Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
J Chem Neuroanat ; 123: 102120, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718292

RESUMO

Demyelinating diseases, such as multiple sclerosis, decrease the quality of life of patients and can affect reproduction. Assisted reproductive therapies are available, which although effective, aggravate motor symptoms. For this reason, it is important to determine how the control of the hypothalamus-pituitary-gonadal axis is affected in order to develop better strategies for these patients. One way to determine this is using animal models such as the taiep rat, which shows progressive demyelination of the central nervous system, and was used in the present study to characterize the expression of gonadotrophin-releasing hormone (GnRH), Kisspeptin, and kisspeptin receptor (Kiss1R) and luteinizing hormone (LH) secretion. The expression of kisspeptin, GnRH, and Kiss1R was determined at the hypothalamic level by immunofluorescence and serum LH levels were determined by ELISA. The expression of kisspeptin at the hypothalamic level showed sexual dimorphism, where there was an increase in males and a decrease in females during oestrus. There was no change in the expression of GnRH or kisspeptin receptor, regardless of sex. However, a decrease in serum LH concentration was observed in both sexes. The taiep rat showed changes in the expression of kisspeptin at the hypothalamic level. These changes are different from those reported in the literature with the use of animals with experimental allergic encephalomyelitis, this is because both animal models represent different degrees of progression of multiple sclerosis. Our results suggest that the effects on the hypothalamus-pituitary-gonadal axis depend on the differences between the demyelinating processes, their progression, and even individual factors, and it is thus important that fertility treatments are individualized to maximize therapeutic effects.


Assuntos
Doenças Desmielinizantes , Hormônio Liberador de Gonadotropina , Kisspeptinas , Esclerose Múltipla , Receptores de Kisspeptina-1 , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Feminino , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/biossíntese , Hormônio Luteinizante/sangue , Masculino , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Qualidade de Vida , Ratos , Receptores de Kisspeptina-1/biossíntese
2.
BMC Cancer ; 22(1): 133, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109816

RESUMO

BACKGROUND: Gonadotropin-releasing hormone (GnRH) receptor, a rhodopsin-like G-protein coupled receptor (GPCR) family member involved in GnRH signaling, is reported to be expressed in several tumors including glioblastoma multiforme (GBM), one of the most malignant and aggressive forms of primary brain tumors. However, the molecular targets associated with GnRH receptor are not well studied in GBM or in other cancers. The present study aims at investigating the effect of GnRH agonist (Gosarelin acetate) on cell proliferation and associated signaling pathways in GBM cell line, LN229. METHODS: LN229 cells were treated with different concentrations of GnRH agonist (10-10 M to 10-5 M) and the effect on cell proliferation was analyzed by cell count method. Further, total protein was extracted from control and GnRH agonist treated cells (with maximum reduction in cell proliferation) followed by trypsin digestion, labeling with iTRAQ reagents and LC-MS/MS analysis to identify differentially expressed proteins. Bioinformatic analysis was performed for annotation of proteins for the associated molecular function, altered pathways and network analysis using STRING database. RESULTS: The treatment with different concentrations of GnRH agonist showed a reduction in cell proliferation with a maximum reduction of 48.2% observed at 10-6 M. Quantitative proteomic analysis after GnRH agonist treatment (10-6 M) led to the identification of a total of 29 differentially expressed proteins with 1.3-fold change (23 upregulated, such as, kininogen-1 (KNG1), alpha-2-HS-glycoprotein (AHSG), alpha-fetoprotein (AFP), and 6 downregulated, such as integrator complex subunit 11 (CPSF3L), protein FRG1 (FRG1). Some of them are known [KNG1, AHSG, AFP] while others such as inter-alpha-trypsin inhibitor heavy chain H2 (ITIH2), ITIH4, and LIM domain-containing protein 1 (LIMD1) are novel to GnRH signaling pathway. Protein-protein interaction analysis showed a direct interaction of KNG1, a hub molecule, with GnRH, GnRH receptor, EGFR and other interactors including ITIH2, ITIH4 and AHSG. Overexpression of KNG1 after GnRH agonist treatment was validated using Western blot analysis, while a significant inhibition of EGFR was observed after GnRH agonist treatment. CONCLUSIONS: The study suggests a possible link of GnRH signaling with EGFR signaling pathways likely via KNG1. KNG1 inhibitors may be investigated independently or in combination with GnRH agonist for therapeutic applications.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Glioblastoma/metabolismo , Hormônio Liberador de Gonadotropina/biossíntese , Receptores LHRH/biossíntese , Animais , Antineoplásicos Hormonais/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cromatografia Líquida , Biologia Computacional , Glioblastoma/genética , Glioblastoma/patologia , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/genética , Gosserrelina/farmacologia , Humanos , Proteômica/métodos , Receptores LHRH/genética , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem
3.
FASEB J ; 35(10): e21882, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34460963

RESUMO

In cattle, several calves born after IVP ("in vitro" embryo production) present similar birthweight to those generated after MOET (multiple ovulation and embryo transfer). However, the underlying molecular patterns in organs involved in the developmental process are unknown and could indicate physiological programming. The objectives of this study were: (1) to compare epigenomic and transcriptomic modifications in the hypothalamus, pituitary, gonadal and adrenal organs between 3 months old ovum pick-up-IVP and MOET male calves (n = 4 per group) and (2) to use blood epigenomic data to proxy methylation of the inner organs. Extracted gDNA and RNA were sequenced through whole-genome bisulfite sequencing and RNA sequencing, respectively. Next, bioinformatic analyses determined differentially methylated cytosines (DMC) and differentially expressed genes (DEG) (FDR < 0.05) in IVP versus MOET samples and the KEGG pathways that were overrepresented by genes associated with DMC or DEG (FDR < 0.1). Pathways related to hypothalamus, pituitary, gonadal (HPG) axis activation (GnRH secretion in the hypothalamus, GnRH signaling in the pituitary, and steroidogenesis in the testicle) were enriched in IVP calves. Modeling the effect of the methylation levels and the group on the expression of all the genes involved in these pathways confirmed their upregulation in HPG organs in IVP calves. The application of the DIABLO method allowed the identification of 15 epigenetic and five transcriptomic biomarkers, which were able to predict the embryo origin using the epigenomic data from the blood. In conclusion, the use of an integrated epigenomic-transcriptomic approach suggested an early activation of the HPG axis in male IVP calves compared to MOET counterparts, and the identification of potential biomarkers allowed the use of blood samples to proxy methylation levels of the relevant internal organs.


Assuntos
Transferência Embrionária , Epigenômica , Hormônio Liberador de Gonadotropina , Transdução de Sinais , Transcriptoma , Animais , Bovinos , Feminino , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Liberador de Gonadotropina/genética , Masculino , Especificidade de Órgãos
4.
Med Sci (Paris) ; 37(4): 366-371, 2021 Apr.
Artigo em Francês | MEDLINE | ID: mdl-33908854

RESUMO

The survival of the species depends on two closely interlinked processes: the correct functioning of the reproductive system, and the balance between the energy needs of an individual and the supply of energy sources through feeding. These two processes are regulated in the hypothalamus, which produces neurohormones that control various physiological functions. Among these neurohormones, GnRH controls not only the maturation and function of the reproductive organs, including the ovaries and the testes, during puberty and in adulthood, but also sexual attraction. Recent evidence suggest that neuropilin-1-mediated signaling in GnRH-synthesizing neurons could be a linchpin that holds together various neuroanatomical, physiological and behavioral adaptations involved in triggering puberty and achieving reproductive function.


TITLE: Signalisation impliquant la neuropiline dans les neurones sécrétant la GnRH - Son rôle dans le déclenchement de la puberté. ABSTRACT: La survie d'une espèce dépend de deux processus intimement liés : la reproduction, d'une part, et l'équilibre entre les besoins énergétiques et l'approvisionnement en sources d'énergie par l'alimentation, d'autre part. Ces deux processus sont contrôlés dans le cerveau par l'hypothalamus, qui produit des neurohormones agissant sur l'hypophyse pour piloter diverses fonctions physiologiques. L'une de ces neurohormones, la GnRH, contrôle non seulement la maturation et le fonctionnement des organes reproducteurs, incluant les ovaires et les testicules, lors de la puberté et à l'âge adulte, mais aussi l'attirance sexuelle. De récentes découvertes suggèrent que la signalisation impliquant la neuropiline-1 dans les neurones sécrétant la GnRH jouerait un rôle charnière dans la coordination du neurodéveloppement et des adaptations physiologiques et comportementales nécessaires au déclenchement de la puberté et à l'acquisition de la fonction de reproduction. Dans cet article de synthèse, nous replaçons ces découvertes dans le contexte de récents travaux montrant que les voies de signalisation des sémaphorines de classe 3 sont impliquées dans la physiopathologie non seulement de l'infertilité, mais aussi de l'obésité. Nous discutons également l'implication potentielle des neurones produisant la GnRH dans la perception des odeurs sociales et dans la précocité de la maturation sexuelle. L'hypothèse selon laquelle l'activité de ces neurones au cours du développement postnatal constituerait le chaînon manquant entre la prise de poids, le déclenchement de la puberté et le comportement sexuel, ouvre la voie à une meilleure compréhension de l'implication de l'homéostasie énergétique dans la maturation sexuelle, et pourrait aussi avoir des implications thérapeutiques pour la puberté précoce.


Assuntos
Hormônio Liberador de Gonadotropina/biossíntese , Neurônios/metabolismo , Neuropilina-1/metabolismo , Puberdade Precoce/etiologia , Puberdade/fisiologia , Animais , Ingestão de Energia , Metabolismo Energético/fisiologia , Feminino , Genitália/fisiologia , Humanos , Hipotálamo/fisiologia , Masculino , Camundongos , Reprodução/fisiologia , Caracteres Sexuais , Excitação Sexual
5.
Peptides ; 138: 170504, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33539873

RESUMO

Stress impairs the hypothalamic-pituitary-gonadal (HPG) axis, probably through its influence on the hypothalamic-pituitary-adrenal (= interrenals in the teleost, HPI) axis leading to reproductive failures. In this study, we investigated the response of hypothalamic neuropeptides, gonadotropin-inhibitory hormone (GnIH), a component of the HPG axis, and corticotropin-releasing hormone (CRH) a component of the HPI axis, to acute social defeat stress in the socially hierarchical male Nile tilapia (Oreochromis niloticus). Localization of GnIH cell bodies, GnIH neuronal processes, and numbers of GnIH cells in the brain during acute social defeat stress was studied using immunohistochemistry. Furthermore, mRNA levels of GnIH and CRH in the brain together with GnIH receptor, gpr147, and adrenocorticotropic hormone (ACTH) in the pituitary were quantified in control and socially defeated fish. Our results show, the number of GnIH-immunoreactive cell bodies and GnIH mRNA levels in the brain and the levels of gpr147 mRNA in the pituitary significantly increased in socially defeated fish. However, CRH and ACTH mRNA levels did not change during social defeat stress. Further, we found glucocorticoid type 2b receptor mRNA in laser captured immunostained GnIH cells. These results show that acute social defeat stress activates GnIH biosynthesis through glucocorticoid receptors type 2b signalling but does not change the CRH and ACTH mRNA expression in the tilapia, which could lead to temporary reproductive dysfunction.


Assuntos
Hormônio Liberador da Corticotropina/genética , Hormônio Liberador de Gonadotropina/biossíntese , Estresse Psicológico/genética , Tilápia/fisiologia , Hormônio Adrenocorticotrópico/biossíntese , Hormônio Adrenocorticotrópico/fisiologia , Animais , Encéfalo/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/fisiologia , Gonadotropinas/biossíntese , Gonadotropinas/genética , Masculino , Hipófise/metabolismo , Reprodução/genética , Reprodução/fisiologia , Derrota Social , Tilápia/genética
6.
Elife ; 92020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32644040

RESUMO

The gonadotropin-releasing hormone (GnRH) neurons exhibit pulse and surge modes of activity to control fertility. They also exhibit an unusual bipolar morphology comprised of a classical soma-proximal dendritic zone and an elongated secretory process that can operate as both a dendrite and an axon, termed a 'dendron'. We show using expansion microscopy that the highest density of synaptic inputs to a GnRH neuron exists at its distal dendron. In vivo, selective chemogenetic inhibition of the GnRH neuron distal dendron abolishes the luteinizing hormone (LH) surge and markedly dampens LH pulses. In contrast, inhibitory chemogenetic and optogenetic strategies targeting the GnRH neuron soma-proximal dendritic zone abolish the LH surge but have no effect upon LH pulsatility. These observations indicate that electrical activity at the soma-proximal dendrites of the GnRH neuron is only essential for the LH surge while the distal dendron represents an autonomous zone where synaptic integration drives pulsatile GnRH secretion.


Assuntos
Dendritos/fisiologia , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Luteinizante/antagonistas & inibidores , Animais , Dendritos/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
7.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947687

RESUMO

: Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.


Assuntos
Citocinas/metabolismo , Hormônio Liberador de Gonadotropina/biossíntese , Inflamação/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Astrócitos/metabolismo , Biomarcadores , Barreira Hematoencefálica/metabolismo , Estradiol/metabolismo , Retroalimentação Fisiológica , Feminino , Fertilidade/genética , Hormônio Liberador de Gonadotropina/genética , Humanos , Inflamação/etiologia , Kisspeptinas/genética , Kisspeptinas/metabolismo , Lipopolissacarídeos/imunologia , Microglia/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Reprodução/genética , Reprodução/imunologia
8.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533319

RESUMO

Induced by a bacterial infection, an immune/inflammatory challenge is a potent negative regulator of the reproduction process in females. The reduction of the synthesis of pro-inflammatory cytokine is considered as an effective strategy in the treatment of inflammatory induced neuroendocrine disorders. Therefore, the effect of direct administration of acetylcholinesterase inhibitor-neostigmine-into the third ventricle of the brain on the gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretions under basal and immune stress conditions was evaluated in this study. In the study, 24 adult, 2-years-old Blackhead ewes during the follicular phase of their estrous cycle were used. Immune stress was induced by the intravenous injection of LPS Escherichia coli in a dose of 400 ng/kg. Animals received an intracerebroventricular injection of neostigmine (1 mg/animal) 0.5 h before LPS/saline treatment. It was shown that central administration of neostigmine might prevent the inflammatory-dependent decrease of GnRH/LH secretion in ewes and it had a stimulatory effect on LH release. This central action of neostigmine is connected with its inhibitory action on local pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)α synthesis in the hypothalamus, which indicates the importance of this mediator in the inhibition of GnRH secretion during acute inflammation.


Assuntos
Inibidores da Colinesterase/administração & dosagem , Endotoxinas/efeitos adversos , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/metabolismo , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Luteinizante/biossíntese , Neostigmina/administração & dosagem , Fase Folicular/efeitos dos fármacos , Fase Folicular/metabolismo , Hidrocortisona/biossíntese , Hipotálamo/metabolismo , Lipopolissacarídeos/efeitos adversos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
9.
J Mol Neurosci ; 69(3): 456-469, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31290091

RESUMO

Obviously, opiates (e.g., morphine) are associated with the suppression and dysfunction of reproductive axis. It has been reported that substance P (SP) and RF-amid-related peptide-3 (RFRP-3) can exhibit anti-opioid effects in some regions of the nervous system. Moreover, SP and RFRP-3 are deemed as neuropeptides which exert modulatory and regulatory impacts on the function of the reproductive axis. The precise interactions of morphine with SP or RFRP-3 on the parameters of the reproductive activity, however, are not fully known. The present study was aimed to determine the impacts of the interaction of morphine either with SP or RFRP-3 on the hormonal and behavioral parameters of reproductive activity in male rats. In addition, it was aimed at determining whether the effects of these interactions rely on kisspeptin/G protein coupled receptor 54 (GPR54) pathway as the main upstream pulse generator and the mediator of the function of many inputs of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) system or not. Altogether, the resulted data from the sexual behavior tests, radioimmunoassay of LH/testosterone, and real-time quantitative PCR for the assessment of the expression of hypothalamic Kiss1, Gpr54, and Gnrh1 genes following concomitant administration of morphine with SP or RFRP-3 revealed that the suppressing effects of morphine on the parameters of reproductive axis activity can be affected by the administration of either RFRP-3 or SP. It is advocated that SP and RFRP-3, by the modulation of the expression of hypothalamic Kiss1, can possibly antagonize the effects of morphine on GnRH/LH system and sexual behavior.


Assuntos
Hipotálamo/efeitos dos fármacos , Kisspeptinas/fisiologia , Morfina/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Neuropeptídeos/farmacologia , Receptores de Kisspeptina-1/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Substância P/farmacologia , Animais , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/fisiologia , Hipotálamo/metabolismo , Kisspeptinas/biossíntese , Kisspeptinas/genética , Hormônio Luteinizante/fisiologia , Masculino , Naloxona/farmacologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Receptores de Kisspeptina-1/biossíntese , Receptores de Kisspeptina-1/genética , Transdução de Sinais/fisiologia
10.
Pharmacol Rep ; 71(4): 636-643, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31176893

RESUMO

BACKGROUND: The inverse relationship between GnRH transcript level and GABA neurons activity has suggested that GABA at the hypothalamic level may exert a suppressive effect on subsequent steps of the GnRH biosynthesis. In the present study, we analyzed the effects of GABA type A receptor agonist (muscimol) or antagonist (bicuculline) on molecular mechanisms governing GnRH/LH secretion in follicular-phase sheep. METHODS: ELISA technique was used to investigate the effects of muscimol and/or bicuculline on levels of post-translational products of genes encoding GnRH ligand and GnRH receptor (GnRHR) in the preoptic area (POA), anterior (AH) and ventromedial (VMH) hypothalamus, stalk/median eminence (SME), and GnRHR in the anterior pituitary (AP). Real-time PCR was chosen for determination of the effect of drugs on kisspeptin (Kiss 1) mRNA level in POA and VMH including arcuate nucleus (VMH/ARC), and on Kiss1 receptor (Kiss1r) mRNA abundance in POA-hypothalamic structures. These analyses were supplemented by RIA method for measurement of plasma LH concentration. RESULTS: The study demonstrated that muscimol and bicuculline significantly decreased or increased GnRH biosynthesis in all analyzed structures, respectively, and led to analogous changes in plasma LH concentration. Similar muscimol- and bicuculline-related alterations were observed in levels of GnRHR. However, the expression of Kiss 1 and Kiss1r mRNAs in selected POA-hypothalamic areas of either muscimol- and bicuculline-treated animals remained unaltered. CONCLUSIONS: Our data suggest that GABAergic neurotransmission is involved in the regulatory pathways of GnRH/GnRHR biosynthesis and then GnRH/LH release in follicular-phase sheep conceivably via indirect mechanisms that exclude involvement of Kiss 1 neurons.


Assuntos
Ciclo Estral/metabolismo , Hormônio Liberador de Gonadotropina/biossíntese , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Kisspeptinas/metabolismo , Receptores de GABA-A/metabolismo , Receptores LHRH/biossíntese , Animais , Bicuculina/farmacologia , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Hormônio Liberador de Gonadotropina/sangue , Sistema Hipotálamo-Hipofisário/metabolismo , Muscimol/farmacologia , Neurônios/metabolismo , Ovinos
11.
J Physiol Pharmacol ; 69(3)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30342430

RESUMO

This study aimed to determine the mechanisms governing Gonadotropin releasing hormone (GnRH) biosynthesis and luteinising hormone (LH) secretion in follicular-phase sheep after infusion of corticotropin releasing hormone (CRH) and/or CRH antagonist corticotropin releasing hormone nist (CRH-A) into the third cerebral ventricle. The study included two experimental approaches: first, we investigated the effect of CRH or CRH-A (α-helical CRH 9-41) on GnRH and GnRH receptor (GnRHR) biosynthesis in the preoptic area (POA), anterior (AH) and ventromedial hypothalamus (VMH), stalk/median eminence (SME), and on GnRHR in the anterior pituitary (AP) using an enzyme-linked immunosorbent assay (ELISA); second, we used real-time PCR to analyse the influence of CRH and CRH-A on the levels of kisspeptin (Kiss1) mRNA in POA and VMH including arcuate nucleus (VMH/ARC), and on Kiss1 receptor (Kiss1r) mRNA abundance in POA-hypothalamic structures. These analyses were supplemented by radioimmunoassay (RIA) and ELISA methods for measurement of LH and cortisol levels in the blood, respectively. Our results show that administration of CRH significantly decreased GnRH biosynthesis in the POA/hypothalamus. CRH also decreased GnRHR abundance in the hypothalamus and in the AP, but increased it in the POA. Furthermore, administration of CRH decreased plasma LH concentration and levels of Kiss1 mRNA in the POA and VMH/ARC as well as Kiss1r mRNA in these structures and in the SME. Significant increase in plasma cortisol concentration in the group treated with CRH was also observed. For CRH-A, all analysed effects were opposite to those induced by CRH. The study demonstrates that intracerebroventricular (i.c.v.) infusion of both CRH and CRH-A affects the GnRH/GnRHR biosynthesis and LH secretion in follicular-phase sheep conceivably via either central and peripheral mechanisms including Kiss1 neurons activity and cortisol signals. It has also been suggested that CRH and CRH-A infusion probably had effects directly at the AP.


Assuntos
Hormônio Liberador da Corticotropina/antagonistas & inibidores , Hormônio Liberador da Corticotropina/farmacologia , Hormônio Liberador de Gonadotropina/biossíntese , Hipotálamo/metabolismo , Receptores LHRH/metabolismo , Animais , Feminino , Fase Folicular/metabolismo , Hidrocortisona/sangue , Hipotálamo/efeitos dos fármacos , Kisspeptinas/genética , Hormônio Luteinizante/sangue , Receptores de Kisspeptina-1/genética , Ovinos
12.
Syst Biol Reprod Med ; 64(5): 389-398, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136857

RESUMO

The episodic pattern of gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus is driven by an integrated network of cells termed the GnRH pulse generator. Cultured and immortalized GnRH neurons also produce a pulsatile pattern of GnRH secretions when grown in the absence of other cell types, suggesting the presence of an intrinsic oscillator mediating GnRH secretion. The mechanisms underlying such pulsatility comprise one of the most tantalizing problems in contemporary neuroendocrinology. In order to study the mechanism by which GnRH is produced in a pulsatile fashion, the autocrine effect of GnRH on GnRH-producing neurons must be eliminated. This may be performed by downregulating the expression of the GnRH receptor. Treatment with three 21-mer exogenous phosphorothioates and transient transfections with an inducible plasmid containing an antisense construct to the GnRH receptor gene decreased GnRH receptor expression further. This resulted in less cytotoxicity compared to inhibition of RNA or protein synthesis with actinomycin D, α-amanitin, puromycin, and cycloheximide. This study shows methods and optimized conditions established for the generation of a stable GT1-7 cell line containing an inducible construct allowing the downregulation of GnRH receptor expression. ABBREVIATIONS: ANOVA: analysis of the variance; DMEM: Dulbecco's modified Eagle's medium; GnRH: gonadotropin-releasing hormone; RXR: retinoid X receptor.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Receptores LHRH/metabolismo , Alfa-Amanitina/farmacologia , Animais , Linhagem Celular Transformada , Meios de Cultura , Ciclofosfamida/farmacologia , Dactinomicina/farmacologia , Regulação para Baixo , Técnicas de Silenciamento de Genes , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos , Plasmídeos , Inibidores da Síntese de Proteínas/farmacologia , Puromicina/farmacologia , Receptores LHRH/antagonistas & inibidores , Receptores LHRH/genética , Transfecção
13.
Ecotoxicol Environ Saf ; 163: 391-399, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30064084

RESUMO

Microcystin-leucine arginine (MC-LR) causes serum testosterone declines and male reproductive disorders. However, the molecular mechanisms underlying the pathological changes are still unclear. In the present study, we aimed to investigate the toxic effects of MC-LR on gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus. Our results demonstrated that MC-LR could enter GnRH neurons and inhibit GnRH synthesis, resulting in the decrease of serum GnRH and testosterone levels. The inhibitory effects of MC-LR on GnRH synthesis were identified to be associated with activation of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP response element-binding protein (CREB)/c-Fos signaling pathway. With miRNA microarray analyses, we found that miR-329-3p was down-regulated most dramatically in MC-LR-treated GT1-7 cells. We then further identified that miR-329-3p regulated PRKAR1A and PRKACB expression and thus influenced GnRH synthesis. This is the first study to explore the molecular mechanism underlying the inhibitory effects of MC-LR on GnRH synthesis in the hypothalamus. Our data have provided a new perspective in the development of diagnosis and treatment strategies for male infertility as a result of dysfunction of the hypothalamic-pituitary-gonadal axis.


Assuntos
Hormônio Liberador de Gonadotropina/biossíntese , Hipotálamo/efeitos dos fármacos , MicroRNAs/metabolismo , Microcistinas/toxicidade , Animais , Linhagem Celular , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipotálamo/metabolismo , Toxinas Marinhas , Camundongos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
14.
Acta Neurobiol Exp (Wars) ; 78(4): 352-357, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30624434

RESUMO

It has been reported that gonadotropin­releasing hormone (GnRH), and its analogue leuprolide acetate (LA), have neurotrophic properties; particularly in the regeneration of injured spinal cord in animal models and in the case of a patient with spinal cord injury (SCI). The aim of this study was to establish whether treatment with LA improves sensitivity, motor activity and independence in patients with chronic SCI. Patients were treated LA once a month for six months. They were evaluated at the beginning and at the end of treatment; using a sensitivity and motor impairment scale, according to the American Spinal Injury Association (ASIA), and grade of independence scale; employing the spinal cord independence measure (SCIM). Statistical analysis showed a significant improvement in the ASIA sensory score and the SCIM score when comparing the initial versus final evaluation after six months of LA administration. Some patients showed an increase in frequency of bowel movements. Treatment with LA induces improvements in sensitivity, motor activity and independence in patients with chronic SCI. One advantage of this protocol is that it is a non-invasive method of easy and safe application, with few side effects.


Assuntos
Hormônio Liberador de Gonadotropina/efeitos dos fármacos , Leuprolida/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Adolescente , Adulto , Doença Crônica , Feminino , Hormônio Liberador de Gonadotropina/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
15.
Neurosci Lett ; 664: 20-27, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29128625

RESUMO

Liver X receptors (LXR) are important transcription factors involved in the regulation of carbohydrate and lipid metabolism. Recently, we described LXR receptors expression in the hypothalamus but their function in this brain area remains unknown. Here, we evaluated the function of LXR on the expression of factors produced in the hypothalamus in vitro and in vivo by Western blotting and immunocytochemistry. More precisely we studied the expression of GnRH and GHRH, αMSH and NPY in male Sprague-Dawley rats. The effects of two synthetic LXR agonists, T0901317 and GW3965, were first tested in vitro. Hypothalamic explants were treated with either T0901317 or GW3965 (10µM) for 2, 4, 6 and 8h. As a positive control the cholesterol ABCA1 and glucose GLUT2 transporters were used. No changes were observed in the expression of the factors evaluated in vitro. The effects of the LXR agonists were then tested in vivo. Rats were injected ICV into the third ventricle with either T0901317 or GW3965 (2.5µg/5µL ICV) and after 3.5h or 24h the hypothalami were dissected out and rapidly frozen for analysis. αMSH and GnRH expression was significantly increased after 3.5h of T0901317 treatment. Anterior/posterior hypothalamic ratio increases for αMSH expression and decreases for GnRH expression after 24h of LXR activation. Altogether these results show that LXR activation affects the expression of GnRH and αMSH, suggesting that LXR in the hypothalamus is capable of modulating hypothalamic responses related to appetite, sexual behavior and reproductive functions.


Assuntos
Hormônio Liberador de Gonadotropina/biossíntese , Hipotálamo/metabolismo , Receptores X do Fígado/metabolismo , alfa-MSH/biossíntese , Animais , Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hidrocarbonetos Fluorados/farmacologia , Hipotálamo/efeitos dos fármacos , Receptores X do Fígado/agonistas , Masculino , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , alfa-MSH/genética
16.
Reprod Fertil Dev ; 30(4): 672-680, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29019791

RESUMO

This study aimed to explain how prolonged inhibition of central dopaminergic activity affects the cellular processes governing gonadotrophin-releasing hormone (GnRH) and LH secretion in anoestrous sheep. For this purpose, the study included two experimental approaches: first, we investigated the effect of infusion of sulpiride, a dopaminergic D2 receptor antagonist (D2R), on GnRH and GnRH receptor (GnRHR) biosynthesis in the hypothalamus and on GnRHR in the anterior pituitary using an immunoassay. This analysis was supplemented by analysis of plasma LH levels by radioimmunoassay. Second, we used real-time polymerase chain reaction to analyse the influence of sulpiride on the levels of kisspeptin (Kiss1) mRNA in the preoptic area and ventromedial hypothalamus including arcuate nucleus (VMH/ARC), and RFamide-related peptide-3 (RFRP-3) mRNA in the paraventricular nucleus (PVN) and dorsomedial hypothalamic nucleus. Sulpiride significantly increased plasma LH concentration and the levels of GnRH and GnRHR in the hypothalamic-pituitary unit. The abolition of dopaminergic activity resulted in a significant increase in transcript level of Kiss1 in VMH/ARC and a decrease of RFRP-3 in PVN. The study demonstrates that dopaminergic neurotransmission through D2R is involved in the regulatory pathways of GnRH and GnRHR biosynthesis in the hypothalamic-pituitary unit of anoestrous sheep, conceivably via mechanisms in which Kiss1 and RFRP-3 participate.


Assuntos
Anestro/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Hormônio Liberador de Gonadotropina/biossíntese , Kisspeptinas/metabolismo , Neuropeptídeos/metabolismo , Receptores LHRH/biossíntese , Sulpirida/farmacologia , Animais , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , Ovinos
17.
Transgenic Res ; 26(4): 567-575, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28534229

RESUMO

Swine are the only livestock species that produce both the second mammalian isoform of gonadotropin-releasing hormone (GNRH2) and its receptor (GNRHR2). Previously, we reported that GNRH2 and GNRHR2 mediate LH-independent testosterone secretion from porcine testes. To further explore this ligand-receptor complex, a pig model with reduced GNRHR2 expression was developed. Small hairpin RNA sequences targeting porcine GNRHR2 were subcloned into a lentiviral-based vector, lentiviral particles were generated and microinjected into the perivitelline space of zygotes, and embryos were transferred into a recipient. One GNRHR2 knockdown (KD) female was born that subsequently produced 80 piglets from 6 litters with 46 hemizygous progeny (57% transgenic). Hemizygous GNRHR2 KD (n = 10) and littermate control (n = 7) males were monitored at 40, 100, 150, 190, 225 and 300 days of age; body weight and testis size were measured and serum was isolated and assayed for testosterone and luteinizing hormone (LH) concentrations. Body weight of GNRHR2 KD boars was not different from littermate controls (P = 0.14), but testes were smaller (P < 0.05; 331.8 vs. 374.8 cm3, respectively). Testosterone concentrations tended (P = 0.06) to be reduced in GNRHR2 KD (1.6 ng/ml) compared to littermate control (4.2 ng/ml) males, but LH levels were similar (P = 0.47). The abundance of GNRHR2 mRNA was reduced (P < 0.001) by 69% in testicular tissue from mature GNRHR2 KD (n = 5) versus littermate control (n = 4) animals. These swine represent the first genetically-engineered model to elucidate the function of GNRH2 and its receptor in mammals.


Assuntos
Animais Geneticamente Modificados/genética , Hormônio Liberador de Gonadotropina/genética , Receptores LHRH/genética , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hormônio Liberador de Gonadotropina/biossíntese , Hemizigoto , Hormônio Luteinizante/sangue , Masculino , RNA Interferente Pequeno/genética , Receptores LHRH/biossíntese , Suínos/genética , Suínos/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Testosterona/sangue
18.
Artigo em Inglês | MEDLINE | ID: mdl-28408352

RESUMO

Gonadotropin-releasing hormone (GnRH) is a key neuropeptide regulating reproduction in humans and other vertebrates. Recently, GnRH-like cDNAs and peptides were reported in marine mollusks, implying that GnRH-mediated reproduction is an ancient neuroendocrine system that arose prior to the divergence of protostomes and deuterostomes. Here, we evaluated the reproductive control system mediated by GnRH in the Pacific abalone Haliotis discus hannai. We cloned a prepro-GnRH cDNA (Hdh-GnRH) from the pleural-pedal ganglion (PPG) in H. discus hannai, and analyzed its spatiotemporal gene expression pattern. The open reading frame of Hdh-GnRH encodes a protein of 101 amino acids, consisting of a signal peptide, a GnRH dodecapeptide, a cleavage site, and a GnRH-associated peptide. This structure and sequence are highly similar to GnRH-like peptides reported for mollusks and other invertebrates. Quantitative polymerase chain reaction demonstrated that Hdh-GnRH mRNA was more strongly expressed in the ganglions (PPG and cerebral ganglion [CG]) than in other tissues (gonads, gills, intestine, hemocytes, muscle, and mantle) in both sexes. In females, the expression levels of Hdh-GnRH mRNA in the PPG and branchial ganglion (BG) were significantly higher at the ripe and partial spent stages than at the early and late active stages. In males, Hdh-GnRH mRNA levels in the BG showed a significant increase in the partial spent stage. Unexpectedly, Hdh-GnRH levels in the CG were not significantly different among the examined stages in both sexes. These results suggest that Hdh-GnRH mRNA expression profiles in the BG and possibly the PPG are tightly correlated with abalone reproductive activities.


Assuntos
Sequência de Aminoácidos/genética , Gastrópodes/genética , Hormônio Liberador de Gonadotropina/genética , Filogenia , Animais , Clonagem Molecular , Gastrópodes/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/biossíntese , Dados de Sequência Molecular , Reprodução/genética , Alinhamento de Sequência
19.
J Biol Chem ; 292(23): 9815-9829, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28385888

RESUMO

Neuroendocrine control of reproduction by brain-secreted pulses of gonadotropin-releasing hormone (GnRH) represents a longstanding puzzle about extracellular signal decoding mechanisms. GnRH regulates the pituitary gonadotropin's follicle-stimulating hormone (FSH) and luteinizing hormone (LH), both of which are heterodimers specified by unique ß subunits (FSHß/LHß). Contrary to Lhb, Fshb gene induction has a preference for low-frequency GnRH pulses. To clarify the underlying regulatory mechanisms, we developed three biologically anchored mathematical models: 1) parallel activation of Fshb inhibitory factors (e.g. inhibin α and VGF nerve growth factor-inducible), 2) activation of a signaling component with a refractory period (e.g. G protein), and 3) inactivation of a factor needed for Fshb induction (e.g. growth differentiation factor 9). Simulations with all three models recapitulated the Fshb expression levels obtained in pituitary gonadotrope cells perifused with varying GnRH pulse frequencies. Notably, simulations altering average concentration, pulse duration, and pulse frequency revealed that the apparent frequency-dependent pattern of Fshb expression in model 1 actually resulted from variations in average GnRH concentration. In contrast, models 2 and 3 showed "true" pulse frequency sensing. To resolve which components of this GnRH signal induce Fshb, we developed a high-throughput parallel experimental system. We analyzed over 4,000 samples in experiments with varying near-physiological GnRH concentrations and pulse patterns. Whereas Egr1 and Fos genes responded only to variations in average GnRH concentration, Fshb levels were sensitive to both average concentration and true pulse frequency. These results provide a foundation for understanding the role of multiple regulatory factors in modulating Fshb gene activity.


Assuntos
Simulação por Computador , Subunidade beta do Hormônio Folículoestimulante/biossíntese , Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , Hormônio Luteinizante Subunidade beta/biossíntese , Modelos Biológicos , Proteínas Proto-Oncogênicas c-fos/metabolismo
20.
Protein Expr Purif ; 134: 132-138, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28410993

RESUMO

LHRH based vaccines are promising candidates for therapy of androgen and estrogen dependent cancers. We report in this communication development of a novel recombinant protein vaccine candidate against LHRH. A synthetic gene was designed in which the codon sequence in the LHRH decapeptide was modified by substituting the codon for 6-glycine with that of l-leucine. Further the LHRH(6leu) gene was linked to heat-labile enterotoxin of E. coli (LTB) as carrier. This LHRH(6leu)-LTB gene was cloned into a prokaryotic expression vector under the control of inducible and strong bacteriophage T7 promoter to over-express LHRH(leu) fused to LTB as recombinant protein in E. coli. Recombinant LHRH(leu)-LTB protein of ∼14 kDa size, was purified from inclusion bodies using in-situ refolding on the column and Ni-NTA based immobilized affinity chromatography. Western blot confirmed the immunoreactivity of purified LHRH(leu)-LTB fusion protein with anti-LHRH monoclonal antibody. The vaccine protein was further characterized by mass spectroscopy, circular dichroism and fluorescence spectroscopy. This communication reports a recombinant LHRH fusion protein with potential for blocking of sex hormones production for eventual therapy of sex hormones dependent neoplasms.


Assuntos
Androgênios , Vacinas Anticâncer , Estrogênios , Hormônio Liberador de Gonadotropina , Linfotoxina-beta , Neoplasias/terapia , Proteínas Recombinantes de Fusão , Vacinas Anticâncer/biossíntese , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Hormônio Liberador de Gonadotropina/biossíntese , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Linfotoxina-beta/biossíntese , Linfotoxina-beta/uso terapêutico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...