during embryonic incubation between Tibetan and broiler chickens. Forty fertilized eggs from Tibetan and broiler chickens were incubated under hypoxic and normoxic conditions, respectively. Real-time fluorescence quantitative PCR was used to examine the expression of 11ß-HSD1/2, and 20-HSD mRNA in embryonic tissues. The results showed that the expression levels of yolk-sac membrane mRNA of 11ß-HSD2 and 20-HSD in Tibetan chickens on E14 (embryonic day of 14) were significantly lower than those of broiler chickens (P < 0.05), and these genes expression of CAM in Tibetan chickens were higher than those of broiler chickens (P < 0.05). In addition, the three genes in the yolk-sac membrane and CAM were followed by a down-regulation on E18 (embryonic day of 18). The 11ß-HSD1 and 11ß-HSD2 genes followed a similar tissue-specific pattern: the expression level was more abundantly in the liver, kidney, and intestine, with relatively lower abundance in the hypothalamus and muscle, and the expression level of 20-HSD genes in all tissues tested was higher. In the liver, 20-HSD of both Tibetan and broiler chickens showed different ontogeny development patterns, and hepatic mRNA expression of 20-HSD in broiler chickens was significantly higher than that of Tibetan chickens of the same age from E14 to E18 (P < 0.05). This study preliminarily revealed the expression levels of cortisol metabolic genes in different tissues during the development process of Tibetan and broiler chicken embryos. It provided essential information for in-depth research of the internal mechanism of maternal GCs programming on offspring.


Assuntos
Galinhas , Corticosterona , Animais , Embrião de Galinha , Corticosterona/metabolismo , Galinhas/genética , Galinhas/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Tibet , Glucocorticoides/metabolismo , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica
11.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835286

RESUMO

Ki67 is a well-known proliferation marker with a large size of around 350 kDa, but its biological function remains largely unknown. The roles of Ki67 in tumor prognosis are still controversial. Ki67 has two isoforms generated by alternative splicing of exon 7. The roles and regulatory mechanisms of Ki67 isoforms in tumor progression are not clear. In the present study, we surprisingly find that the increased inclusion of Ki67 exon 7, not total Ki67 expression level, was significantly associated with poor prognosis in multiple cancer types, including head and neck squamous cell carcinoma (HNSCC). Importantly, the Ki67 exon 7-included isoform is required for HNSCC cell proliferation, cell cycle progression, cell migration, and tumorigenesis. Unexpectedly, Ki67 exon 7-included isoform is positively associated with intracellular reactive oxygen species (ROS) level. Mechanically, splicing factor SRSF3 could promote exon 7 inclusion via its two exonic splicing enhancers. RNA-seq revealed that aldo-keto reductase AKR1C2 is a novel tumor-suppressive gene targeted by Ki67 exon 7-included isoform in HNSCC cells. Our study illuminates that the inclusion of Ki67 exon 7 has important prognostic value in cancers and is essential for tumorigenesis. Our study also suggested a new SRSF3/Ki67/AKR1C2 regulatory axis during HNSCC tumor progression.


Assuntos
Transformação Celular Neoplásica , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Antígeno Ki-67/metabolismo , Éxons , Isoformas de Proteínas/metabolismo , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Fatores de Processamento de Serina-Arginina/metabolismo , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo
12.
Crit Rev Biotechnol ; 43(5): 770-786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35834355

RESUMO

A group of steroidogenic enzymes, hydroxysteroid dehydrogenases are involved in steroid metabolism which is very important in the cell: signaling, growth, reproduction, and energy homeostasis. The enzymes show an inherent function in the interconversion of ketosteroids and hydroxysteroids in a position- and stereospecific manner on the steroid nucleus and side-chains. However, the biocatalysis of steroids reaction is a vital and demanding, yet challenging, task to produce the desired enantiopure products with non-natural substrates or non-natural cofactors, and/or in non-physiological conditions. This has driven the use of protein design strategies to improve their inherent biosynthetic efficiency or activate their silent catalytic ability. In this review, the innate features and catalytic characteristics of enzymes based on sequence-structure-function relationships of steroidogenic enzymes are reviewed. Combining structure information and catalytic mechanisms, progress in protein redesign to stimulate potential function, for example, substrate specificity, cofactor dependence, and catalytic stability are discussed.


Assuntos
Hidroxiesteroide Desidrogenases , Esteroides , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/química , Hidroxiesteroide Desidrogenases/metabolismo , Esteroides/química , Esteroides/metabolismo
13.
Comb Chem High Throughput Screen ; 26(2): 373-382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35593364

RESUMO

BACKGROUND: Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease in clinical practice. It is mainly due to cardiovascular hypoplasia during embryonic development. The study aimed to find the etiology of TOF. METHODS: Through the mRNA expression profile analysis of the GSE35776 dataset, differentially expressed genes (DEGs) were found, and the functional analysis and protein-protein interaction (PPI) network analysis were then performed on DEGs. Likewise, the hub genes and functional clusters of DEGs were analyzed using the PPI network. Differentially expressed miRNAs were analyzed from the GSE35490 dataset, followed by miRNet predicted transcription factors (TFs) and target genes. The key TF-miRNA-gene interaction mechanism was explored through the found significant difference between genes and target genes. RESULTS: A total of 191 differentially expressed genes and 57 differentially expressed miRNAs were identified. The main mechanisms involved in TOF were mitochondria-related and energy metabolism- related molecules and pathways in GO and KEGG analysis. This discovery was identical in TFs and target genes. The key miRNAs, hsa-mir-16 and hsa-mir-124, were discovered by the Venn diagram. A co-expression network with the mechanism of action centered on two miRNAs was made. CONCLUSION: Hsa-mir-16 and hsa-mir-124 are the key miRNAs of TOF, which mainly regulate the expression of NT5DC1, ECHDC1, HSDL2, FCHO2, and ACAA2 involved in the conversion of ATP in the mitochondria and the metabolic rate of fatty acids (FA). Our research provides key molecules and pathways into the etiology of TOF, which can be used as therapeutic targets.


Assuntos
MicroRNAs , Tetralogia de Fallot , Humanos , Tetralogia de Fallot/genética , Perfilação da Expressão Gênica , Biologia Computacional , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Hidroxiesteroide Desidrogenases/genética
14.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293010

RESUMO

In a metagenome mining-based search of novel thermostable hydroxysteroid dehydrogenases (HSDHs), enzymes that are able to selectively oxidize/reduce steroidal compounds, a novel short-chain dehydrogenase/reductase (SDR), named Is2-SDR, was recently discovered. This enzyme, found in an Icelandic hot spring metagenome, shared a high sequence similarity with HSDHs, but, unexpectedly, showed no activity in the oxidation of the tested steroid substrates, e.g., cholic acid. Despite that, Is2-SDR proved to be a very active and versatile ketoreductase, being able to regio- and stereoselectively reduce a diversified panel of carbonylic substrates, including bulky ketones, α- and ß-ketoesters, and α-diketones of pharmaceutical relevance. Further investigations showed that Is2-SDR was indeed active in the regio- and stereoselective reduction of oxidized steroid derivatives, and this outcome was rationalized by docking analysis in the active site model. Moreover, Is2-SDR showed remarkable thermostability, with an apparent melting temperature (TM) around 75 °C, as determined by circular dichroism analysis, and no significant decrease in catalytic activity, even after 5 h at 80 °C. A broad tolerance to both water-miscible and water-immiscible organic solvents was demonstrated as well, thus, confirming the potential of this new biocatalyst for its synthetic application.


Assuntos
Fontes Termais , Redutases-Desidrogenases de Cadeia Curta , Metagenoma , Hidroxiesteroide Desidrogenases/genética , Cetonas , Esteroides , Água , Ácido Cólico , Preparações Farmacêuticas , Solventes , Especificidade por Substrato
15.
J Appl Microbiol ; 133(3): 1506-1519, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35686660

RESUMO

AIMS: The role of a Acinetobacter johnsonii strain, isolated from a soil sample, in the biotransformation of bile acids (BAs) was already described but the enzymes responsible for these transformations were only partially purified and molecularly characterized. METHODS AND RESULTS: This study describes the use of hybrid de novo assemblies, that combine long-read Oxford Nanopore and short-read Illumina sequencing strategies, to reconstruct the entire genome of A. johnsonii ICE_NC strain and to identify the coding region for a 12α-hydroxysteroid dehydrogenase (12α-HSDH), involved in BAs metabolism. The de novo assembly of the A. johnsonii ICE_NC genome was generated using Canu and Unicycler, both strategies yielded a circular chromosome of about 3.6 Mb and one 117 kb long plasmid. Gene annotation was performed on the final assemblies and the gene for 12α-HSDH was detected on the plasmid. CONCLUSIONS: Our findings illustrate the added value of long read sequencing in addressing the challenges of whole genome characterization and plasmid reconstruction in bacteria. These approaches also allowed the identification of the A. johnsonii ICE_NC gene for the 12α-HSDH enzyme, whose activity was confirmed at the biochemical level. SIGNIFICANCE AND IMPACT OR THE STUDY: At present, this is the first report on the characterization of a 12α-HSDH gene in an A. johnsonii strain able to biotransform cholic acid into ursodeoxycholic acid, a promising therapeutic agent for several diseases.


Assuntos
Acinetobacter , Hidroxiesteroide Desidrogenases , Acinetobacter/genética , Acinetobacter/metabolismo , Ácidos e Sais Biliares , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hidroxiesteroide Desidrogenases/química , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo
16.
Gen Comp Endocrinol ; 323-324: 114045, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472318

RESUMO

Corticosteroids are synthesized from cholesterol by steroidogenic enzyme catalysts belonging to two main families: the cytochrome p450s (CYPs) and hydroxysteroid dehydrogenases (HSDs). The action of these steroidogenic enzymes allows the genesis of the terminal active corticosteroids 11-deoxycortisol (S), 1ɑ-hydroxycorticosterone (1α-OH-B), or cortisol in different fish species. However, for Cyclostomes like hagfishes, the terminal corticosteroid is still undefined. In this study, we examined the presence or absence of CYPs and HSDs as traits in fishes to gain insight about the primary corticosteroid synthesis pathways of the hagfishes. We used published cytochrome c oxidase I (COXI) amino acid sequences to construct a phylogeny of fishes and then mapped the CYPs and HSDs as morphological traits onto the tree to predict the ancestral character states through ancestral character reconstruction (ACR). There is a clear phylogenetic signal for CYP (i.e., CYP11a1, 17, 21, and 11b) and HSD (i.e., 11-ßHSD and 3ß-HSD) derivatives of interest throughout the more derived fishes. Using trait-based ACR, we also found that hagfishes possess genes for 3ß-HSD, CYP11a1, CYP17, and CYP21. Importantly, the presence of CYP21 implies that hagfish can synthesize 11-deoxycorticosterone (11-DOC) and S. Previous research demonstrated that despite hagfish having CYP21, neither 11-DOC nor S could be detected in hagfish. This discrepancy between the presence of steroidogenic enzymes and products brings into question the expression and/or function of CYP21 in hagfishes.


Assuntos
Feiticeiras (Peixe) , 3-Hidroxiesteroide Desidrogenases , Corticosteroides , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Feiticeiras (Peixe)/genética , Hidroxiesteroide Desidrogenases/genética , Filogenia
17.
Steroids ; 183: 109021, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35339573

RESUMO

The 11ß hydroxysteroid dehydrogenase type-1 (11ßHSD-1) is a predominant 11ß-reductase regenerating bioactive glucocorticoids (cortisol, corticosterone) from inactive 11-keto forms (cortisone, dehydrocorticosterone), expressed mainly in the brain, liver and adipose tissue. Although the expression levels of 11ß HSD-1 mRNA are known to be influenced by glucocorticoids, its tissue-specific regulation is not completely elucidated. In this study, we examined the effect of persistent glucocorticoid excess on the expression of 11ß HSD-1 mRNA in the hippocampus, liver, and abdominal adipose tissue in vivo using quantitative real-time PCR. We found that, in C57BL/6J mice treated with corticosterone (CORT) pellet for 2 weeks, 11ß HSD-1 mRNA decreased in the hippocampus (HIPP) and liver, whereas it increased in the abdominal fat (FAT), compared with placebo treatment [HIPP: placebo 1.00 ± 0.14, CORT 0.63 ± 0.04; liver: placebo 1.00 ± 0.08, CORT 0.73 ± 0.06; FAT: placebo 1.00 ± 0.16, CORT 2.26 ± 0.39]. Moreover, in CRH transgenic mice, an animal model of Cushing's syndrome with high plasma CORT level, 11ß HSD-1 mRNA was also decreased in the hippocampus and liver, and increased in the abdominal adipose tissue compared to that in wild-type mice. These changes were reversed after adrenalectomy in CRH-Tg mice. Altogether, these results reveal the differential regulation of 11ß HSD-1 mRNA by glucocorticoid among the tissues examined.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Síndrome de Cushing , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Animais , Corticosterona/metabolismo , Síndrome de Cushing/genética , Modelos Animais de Doenças , Glucocorticoides/farmacologia , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Nat Commun ; 12(1): 7035, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857756

RESUMO

RNA editing is a feature of RNA maturation resulting in the formation of transcripts whose sequence differs from the genome template. Brain RNA editing may be altered in Alzheimer's disease (AD). Here, we analyzed data from 1,865 brain samples covering 9 brain regions from 1,074 unrelated subjects on a transcriptome-wide scale to identify inter-regional differences in RNA editing. We expand the list of known brain editing events by identifying 58,761 previously unreported events. We note that only a small proportion of these editing events are found at the protein level in our proteome-wide validation effort. We also identified the occurrence of editing events associated with AD dementia, neuropathological measures and longitudinal cognitive decline in: SYT11, MCUR1, SOD2, ORAI2, HSDL2, PFKP, and GPRC5B. Thus, we present an extended reference set of brain RNA editing events, identify a subset that are found to be expressed at the protein level, and extend the narrative of transcriptomic perturbation in AD to RNA editing.


Assuntos
Doença de Alzheimer/genética , Proteína ORAI2/genética , Edição de RNA , RNA/genética , Sinaptotagminas/genética , Transcriptoma , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Atlas como Assunto , Encéfalo/metabolismo , Encéfalo/patologia , Química Encefálica , Perfilação da Expressão Gênica , Humanos , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína ORAI2/metabolismo , Fosfofrutoquinase-1 Tipo C/genética , Fosfofrutoquinase-1 Tipo C/metabolismo , RNA/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sinaptotagminas/metabolismo
19.
Hematology ; 26(1): 919-930, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34789073

RESUMO

BACKGROUND: Ferroptosis involves in the development and therapeutic response of various types of tumors. This study aims to explore ferroptosis-related prognostic genes that could further accurately stratify AML patients. METHODS: We investigated the prognosis significance of ferroptosis-related genes in AML by Univariate and multivariate Cox proportional hazards regression analyses. With the methylation data of TCGA samples, we looked for methylation sites associated with prognostic genes and compared the correlation between methylation and mRNA expression. R software and 'edgeR' packages were used to identify the DEGs between the high-and-low-risk groups divided by the FRPGs prognosis model and then run GO enrichment, KEGG pathway, and PPI network. RESULTS: We found a prognostic risk model that included AKR1C2 and SOCS1 predicted outcomes in AML patients. Methylation analysis showed that AKR1C2 and SOCS1 are negatively regulated by their methylation, leading to their low expression in AML patients. Besides, both decreased SOCS1 expression and hypermethylation predicted favorable OS and PFS in AML patients. Finally, this prognostic risk model exhibited a close correlation with several clinical features, especially with age (P=0.005), cytogenetic type (P=0.031), risk_cytogenetic (P=0.001), and risk_molecular (P<0.001). Functional enrichment analysis showed that DEGs are most enriched in the regulation of cell death and the PI3K-Akt signaling pathway. CONCLUSION: AKR1C2 and SOCS1 are promising biomarkers for predicting prognosis in patients with AML.


Assuntos
Biomarcadores Tumorais , Metilação de DNA , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Aberrações Cromossômicas , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Hidroxiesteroide Desidrogenases/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Prognóstico , Curva ROC , Reprodutibilidade dos Testes , Proteína 1 Supressora da Sinalização de Citocina/genética , Transcriptoma
20.
Reprod Toxicol ; 105: 221-231, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34536543

RESUMO

Prenatal sex hormones affect fetal growth; for example, prenatal exposure to low levels of androgen accelerates female puberty onset. We assessed the association of perfluoroalkyl substances (PFASs) in maternal sera and infant genotypes of genes encoding enzymes involved in sex steroid hormone biosynthesis on cord sera sex hormone levels in a prospective birth cohort study of healthy pregnant Japanese women (n = 224) recruited in Sapporo between July 2002 and October 2005. We analyzed PFAS and five sex hormone levels using liquid chromatography-tandem mass spectrometry. Cytochrome P450 (CYP) 17A1 (CYP17A1 rs743572), 19A1 (CYP19A1 rs10046, rs700519, and rs727479), 3ß-hydroxysteroid dehydrogenase type 1 (HSD3B1 rs6203), type 2 (HSD3B2 rs1819698, rs2854964, and rs4659175), 17ß-hydroxysteroid dehydrogenase type 1 (HSD17B1 rs605059, rs676387, and rs2676531), and type 3 (HSD17B3 rs4743709) were analyzed using real-time PCR. Multiple linear regression models were used to establish the influence of log10-transformed PFAS levels and infant genotypes on log10-transformed sex steroid hormone levels. When the interaction between perfluorooctanesulfonate (PFOS) levels and female infant genotype CYP17A1 (rs743572) on the androstenedione (A-dione) levels was considered, the estimated changes (95 % confidence intervals) in A-dione levels against PFOS levels, female infant genotype CYP17A1 (rs743572)-AG/GG, and interaction between them showed a mean increase of 0.445 (0.102, 0.787), mean increase of 0.392 (0.084, 0.707), and mean reduction of 0.579 (0.161, 0.997) (Pint = 0.007), respectively. Moreover, a female-specific interaction with testosterone levels was observed. A-dione and T levels showed positive main effects and negative interaction with PFOS levels and the female infant CYP17A1 genotype.


Assuntos
Ácidos Alcanossulfônicos/sangue , Caprilatos/sangue , Sistema Enzimático do Citocromo P-450/genética , Poluentes Ambientais/sangue , Fluorocarbonos/sangue , Hormônios Esteroides Gonadais/sangue , Hidroxiesteroide Desidrogenases/genética , Adulto , Feminino , Sangue Fetal/química , Feto , Genótipo , Humanos , Recém-Nascido , Masculino , Exposição Materna , Troca Materno-Fetal , Polimorfismo Genético , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...