Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(5): 806-835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287188

RESUMO

In mammalian somatic cells, the relative contribution of RNAi and the type I interferon response during viral infection is unclear. The apparent inefficiency of antiviral RNAi might be due to self-limiting properties and mitigating co-factors of the key enzyme Dicer. In particular, the helicase domain of human Dicer appears to be an important restriction factor of its activity. Here, we study the involvement of several helicase-truncated mutants of human Dicer in the antiviral response. All deletion mutants display a PKR-dependent antiviral phenotype against certain viruses, and one of them, Dicer N1, acts in a completely RNAi-independent manner. Transcriptomic analyses show that many genes from the interferon and inflammatory response pathways are upregulated in Dicer N1 expressing cells. We show that some of these genes are controlled by NF-kB and that blocking this pathway abrogates the antiviral phenotype of Dicer N1. Our findings highlight the crosstalk between Dicer, PKR, and the NF-kB pathway, and suggest that human Dicer may have repurposed its helicase domain to prevent basal activation of antiviral and inflammatory pathways.


Assuntos
RNA Helicases DEAD-box , Interferon Tipo I , NF-kappa B , Infecções por Vírus de RNA , Ribonuclease III , Animais , Humanos , NF-kappa B/genética , Interferência de RNA , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Ribonuclease III/química , Ribonuclease III/genética , Ribonuclease III/metabolismo , Infecções por Vírus de RNA/enzimologia
2.
Science ; 373(6551): 231-236, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244417

RESUMO

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Interferência de RNA , Vírus de RNA/fisiologia , RNA Viral/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Células-Tronco/enzimologia , Células-Tronco/virologia , Processamento Alternativo , Animais , Encéfalo/enzimologia , Encéfalo/virologia , Linhagem Celular , RNA Helicases DEAD-box/química , Humanos , Imunidade Inata , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Organoides/enzimologia , Organoides/virologia , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Vírus de RNA/imunologia , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , Ribonuclease III/química , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Replicação Viral , Zika virus/genética , Zika virus/imunologia , Zika virus/fisiologia , Infecção por Zika virus/enzimologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
3.
Nat Commun ; 12(1): 2681, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976210

RESUMO

Innate immune cells are critical in protective immunity against viral infections, involved in sensing foreign viral nucleic acids. Here we report that the poly(ADP-ribose) polymerase 9 (PARP9), a member of PARP family, serves as a non-canonical sensor for RNA virus to initiate and amplify type I interferon (IFN) production. We find knockdown or deletion of PARP9 in human or mouse dendritic cells and macrophages inhibits type I IFN production in response to double strand RNA stimulation or RNA virus infection. Furthermore, mice deficient for PARP9 show enhanced susceptibility to infections with RNA viruses because of the impaired type I IFN production. Mechanistically, we show that PARP9 recognizes and binds viral RNA, with resultant recruitment and activation of the phosphoinositide 3-kinase (PI3K) and AKT3 pathway, independent of mitochondrial antiviral-signaling (MAVS). PI3K/AKT3 then activates the IRF3 and IRF7 by phosphorylating IRF3 at Ser385 and IRF7 at Ser437/438 mediating type I IFN production. Together, we reveal a critical role for PARP9 as a non-canonical RNA sensor that depends on the PI3K/AKT3 pathway to produce type I IFN. These findings may have important clinical implications in controlling viral infections and viral-induced diseases by targeting PARP9.


Assuntos
Células Dendríticas/enzimologia , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Infecções por Vírus de RNA/enzimologia , RNA Viral/metabolismo , Animais , Chlorocebus aethiops , Células Dendríticas/virologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Poli(ADP-Ribose) Polimerases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , Transdução de Sinais , Células THP-1 , Células Vero
4.
Curr Issues Mol Biol ; 40: 221-230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32609093

RESUMO

The interaction between pattern-recognition receptors (PRRs) and pathogen- associated molecular patterns (PAMPs) induces type I interferon (IFN) responses. IFNs stimulates hundreds of genes to exert its biological effects. OASs are the members of IFN-stimulate genes (ISGs). Among them, OAS1 activates RNase L to cleave RNA viruses genome, OAS2 activates downstream immune signaling pathways of IFNs, OAS3 induces RNase L to cut the genome of RNA virus and activate IFN I response to enhance the immune effect, and OASL inhibits the survival of RNA viruses by activating RIG-I signaling pathway but promotes the reproduction of DNA viruses by inhibiting the cGAS signaling pathway. However, the role of OASs in mycobacterial infection remains incomprehensible. In this review, we summarized the latest literature regarding the roles of OASs in mycobacterial infection.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/enzimologia , Tuberculose/imunologia , Humanos , Interferon Tipo I/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/imunologia , Tuberculose/microbiologia
5.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396899

RESUMO

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins' functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


Assuntos
Processamento de Proteína Pós-Traducional , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/metabolismo , Vírus de RNA/patogenicidade , Proteínas Virais/metabolismo , Acetilação , Vírus Chikungunya/metabolismo , Coronavirus/metabolismo , Coronavirus/patogenicidade , Efeito Citopatogênico Viral , Glicosilação , HIV/metabolismo , HIV/patogenicidade , Interações entre Hospedeiro e Microrganismos , Humanos , Fosforilação , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/imunologia , Ubiquitinação , Replicação Viral/fisiologia , Zika virus/metabolismo , Zika virus/patogenicidade
6.
Nat Commun ; 7: 10680, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26893169

RESUMO

Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/enzimologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Infecções por Vírus de RNA/enzimologia , Animais , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Camundongos , Nucleotidiltransferases/genética , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Vírus de RNA/fisiologia
7.
Cell Host Microbe ; 13(3): 336-46, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23498958

RESUMO

Host defense to RNA viruses depends on rapid intracellular recognition of viral RNA by two cytoplasmic RNA helicases: RIG-I and MDA5. RNA transfection experiments indicate that RIG-I responds to naked double-stranded RNAs (dsRNAs) with a triphosphorylated 5' (5'ppp) terminus. However, the identity of the RIG-I stimulating viral structures in an authentic infection context remains unresolved. We show that incoming viral nucleocapsids containing a 5'ppp dsRNA "panhandle" structure trigger antiviral signaling that commences with RIG-I, is mediated through the adaptor protein MAVS, and terminates with transcription factor IRF-3. Independent of mammalian cofactors or viral polymerase activity, RIG-I bound to viral nucleocapsids, underwent a conformational switch, and homo-oligomerized. Enzymatic probing and superresolution microscopy suggest that RIG-I interacts with the panhandle structure of the viral nucleocapsids. These results define cytoplasmic entry of nucleocapsids as the proximal RIG-I-sensitive step during infection and establish viral nucleocapsids with a 5'ppp dsRNA panhandle as a RIG-I activator.


Assuntos
RNA Helicases DEAD-box/imunologia , Nucleocapsídeo/imunologia , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Genoma Viral , Interações Hospedeiro-Patógeno , Humanos , Nucleocapsídeo/química , Nucleocapsídeo/genética , Polifosfatos/metabolismo , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/virologia , Vírus de RNA/química , Vírus de RNA/genética , RNA Viral/química , RNA Viral/genética , RNA Viral/imunologia , Receptores Imunológicos , Transdução de Sinais
8.
Cell Death Dis ; 3: e277, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22402601

RESUMO

Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host-apoptosis-virus triangle.


Assuntos
Apoptose , Caspases/metabolismo , Infecções por Vírus de DNA/enzimologia , Vírus de DNA/fisiologia , Infecções por Vírus de RNA/enzimologia , Vírus de RNA/fisiologia , Proteínas Virais/metabolismo , Animais , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Ativação Enzimática , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune/fisiologia , Processamento de Proteína Pós-Traducional , Proteólise , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Replicação Viral/fisiologia
9.
Viruses ; 3(3): 272-277, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21994731

RESUMO

Some cellular editing functions can restrict the replication of some viruses but contribute to completion of the life cycle of others. A recent study has identified an isoform of the adenosine deaminase acting on RNA type 1 (ADAR 1) as required for embryogenesis, and as a restriction factor for a number of important RNA virus pathogens. The dual implication of key cellular functions in the innate immunity against viruses, or, paradoxically, as mediators of virus replication is interpreted in the light of the concept of virus-host coevolution and tinkering proposed for general evolution by François Jacob decades ago.


Assuntos
Adenosina Desaminase/metabolismo , Infecções por Vírus de RNA/enzimologia , Vírus de RNA/genética , Humanos , Edição de RNA , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , Replicação Viral , Vírus/genética
10.
J Interferon Cytokine Res ; 29(9): 477-87, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19715457

RESUMO

The protein kinase regulated by RNA (PKR) and the adenosine deaminase acting on RNA (ADAR1) are interferon-inducible enzymes that play important roles in biologic processes including the antiviral actions of interferons, signal transduction, and apoptosis. PKR catalyzes the RNA-dependent phosphorylation of protein synthesis initiation factor eIF-2 alpha, thereby leading to altered translational patterns in interferon-treated and virus-infected cells. PKR also modulates signal transduction responses, including the induction of interferon. ADAR1 catalyzes the deamination of adenosine (A) to generate inosine (I) in RNAs with double-stranded character. Because I is recognized as G instead of A, A-to-I editing by ADAR1 can lead to genetic recoding and altered RNA structures. The importance of PKR and ADAR1 in innate antiviral immunity is illustrated by a number of viruses that encode either RNA or protein viral gene products that antagonize PKR and ADAR1 enzymatic activity, localization, or stability.


Assuntos
Adenosina Desaminase/metabolismo , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/genética , Vírus de RNA/fisiologia , eIF-2 Quinase/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Animais , Antivirais/imunologia , Antivirais/metabolismo , Apoptose , Inibidores Enzimáticos/imunologia , Inibidores Enzimáticos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/imunologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Imunidade Inata , Interferons/imunologia , Edição de RNA , Infecções por Vírus de RNA/imunologia , Vírus de RNA/patogenicidade , Proteínas de Ligação a RNA , Transdução de Sinais , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/imunologia
11.
Eur J Immunol ; 39(5): 1271-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19337998

RESUMO

B-cell-activating factor (BAFF) plays a key role in promoting activation of autoimmune B cells. This cytokine may be expressed in and secreted by salivary gland epithelial cells (SGEC) after stimulation with type I IFN or viral or synthetic dsRNA. Because this BAFF expression depends only in part on endosomal TLR and type I IFN, we investigated whether other dsRNA sensors could be implicated in BAFF expression. Using human SGEC, we confirmed the partial dependence of BAFF expression on TLR-3 by replicating the partial inhibition of BAFF expression observed upon endosomal inhibition using TLR-3 or Toll/IL-1R domain-containing protein inducing IFN-beta silencing mRNA, but not with TLR-7 silencing mRNA. Melanoma differentiation-associated gene 5 silencing mRNA had no effect on BAFF expression, but retinoic acid-inducible gene I silencing mRNA had a slight effect observed following infection with dsRNA reovirus-1. Inhibition of RNA-activated protein kinase (PKR) by 2-aminopurine completely abolished both BAFF mRNA and protein production after reovirus-1 infection and poly(I:C) stimulation through NF-kappaB and p38 MAPK pathways, with the latter implicated only after poly(I:C) stimulation. Thus, PKR is the dsRNA sensor implicated in BAFF induction in SGEC after dsRNA stimulation. In autoimmune diseases, PKR may be an interesting target for preventing BAFF following the induction of innate immunity.


Assuntos
Doenças Autoimunes/imunologia , Fator Ativador de Células B/imunologia , Infecções por Vírus de RNA/imunologia , RNA de Cadeia Dupla/imunologia , Glândulas Salivares/imunologia , eIF-2 Quinase/imunologia , Doenças Autoimunes/enzimologia , Fator Ativador de Células B/biossíntese , Fator Ativador de Células B/sangue , Fator Ativador de Células B/genética , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Ativação Enzimática , Humanos , Helicase IFIH1 Induzida por Interferon , Células K562 , NF-kappa B/imunologia , Poli I-C/imunologia , Poli I-C/farmacologia , Infecções por Vírus de RNA/enzimologia , Vírus de RNA , RNA de Cadeia Dupla/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores Imunológicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândulas Salivares/enzimologia , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Transfecção , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
12.
Immunol Rev ; 227(1): 176-88, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19120484

RESUMO

Suppression of viral infection by RNA in a nucleotide sequence homology-dependent manner was first reported in plants in early 1990 s. Studies in the past 15 years have established a completely new RNA-based immune system against viruses that is mechanistically related to RNA silencing or RNA interference (RNAi). This viral immunity begins with recognition of viral double-stranded or structured RNA by the Dicer nuclease family of host immune receptors. In fungi, plants and invertebrates, the viral RNA trigger is processed into small interfering RNAs (siRNAs) to direct specific silencing of the homologous viral genomic and/or messenger RNAs by an RNaseH-like Argonaute protein. Deep sequencing of virus-derived siRNAs indicates that the immunity against viruses with a positive-strand RNA genome is induced by Dicer recognition of dsRNA formed during the initiation of viral progeny (+)RNA synthesis. The RNA-based immune pathway in these organisms overlaps the canonical dsRNA-siRNA pathway of RNAi and may require amplification of viral siRNAs by host RNA-dependent RNA polymerase in plants and nematodes. Production of virus-derived small RNAs is undetectable in mammalian cells infected with RNA viruses. However, infection of mammals with several nucleus-replicating DNA viruses induces production of virus-derived microRNAs capable of silencing host and viral mRNAs as found for viral siRNAs. Remarkably, recent studies indicate that prokaryotes also produce virus-derived small RNAs known as CRISPR RNAs to guide antiviral defense in a manner that has yet to be defined. In this article, we review the recent progress on the identification and mechanism of the key components including viral sensors, viral triggers, effectors, and amplifiers, of the small RNA-directed viral immunity. We also highlight some of the many unresolved questions.


Assuntos
Imunidade , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , RNA Interferente Pequeno/metabolismo , RNA Viral/imunologia , Ribonuclease III/metabolismo , Animais , Proteínas Argonautas , Células Eucarióticas/enzimologia , Células Eucarióticas/virologia , Fatores de Iniciação em Eucariotos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade/genética , Células Procarióticas/enzimologia , Células Procarióticas/virologia , Interferência de RNA/imunologia , Processamento Pós-Transcricional do RNA/imunologia , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/prevenção & controle , RNA Interferente Pequeno/imunologia , RNA Viral/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Ribonuclease III/química , Ribonuclease III/genética , Ribonuclease III/imunologia , Viroses/imunologia
13.
Biol Chem ; 389(10): 1273-82, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18713014

RESUMO

The Raf/MEK/ERK signal transduction cascade belongs to the mitogen-activated protein kinase (MAPK) cascades. Raf/MEK/ERK signaling leads to stimulus-specific changes in gene expression, alterations in cell metabolism or induction of programmed cell death (apoptosis), and thus controls cell differentiation and proliferation. It is induced by extracellular agents, including pathogens such as RNA viruses. Many DNA viruses are known to induce cellular signaling via this pathway. As these pathogens partly use the DNA synthesis machinery for their replication, they aim to drive cells into a proliferative state. In contrast, the consequences of RNA virus-induced Raf/MEK/ERK signaling were less clear for a long time, but since the turn of the century the number of publications on this topic has rapidly increased. Research on this virus/host-interaction will broaden our understanding of its relevance in viral replication. This important control center of cellular responses is differently employed to support the replication of several important human pathogenic RNA viruses including influenza, Ebola, hepatitis C and SARS corona viruses.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Infecções por Vírus de RNA/enzimologia , Vírus de RNA/metabolismo , Quinases raf/metabolismo , Animais , Humanos , Infecções por Vírus de RNA/virologia , Transdução de Sinais
14.
Immunity ; 27(1): 1-3, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17663977

RESUMO

In plants and invertebrates, Dicer genes play a critical role against infections by RNA viruses. In this issue, Otsuka et al. (2007) report that Dicer mutant mice are hypersusceptible to infection by the RNA virus VSV.


Assuntos
RNA Helicases DEAD-box/fisiologia , Endorribonucleases/fisiologia , MicroRNAs/fisiologia , Interferência de RNA/fisiologia , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/prevenção & controle , Ribonuclease III/fisiologia , Animais , Infecções por Vírus de RNA/virologia , Ribonuclease III/biossíntese
15.
Immunity ; 23(1): 19-28, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16039576

RESUMO

Toll-like receptors (TLRs) play an important role in antiviral response by recognizing viral components. Recently, a RNA helicase, RIG-I, was also suggested to recognize viral double-stranded RNA. However, how these molecules contribute to viral recognition in vivo is poorly understood. We show by gene targeting that RIG-I is essential for induction of type I interferons (IFNs) after infection with RNA viruses in fibroblasts and conventional dendritic cells (DCs). RIG-I induces type I IFNs by activating IRF3 via IkappaB kinase-related kinases. In contrast, plasmacytoid DCs, which produce large amounts of IFN-alpha, use the TLR system rather than RIG-I for viral detection. Taken together, RIG-I and the TLR system exert antiviral responses in a cell type-specific manner.


Assuntos
Células Dendríticas/imunologia , Fibroblastos/imunologia , Glicoproteínas de Membrana/fisiologia , RNA Helicases/fisiologia , Infecções por Vírus de RNA/enzimologia , Infecções por Vírus de RNA/imunologia , Receptores de Superfície Celular/fisiologia , Animais , Proteína DEAD-box 58 , RNA Helicases DEAD-box , Proteínas de Ligação a DNA/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Marcação de Genes , Quinase I-kappa B , Fator Regulador 3 de Interferon , Interferon Tipo I/metabolismo , Interferon-alfa/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Doença de Newcastle/enzimologia , Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Helicases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Receptores Toll-Like , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...