RESUMO
BACKGROUND: Burns are classified according to their mechanism of injury, depth, affected body area, affected region or part of the body, and extent of the lesions. Topical insulin modulates the healing process. However, studies evaluating the effects of topical insulin treatment on burns in human patients are lacking. PURPOSE: The purpose of this study was to investigate the effects of topical insulin on healing time of second-degree burns. METHODS: In this nonrandomized clinical trial, patients with second-degree burns were allocated to a control group (CG) or an intervention group (IG) in which wounds were treated with 1% silver sulfadiazine and topical insulin, respectively. RESULTS: Healing time was significantly shorter in the IG relative to the CG (9.1 ± 1.9 days and 12.7 ± 3.3 days, respectively; P < .05). The estimated burn area was similar in both groups (CG 1.44 ± 1.0%; IG 1.42 ± 0.53%). CONCLUSION: In this study, topical insulin reduced healing time in second-degree burns. Further investigation is warranted to support wider use in clinical practice.
Assuntos
Administração Tópica , Queimaduras , Insulina , Cicatrização , Humanos , Queimaduras/tratamento farmacológico , Queimaduras/fisiopatologia , Cicatrização/efeitos dos fármacos , Insulina/uso terapêutico , Insulina/administração & dosagem , Insulina/farmacologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Sulfadiazina de Prata/uso terapêutico , Sulfadiazina de Prata/farmacologia , Sulfadiazina de Prata/administração & dosagem , Fatores de TempoRESUMO
BACKGROUND: Quantitative (hyposmia and anosmia) and qualitative (phantosmia and parosmia) olfactory disorders are common consequences of COVID-19 infection found in more than 38% of patients even months after resolution of acute disease. SARS-CoV-2 has tropism for angiotensin-converting enzyme 2 (ACE2) in the respiratory system, suggesting that it is the mechanism of damage to the olfactory neuroepithelium and of involvement at the central nervous system. The olfactory bulb is the organ with the highest insulin uptake in the central nervous system. Insulin increases the production of Growth Factors (GF); therefore, in this study, the administration of intranasal insulin is proposed as a viable treatment for olfactory disturbances. The aim of this study was to obtain improvement in olfaction after 4 weeks of intranasal insulin administration in a group of patients presenting chronic olfactory disturbances secondary to COVID-19 infection, quantified using the Threshold, Discrimination, and Identification (TDI) score based on the Sniffin Sticks®. METHODS: Experimental, longitudinal, prolective and prospective study of patients with a previous diagnosis of COVID-19 in the last 3-18 months and who persisted with anosmia or hyposmia. The sample size was calculated with "satulator". The intervention was performed from January to May 2022. Throughout four appointments, a baseline olfactory measurement was obtained using the TDI score based on the Sniffin Sticks® test. In the first three appointments, Gelfoam® cottonoids soaked in 40 IU of NPH insulin were placed on the nasal roof of each nostril for 15 min. Descriptive statistics, student's paired t test and a multiple linear regression were utilized to ascertain statistical significance of the outcome on the TDI score obtained on the fourth and final appointment. RESULTS: 27 patients were included in the study. Table 1 summarizes the sample characteristics. The results exhibit that 93% of the sample had an improvement. The initial mean TDI score was 67% (63-71) compared to the final mean of 83% (80-86, p < 0.01). TDI subsection analysis is shown in Table 2. There was no significant difference in pre-intervention and post-intervention glucose measurements after the intranasal insulin administration. CONCLUSIONS: The administration of intranasal insulin has promising results, pointing towards an alternative of treatment for chronic olfactory disturbances secondary to neuroepithelial damage caused by upper respiratory tract infections. Furthermore, this is the first study to use a three-point assessment of olfaction in post-COVID-19 patients, while using the Sniffin Sticks® TDI score adapted to Latin Spanish.
Assuntos
Anosmia , COVID-19 , Insulina , Administração Intranasal , Insulina/administração & dosagem , Insulina/farmacologia , Insulina/uso terapêutico , COVID-19/complicações , Anosmia/terapia , Anosmia/virologia , Humanos , Estudos Prospectivos , Estudos Longitudinais , Masculino , Feminino , Adulto , Olfato/efeitos dos fármacos , Limiar Sensorial/efeitos dos fármacosRESUMO
Interleukin 6 (IL6) is an multifunctional cytokine that modulates several biological responses, including glucose metabolism. However, its acute effects on hepatic glucose release are still uncertain. The main purpose of this study was to investigate the effects of IL6 on gluconeogenesis from several glucose precursors (alanine, pyruvate and glutamine) and on the suppressive action of insulin on cAMP-stimulated glycogen catabolism in rat liver. IL6 effect on insulin peripheral sensitivity was also evaluated. IL6 was injected intravenously into rats and, 1 h later, gluconeogenesis and glycogenolysis were assessed in liver perfusion and peripheral insulin sensitivity by insulin tolerance test (ITT). IL6 intravenous injection increased hepatic glucose production from alanine, without changing pyruvate, lactate and urea production. IL6 injection also increased hepatic glucose production from pyruvate and glutamine. In addition, IL6 decreased the suppressive effect of insulin on cAMP-stimulated glucose and lactate production and glycogenolysis, without affecting pyruvate production. Furthermore, IL6 reduced the plasma glucose disappearance constant (kITT), an indicator of insulin resistance. In conclusion, IL6 acutely increased hepatic glucose release (gluconeogenesis and glycogenolysis) by a mechanism that likely involved the induction of insulin resistance in the liver, as evidenced by the reduced suppressive effect of insulin on cAMP-stimulated glycogen catabolism. In consistency, IL6 acutely induced peripheral insulin resistance.
Assuntos
Glicogenólise , Resistência à Insulina , Ratos , Animais , Gluconeogênese , Insulina/farmacologia , Insulina/metabolismo , Interleucina-6/metabolismo , Glutamina/metabolismo , Glutamina/farmacologia , Glucose/farmacologia , Glucose/metabolismo , Glicogênio/metabolismo , Glicogênio/farmacologia , Fígado/metabolismo , Ácido Láctico/farmacologia , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Piruvatos/farmacologia , Alanina/farmacologia , Alanina/metabolismo , GlicemiaRESUMO
BACKGROUND: Adipose tissue-derived stromal vascular fraction (SVF) harbors multipotent cells with potential therapeutic relevance. We developed a method to form adipose spheroids (AS) from the SVF with complex organoid structure and enhanced leptin secretion upon insulin stimulation. METHODS: SVF was generated from the interscapular brown adipose tissue of newborn mice. Immunophenotype and stemness of cultured SVF were determined by flow cytometry and in vitro differentiation, respectively. Spheroids were generated in hanging drops and non-adherent plates and compared by morphometric methods. The adipogenic potential was compared between preadipocyte monolayers and spheroids. Extracellular leptin was quantified by immunoassay. Lipolysis was stimulated with isoprenaline and quantified by colorimetric methods. AS viability and ultrastructure were determined by confocal and transmission electron microscopy analyses. RESULTS: Cultured SVF contained Sca1 + CD29 + CD44 + CD11b- CD45- CD90- cells with adipogenic and chondrogenic but no osteogenic potential. Culture on non-adherent plates yielded the highest quantity and biggest size of spheroids. Differentiation of AS for 15 days in a culture medium supplemented with insulin and rosiglitazone resulted in greater Pparg, Plin1, and Lep expression compared to differentiated adipocytes monolayers. AS were viable and maintained leptin secretion even in the absence of adipogenic stimulation. Glycerol release after isoprenaline stimulation was higher in AS compared to adipocytes in monolayers. AS were composed of outer layers of unilocular mature adipocytes and an inner structure composed of preadipocytes, immature adipocytes and an abundant loose extracellular matrix. CONCLUSION: Newborn mice adipose SVF can be efficiently differentiated into leptin-secreting AS. Prolonged stimulation with insulin and rosiglitazone allows the formation of structurally complex adipose organoids able to respond to adrenergic lipolytic stimulation.
Assuntos
Adipócitos , Tecido Adiposo Marrom , Diferenciação Celular , Leptina , Leptina/metabolismo , Organoides , Insulina/farmacologia , Animais , Camundongos , Tecido Adiposo Marrom/citologia , Rosiglitazona/farmacologia , Células Cultivadas , Animais Recém-Nascidos , Imunofenotipagem , Osteogênese , Condrogênese , Adipócitos/ultraestrutura , Lipólise , Cultura Primária de CélulasRESUMO
BACKGROUND: This study aimed to evaluate the coronary function, myocardium, and epicardial adipose tissue (EAT) in female rats with severe type 1 diabetes and the effects of combined treatment with insulin and pyridoxamine (AGEs inhibitor). METHODS: Female Wistar rats were divided into groups: control (CTR, n = 13), type 1 diabetes (DM1, n = 12), type 1 diabetes treated with insulin (DM1 + INS, n = 11), and type 1 diabetes treated with insulin and pyridoxamine (DM1 + INS + PDX, n = 14). The vascular responsiveness was performed in the septal coronary artery and the protein expressions of AGE, RAGE, GPER, NF-kB was evaluated in the left ventricle (LV), as well as the reactive oxygen species (ROS) was measured in LV and in EAT. We analyzed plasma levels of glucose, estradiol, Nε-carboxymethylisine (CML), thiobarbituric acid reactive substances (TBARS), catalase (CAT), and superoxide dismutase (SOD). RESULTS: The maximal responses to ACh were reduced in the DM1 compared with the CTR group, accompanied by an increase in circulating glucose, CML, and TBARS. Additionally, the expression of NF-kB in LV and generation of ROS in the presence of MnTMPyP (SOD mimetic) were increased in the DM1 group compared with CTR. Only the combined treatment was effective for fully re-establish ACh relaxation response, NF-kB protein expression, ROS generation, and increased SOD activity in the DM1 + INS + PDX group. CONCLUSION: The reduction of the endothelium-dependent relaxation response in the septal coronary artery of female rats with severe type 1 diabetes was normalized with the combined treatment with insulin and pyridoxamine, associated with reduced inflammation and oxidative stress in the myocardium and increased circulating antioxidant activity.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ratos , Feminino , Animais , Insulina/farmacologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Piridoxamina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia , NF-kappa B/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , GlucoseRESUMO
Caveolae are small plasma membrane invaginations constituted for membrane proteins namely caveolins and cytosolic proteins termed cavins, which can occupy up to 50% of the surface of mammalian cells. The caveolae have been involved with a variety of cellular processes including regulation of cellular signaling. Insulin is a hormone that mediates a variety of physiological processes through activation of insulin receptor (IR), which is a tyrosine kinase receptor expressed in all mammalian tissues. Insulin induces activation of signal transducers and activators of transcription (STAT) family members including STAT5. In this study, we demonstrate, for the first time, that insulin induces phosphorylation of STAT5 at tyrosine-694 (STAT5-Tyr(P)694), STAT5 nuclear accumulation and an increase in STAT5-DNA complex formation in MCF-7 breast cancer cells. Insulin also induces nuclear accumulation of STAT5-Tyr(P)694, caveolin-1, and IR in MCF-7 cells. STAT5 nuclear accumulation and the increase of STAT5-DNA complex formation require the integrity of caveolae and microtubule network. Moreover, insulin induces an increase and nuclear accumulation of STAT5-Tyr(P)694 in MDA-MB-231 breast cancer cells. In conclusion, results demonstrate that caveolae and microtubule network play an important role in STAT5-Tyr(P)694, STAT5 nuclear accumulation and STAT5-DNA complex formation induced by insulin in breast cancer cells.
Assuntos
Neoplasias da Mama , Cavéolas , Animais , Humanos , Feminino , Cavéolas/metabolismo , Insulina/farmacologia , Insulina/metabolismo , Células MCF-7 , Fator de Transcrição STAT5/metabolismo , Neoplasias da Mama/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Fosforilação , Tirosina/metabolismo , DNA/metabolismo , Mamíferos/metabolismoRESUMO
Diabetes mellitus, a complex and heterogeneous disease associated with hyperglycemia, is a leading cause of mortality and reduces life expectancy. Vanadium complexes have been studied for the treatment of diabetes. The effect of complex [VO(bpy)(mal)]·H2O (complex A) was evaluated in a human hepatocarcinoma (HepG2) cell line and in streptozotocin (STZ)-induced diabetic male Wistar rats conditioned in seven groups with different treatments (n = 10 animals per group). Electron paramagnetic resonance and 51V NMR analyses of complex A in high-glucose Dulbecco's Modified Eagle Medium (DMEM) revealed the oxidation and hydrolysis of the oxidovanadium(IV) complex over a period of 24 h at 37 °C to give low-nuclearity vanadates "V1" (H2VO4-), "V2" (H2V2O72-), and "V4" (V4O124-). In HepG2 cells, complex A exhibited low cytotoxic effects at concentrations 2.5 to 7.5 µmol L-1 (IC50 10.53 µmol L-1) and increased glucose uptake (2-NBDG) up to 93%, an effect similar to insulin. In STZ-induced diabetic rats, complex A at 10 and 30 mg kg-1 administered by oral gavage for 12 days did not affect the animals, suggesting low toxicity or metabolic impairment during the experimental period. Compared to insulin treatment alone, complex A (30 mg kg-1) in association with insulin was found to improve glycemia (30.6 ± 6.3 mmol L-1 vs. 21.1 ± 8.6 mmol L-1, respectively; p = 0.002), resulting in approximately 30% additional reduction in glycemia. The insulin-enhancing effect of complex A was associated with low toxicity and was achieved via oral administration, suggesting the potential of complex A as a promising candidate for the adjuvant treatment of diabetes.
Assuntos
Diabetes Mellitus Experimental , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Hipoglicemiantes/efeitos adversos , Insulina/metabolismo , Insulina/farmacologia , Malatos , Masculino , Ratos , Ratos Wistar , Estreptozocina , Vanadatos/química , Vanádio/química , Vanádio/farmacologiaRESUMO
Individual embryo culture is the only strategy that allows the tracking of embryos throughout the culture period. However, this procedure leads to lower embryo development. This study aimed to evaluate different alternatives to improve embryo development in a single in vitro production system. First, embryo production was compared between individual cultures on a 20 µL droplet and Cell-Tak® system. Then, various concentrations of folic acid were tested for use in combination with insulin-transferrin-selenium (ITS). To determine the concentration, embryos were analyzed not only by development but also by their methylation status. Finally, the supplementation of individual culture media with ITS and/or folic acid was evaluated. The results showed that embryos cultured in the Cell-Tak® system presented lower blastocyst rates than the microdroplets system. When the concentration of folic acid was tested, 20 µM and 500 µM presented a higher level of insulin-like growth factor (IGF2) DNA methylation pattern compared to control, suggesting that in vitro conditions alter DNA methylation pattern in that region and folic acid reestablishes the pattern. However, when it was used in an individual culture system, folic acid did not improve embryo development. Conversely, ITS which is composed of three important components, proved to be an alternative to individual embryo culture, improving embryo rates, showing similar rates to grouped culture embryos. Since Folic Acid change epigenetic profile, additional studies are needed to evaluate its use in IVP culture systems.
Assuntos
Técnicas de Cultura Embrionária , Selênio , Animais , Blastocisto , Bovinos , Meios de Cultura/farmacologia , Técnicas de Cultura Embrionária/métodos , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário , Fertilização in vitro/veterinária , Ácido Fólico/farmacologia , Insulina/farmacologia , Selênio/farmacologia , TransferrinaRESUMO
Final antral follicle development and future ovulation are mediated by gonadotropin-induced changes with spatio-temporally regulated expression of genes. Here, we aimed to quantify the relative mRNA abundance of bta-miR-222 and its predicted target, LHCGR, in granulosa cells (GCs) from follicles, after follicle deviation, as well as from GCs cultured in vitro with follicle stimulating hormone (FSH) and/or insulin. Thus, to study the impact of follicle deviation, Nelore heifers (n = 10; Bos taurus indicus) were hormonally synchronized and slaughtered 3 days after ovulation. Then, GCs from the dominant follicle (DF) and its respective subordinate follicle (SF) were recovered for RT-qPCR. For in vitro analysis, small follicles (2-5 mm) were dissected from bovine ovaries collected from a local abattoir. The GCs were isolated and cultured in serum-free medium, or treated with insulin (1 ng/mL or 10 ng/mL) alone or in combination with human recombinant FSH (1 ng/mL), for 6 days. Our findings showed that the relative mRNA abundance of LHCGR in GCs was higher in the DF compared to the SF (p = 0.01). Inversely, bta-miR-222 expression was lower in the DF compared to the SF (p = 0.01). Furthermore, GCs cultured with FSH and insulin together resulted in a higher abundance of LHCGR and a lower abundance of bta-miR-222 (p ≤ 0.05) when compared to GCs cultured with insulin alone. In conclusion, we found that the LHCGR upregulation in GCs from the DF is inversely related to bta-miR-222 expression. We also suggest the involvement of FSH in bta-miR-222 suppression in healthy bovine GCs.
Assuntos
Hormônio Foliculoestimulante , MicroRNAs , Animais , Bovinos , Células Cultivadas , Feminino , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/metabolismo , Insulina/metabolismo , Insulina/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Folículo OvarianoRESUMO
Probiotics have been used for the treatment of chronic metabolic diseases, including type 2 diabetes (T2D). However, the mechanisms of antidiabetic effects are not well understood. The object of this study is to assess the antidiabetic effect of Lactiplantibacillus plantarum Y15 isolated from Chinese traditional dairy products in vivo. Results revealed that L. plantarum Y15 administration improved the biochemical indexes related to diabetes, reduced pro-inflammatory cytokines, L. plantarum Y15 administration reshaped the structure of gut microbiota, decreased the abundance of LPS-producing, and increased short-chain fatty acids (SCFAs)-producing bacteria, which subsequently reduce the levels of lipopolysaccharide (LPS) and pro-inflammatory cytokines. L. plantarum Y15 administration also regulated the expressions of the inflammation and insulin signaling pathway-related genes. These results suggest that L. plantarum Y15 may serve as a potential probiotic for developing food products to ameliorate T2D.
Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Lactobacillus plantarum , Probióticos , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Insulina/farmacologia , Lactobacillus plantarum/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: The aim of this study was to evaluate the microarchitecture, composition and mechanical properties of cortical bone of rats with type I diabetes mellitus (TIDM) and submitted to insulin therapy (IT). METHODS: Thirty rats were divided into three groups (n=10): non-diabetic, diabetic and diabetic+insulin. TIDM was induced by intravenous injection of streptozotocin. In diabetic+insulin group, 4IU insulin was administered twice per day (1I U at 7 am and 3I U at 7 pm). The animals were euthanized five weeks after TIDM induction; the tibiae were removed and submitted to microcomputed tomography (micro-CT, 8 µm), fourier transform infrared spectroscopy (FTIR) and dynamic microhardness indentation. RESULTS: Micro-CT analysis showed that diabetic group had lower bone surface/tissue volume ratio (BS/BV) (p=0.018), cortical thickness (Ct.Th) (p<0.001) and degree of anisotropy (Ct.DA) (p=0.034) values compared to non-diabetic group. The diabetic group showed lower Ct.Th than diabetic + insulin group (p=0.018). The non-diabetic group had lower fractal dimension (Ct.FD) values compared to diabetic groups (p<0.001). The ATR-FTIR analyses showed lower values for all measured parameters in the diabetic group than the non-diabetic group (amide I ratio: p=0.046; crystallinity index: p=0.038; matrix:mineral ratios - M:MI: p=0.006; M:MIII: p=0.028). The diabetic+ insulin group showed a lower crystallinity index (p=0.022) and M:MI ratio (p=0.002) than nondiabetic and diabetic groups, respectively. The diabetic group showed lower Vickers hardness values than non-diabetic (p<0.001) and diabetic+insulin (p=0.003) groups. CONCLUSION: TIDM negatively affects bone microarchitecture, collagen maturation, mineralization and bone microhardness. Moreover, insulin minimized the effect of TIDM on cortical thickness and organic/mineral matrix.
Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Animais , Osso Cortical , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Insulina/farmacologia , Insulina/uso terapêutico , Minerais , Ratos , Microtomografia por Raio-XRESUMO
The parotid gland is the largest salivary gland. It produces watery saliva, rich in proteins (amylase, lysozymes, and antibodies). Due to the gland's morphological cytoarchitecture composed of only serous acini, it contributes almost 50% of total salivary volume upon stimulation. It has been reported that the prevalence of saliva secretion impairments, periodontitis, delayed wound healing, and xerostomia increase in diabetic patients. Herein we evaluated the acute effects of insulin on insulin receptor phosphorylation status and its substrates IRS-1 and IRS-2 in the parotid glands of adult male Wistar rats, using Western blot analyses. We confirmed an acute effect of insulin on IR/IRS/PI3K/Akt and MAPK intracellular pathway activation in the parotid glands of male Wistar rats similar to the classical metabolic targets of the hormone, like the liver.
Assuntos
Insulina/farmacologia , Glândula Parótida , Transdução de Sinais/efeitos dos fármacos , Xerostomia , Animais , Masculino , Glândula Parótida/efeitos dos fármacos , Glândula Parótida/metabolismo , Ratos , Ratos WistarRESUMO
Glucose uptake increases in canine luteal cells under insulin treatment. We hypothesize that insulin also increases luteal cell steroidogenesis. Dogs underwent elective ovariohysterectomy from days 10-60 post ovulation and their corpora lutea (CL) and blood samples were collected. Deep RNA sequencing determined differentially expressed genes in CL; those related to insulin signaling and steroidogenesis were validated in vivo by qPCR and their respective proteins by Western blotting and immunofluorescence. Next, luteal cell cultures were stimulated with insulin with or without inhibition of MAPK14, MAP2K1 and PI3K. Studied proteins except P450 aromatase showed the same expression pattern of coding genes in vivo. The expression of HSD3B and CYP19A1 was higher in insulin-treated cells (P < 0.005). Following respective pathway blockades, the culture medium had decreased concentrations of progesterone (P4) and 17b-estradiol (E2) (P < 0.01). Our results indicate that insulin increases HSD3B and CYP19A1 expression via MAPK and PI3K, and contributes to the regulation of P4 and E2 production in canine luteal cells.
Assuntos
Insulina/farmacologia , Células Lúteas/efeitos dos fármacos , Esteroides/biossíntese , Animais , Células Cultivadas , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/metabolismo , Cães , Estradiol/metabolismo , Feminino , Glucose/metabolismo , Células Lúteas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Skeletal muscle is an important metabolic tissue in glucose uptake and thus in glycemic homeostasis. Evidence suggests that phenolic compounds may exert beneficial health effects against metabolic disorders associated to obesity including its state of peripheral insulin resistance. The objective of this work was to investigate the role of phenolic compounds present in two Brazilian native fruits, cambuci (Campomanesia phaea Berg.) and jaboticaba (Plinia jaboticaba (Vell.) Berg), on the insulin resistance in the skeletal muscle of obese mice fed a high-fat-sucrose diet (HFS). For this, two independent experimental protocols were used for each fruit, where male C57BL/6J mice fed the HFS diet for the induction to obesity were used. Once the condition of obesity was established, animals started to receive daily oral administration (by gavage) of extracts enriched in phenolic compounds obtained from each fruit, in doses reachable through the diet. At the end of the experiments, the animals were euthanized and their tissue and organs collected. The animals receiving extracts of jaboticaba and cambuci, regardless of the dose, presented lower body weight gain in relation to the HFS group. The results for weekly fasting glycemia and glucose tolerance of the animals that received the phenolic extracts of both fruits showed an improvement in glycemic homeostasis even when fed with the deleterious diet. In the gastrocnemius muscle of the animals was demonstrated that cambuci and jaboticaba extracts significantly increased the content of glucose transporter protein 4 (GLUT-4) and AMPactivated protein kinase (AMPK-Thr172), which has a broad role in metabolic regulation. Regarding inflammation, the administration of extracts from both fruits favored the reduction of phosphorylation and activation of the nuclear factor-κe (NF-κB) and the expression of some genes such as IL-6, TNF-α, IL-1ß, and JNK, whose increase has been associated with insulin resistance. In conclusion, this study suggests that the phenolics present in both native fruits may be important therapeutic agents in the reduction of muscle insulin resistance and inflammation associated with obesity
O músculo esquelético é um tecido metabólico importante na captação de glicose e, portanto, na homeostasia glicêmica. Evidências sugerem que compostos fenólicos podem exercer efeitos benéficos à saúde contra distúrbios metabólicos associados à obesidade incluindo o seu quadro de resistência à insulina. O objetivo deste trabalho foi investigar o papel dos compostos fenólicos presentes em dois frutos nativos brasileiros, cambuci (Campomanesia phaea Berg.) e jaboticaba (Plinia jaboticaba (Vell.) Berg), na resistência à insulina no músculo esquelético de camundongos obesos alimentados com dieta rica em gorduras e sacarose (HFS, high-fat highsucrose diet). Para tal, foram utilizados dois protocolos experimentais independentes para cada fruto, onde foram usados camundongos machos C57BL/6J alimentados com dieta HFS para indução à obesidade. Uma vez instaurado o quadro de obesidade, os animais passaram a receber a administração diária, por gavagem, de extratos enriquecidos em compostos fenólicos obtidos a partir dos frutos, em doses atingíveis através da dieta. Ao final do período experimental os animais foram eutanasiados e seus tecidos e órgãos coletados. Os animais tratados com os extratos de jaboticaba e cambuci, independente da dose, apresentaram menor ganho de massa corporal em relação ao grupo HFS. Os resultados para glicemia de jejum semanal e a tolerância à glicose dos animais que receberam os extratos fenólicos de ambos os frutos demonstraram melhora na homeostase glicêmica, mesmo alimentados com a dieta deletéria HFS. No músculo gastrocnemius dos animais foi demonstrado que os extratos de cambuci e jaboticaba aumentaram significativamente o conteúdo da proteína transportadora de glicose 4 (GLUT-4) e da proteína quinase ativada por AMP (AMPK-Thr172), que possui um papel amplo na regulação metabólica. No que tange à inflamação, a administração dos extratos de ambos os frutos favoreceu a diminuição da fosforilação e ativação do fator nuclear-κB (NF-κB) e a expressão de alguns genes como IL-6, TNF-α, IL-1ß, e JNK cujo aumento tem sido associado com a resistência à insulina. Deste modo, este estudo sugere que os fenólicos presentes em ambos os frutos nativos podem ser agentes terapêuticos importantes na atenuação da resistência à insulina muscular e da inflamação associada à obesidade
Assuntos
Animais , Masculino , Camundongos , Músculo Esquelético , Compostos Fenólicos , Frutas/anatomia & histologia , Insulina/farmacologia , Myrtaceae/classificação , Camundongos Obesos , Obesidade/induzido quimicamenteRESUMO
Activated alpha-2 Macroglobulin (α2M*) is specifically recognized by the cluster I/II of LRP1 (Low-density lipoprotein Receptor-related Protein-1). LRP1 is a scaffold protein for insulin receptor involved in the insulin-induced glucose transporter type 4 (GLUT4) translocation to plasma membrane and glucose uptake in different types of cells. Moreover, the cluster II of LRP1 plays a critical role in the internalization of atherogenic lipoproteins, such as aggregated Low-density Lipoproteins (aggLDL), promoting intracellular cholesteryl ester (CE) accumulation mainly in arterial intima and myocardium. The aggLDL uptake by LRP1 impairs GLUT4 traffic and the insulin response in cardiomyocytes. However, the link between CE accumulation, insulin action, and cardiac dysfunction are largely unknown. Here, we found that α2M* increased GLUT4 expression on cell surface by Rab4, Rab8A, and Rab10-mediated recycling through PI3K/Akt and MAPK/ERK signaling activation. Moreover, α2M* enhanced the insulin response increasing insulin-induced glucose uptake rate in the myocardium under normal conditions. On the other hand, α2M* blocked the intracellular CE accumulation, improved the insulin response and reduced cardiac damage in HL-1 cardiomyocytes exposed to aggLDL. In conclusion, α2M* by its agonist action on LRP1, counteracts the deleterious effects of aggLDL in cardiomyocytes, which may have therapeutic implications in cardiovascular diseases associated with hypercholesterolemia.
Assuntos
Membrana Celular/metabolismo , Insulina/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macroglobulinas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Western Blotting , Linhagem Celular , Glucose/metabolismo , Insulina/farmacologia , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologiaRESUMO
Since prenatal glucocorticoids (GC) excess increases the risk of metabolic dysfunctions in the offspring and its effect on ß-cell recovery capacity remains unknown we investigated these aspects in offspring from mice treated with dexamethasone (DEX) in the late pregnancy. Half of the pups were treated with streptozotocin (STZ) on the sixth postnatal day (PN). Functional and molecular analyses were performed in male offspring on PN25 and PN225. Prenatal DEX treatment resulted in low birth weight. At PN25, both the STZ-treated offspring developed hyperglycemia and had lower ß-cell mass, in parallel with higher α-cell mass and glucose intolerance, with no impact of prenatal DEX on such parameters. At PN225, the ß-cell mass was partially recovered in the STZ-treated mice, but they remained glucose-intolerant, irrespective of being insulin sensitive. Prenatal exposition to DEX predisposed adult offspring to sustained hyperglycemia and perturbed islet function (lower insulin and higher glucagon response to glucose) in parallel with exacerbated glucose intolerance. ß-cell-specific knockdown of the Hnf4α in mice from the DS group resulted in exacerbated glucose intolerance. We conclude that high GC exposure during the prenatal period exacerbates the metabolic dysfunctions in adult life of mice exposed to STZ early in life, resulting in a lesser ability to recover the islets' function over time. This study alerts to the importance of proper management of exogenous GCs during pregnancy and a healthy postnatal lifestyle since the combination of adverse factors during the prenatal and postnatal period accentuates the predisposition to metabolic disorders in adult life.
Assuntos
Dexametasona/toxicidade , Glucocorticoides/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Dexametasona/administração & dosagem , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Teste de Tolerância a Glucose , Insulina/farmacologia , Camundongos , Neoplasias Experimentais , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
The aim of this study was to evaluate female rat sexual motivation in a model of diabetes mellitus type 1. Severe hyperglycemia was induced in ovariectomized Wistar rats by injecting streptozotocin [STZ, 100 mg/kg, i.p.]. Ten days later, females received estradiol benzoate (10 µg/rat, s.c.) plus progesterone (3 mg/rat, s.c.). A group of STZ-treated animals was administered with insulin (2-4 U) every 12 h for 10 days, which normalized glucose levels. In the partner preference (PP) and sexual incentive motivation (SIM) tests, control females spent more time close to a sexually experienced male (SE) than with a castrated male (CM). STZ-treated females stayed the same amount of time with both stimuli, that is, they lost their sexual preference. We also evaluated the sense of smell using two behavioral tests, one related to sexual odors (SO) and another one to food odors (FO). In the SO test, control females spent more time sniffing the sawdust coming from cages that contained SE males; hyperglycemic females remained the same amount of time sniffing the sawdust of both stimuli: SE and CM. In the FO test, no differences were found between control and STZ-treated groups. Insulin treatment reverted the changes observed in hyperglycemic females in the PP, SIM and SO tests. These data suggest that severe hyperglycemia decreases sexual motivation and that insulin recovers such diminution.
Assuntos
Diabetes Mellitus , Insulina , Animais , Feminino , Insulina/farmacologia , Masculino , Motivação , Ratos , Ratos Wistar , Comportamento Sexual Animal , EstreptozocinaRESUMO
The malignant energetic demands are satisfied through glycolysis, glutaminolysis and de novo synthesis of fatty acids, while the host curses with a state of catabolism and systemic inflammation. The concurrent inhibition of both, tumor anabolism and host catabolism, and their effect upon tumor growth and whole animal metabolism, have not been evaluated. We aimed to evaluate in colon cancer cells a combination of six agents directed to block the tumor anabolism (orlistat + lonidamine + DON) and the host catabolism (growth hormone + insulin + indomethacin). Treatment reduced cellular viability, clonogenic capacity and cell cycle progression. These effects were associated with decreased glycolysis and oxidative phosphorylation, leading to a quiescent energetic phenotype, and with an aberrant transcriptomic landscape showing dysregulation in multiple metabolic pathways. The in vivo evaluation revealed a significant tumor volume inhibition, without damage to normal tissues. The six-drug combination preserved lean tissue and decreased fat loss, while the energy expenditure got decreased. Finally, a reduction in gene expression associated with thermogenesis was observed. Our findings demonstrate that the simultaneous use of this six-drug combination has anticancer effects by inducing a quiescent energetic phenotype of cultured cancer cells. Besides, the treatment is well-tolerated in mice and reduces whole animal energetic expenditure and fat loss.
Assuntos
Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Daunorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Humanos , Indazóis/farmacologia , Indometacina/farmacologia , Insulina/farmacologia , Metabolismo/efeitos dos fármacos , Camundongos , Mitoxantrona/farmacologia , Orlistate/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Vincristina/farmacologiaRESUMO
Insulin stimulates glucose uptake in muscle cells by rapidly redistributing vesicles containing GLUT4 glucose transporters from intracellular compartments to the plasma membrane (PM). GLUT4 vesicle fusion requires the formation of SNARE complexes between vesicular VAMP and PM syntaxin4 and SNAP23. SNARE accessory proteins usually regulate vesicle fusion processes. Complexins aide in neuro-secretory vesicle-membrane fusion by stabilizing trans-SNARE complexes but their participation in GLUT4 vesicle fusion is unknown. We report that complexin-2 is expressed and homogeneously distributed in L6 rat skeletal muscle cells. Upon insulin stimulation, a cohort of complexin-2 redistributes to the PM. Complexin-2 knockdown markedly inhibited GLUT4 translocation without affecting proximal insulin signalling of Akt/PKB phosphorylation and actin fiber remodelling. Similarly, complexin-2 overexpression decreased maximal GLUT4 translocation suggesting that the concentration of complexin-2 is finely tuned to vesicle fusion. These findings reveal an insulin-dependent regulation of GLUT4 insertion into the PM involving complexin-2.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Transportador de Glucose Tipo 4/genética , Insulina/genética , Insulina/metabolismo , Músculo Esquelético/citologia , Mioblastos/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
Type 1 diabetesmellitus (T1D) is caused by partial destruction of the insulin-producing beta cells in the pancreas and is a major issue for public health care worldwide. Reduced or impaired immunological responses, which render patients more susceptible to infections, have been observed in T1D, and this dysfunction is often related to a lack of insulin in the blood. Paracoccidioidomycosis is an important systemic mycosis endemic in Latin America. To evaluate the effects of T1D on this fungal infection and the modulatory effects of insulin, we induced diabetes in C57Bl/6 male mice (alloxan, 60 mg/kg), infected the mice (Pb18, 1 x 106 cells), and treated the mice with neutral protamine Hagedorn (NPH) insulin (2 IU/600 mg/dL blood glucose). Twenty-four hours after infection, infected diabetic mice showed reduced secretion of interferon (IFN)-γ and interleukine (IL)-12 p70 compared to infected nondiabetic controls. On the 45th day of infection, infected diabetic mice presented higher IFN-γ levels, a higher tumor necrosis factor (TNF)-α:IL-10 ratio, and lower adhesion molecule expression levels than nondiabetic mice. In the in vitro experiments, alveolar macrophages from diabetic animals showed reduced phagocytic activity compared to those from control animals at 4, 12, and 24 h. In infected diabetic mice, treatment with insulin restored IL-12 p70 levels at 24 h of infection, reduced IFN-γ levels and the TNF-α:IL-10 ratio at 45 days, and restored vascular cell adhesion molecule (VCAM)-1 expression in pulmonary blood vessels, and this treatment reduced the diminished phosphorylation of extracellular signal-regulated kinases (ERK) and increased nuclear factor-kappa-B(iκb)-α and jun amino-terminal kinases (JNK) p46 levels in infected nondiabetic mice. In addition, insulin promoted increased phagocytic activity in the alveolar macrophages of diabetic mice. These data suggest that T1D mice are more susceptible to Pb18 infection and that insulin modulates this inflammation in diabetic mice by augmenting the expression of adhesion molecules and leukocytes in the lungs and by reducing chronic inflammation.