Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(9): 2027-2033, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38623772

RESUMO

This research is to examine the macromorphological and foliar epidermal anatomical features of Lilium rosthornii Diels and its ability to plastically adapt to environmental forces, which is crucial for its taxonomic classification. L. rosthornii has macromorphological characteristics such as linear to lanceolate leaves of up to 20 cm in length and 2-3 cm in breadth, grouped in a whorled pattern. The blooms are voluminous and conspicuous, measuring up to 15 cm in diameter and are supported by a towering stalk that grows up to 1 m in height. The foliar epidermal structure of L. rosthornii exhibits a stomatal length of 82.02 ± 5.77 µm and a width of 29.19 ± 1.39 µm. These measurements suggest that the plant's stomata are influenced by its ploidy levels and may serve as adaptive mechanisms to enhance water consumption efficiency. The leaf structure shows a significant thickness of 398.74 ± 97.96 µm, which might potentially contribute to its ability to withstand environmental challenges. Additionally, the presence of defensive adaptations in the top and lower epidermal layers further supports this observation. The palisade tissue measurement (58.87 ± 9.56 m) and spongy tissue measurement (32.42 ± 12.72 µm) indicate a potential for photosynthetic optimization. Furthermore, there is a possible correlation between the vascular bundle width (28.15 ± 6.52 °m) and the efficiency of nutrition delivery. The results of this study emphasize the notable diversity in the foliar structures of L. rosthornii, offering valuable understanding of its morphological adaptations that have ecological and taxonomic significance. The findings provide a deeper comprehension of the potential impact of anatomical characteristics on plant function and categorization, hence providing significant insights to the domain of plant morphology and systematics. RESEARCH HIGHLIGHTS: Examines Lilium rosthornii's anatomical features and environmental adaptability for taxonomic relevance. Leaf thickness and epidermal defenses indicate resilience to environmental stress. Highlights the diversity in L. rosthornii's foliar structures, with implications for ecological and taxonomic significance Offers insights into the impact of anatomical characteristics on plant function and classification.


Assuntos
Lilium , Epiderme Vegetal , Folhas de Planta , Estômatos de Plantas , Folhas de Planta/anatomia & histologia , Lilium/anatomia & histologia , Epiderme Vegetal/anatomia & histologia , Estômatos de Plantas/anatomia & histologia , Adaptação Fisiológica
2.
Mol Phylogenet Evol ; 148: 106818, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32294543

RESUMO

The families of the monocot order Liliales exhibit highly contrasting characteristic of photosynthetic and mycoheterotrophic life histories. Although previous phylogenetic and morphological studies of Liliales have been conducted, they have not examined molecular evolution associated with this contrasting phenomenon. Here, we conduct the first comparative plastome study of all ten families of Liliales using 29 newly sequenced plastid genomes analyzed together with previously published data. We also present a phylogenetic analysis for Liliales of 78 plastid genes combined with 22 genes from all three genomes (nuclear 18S rDNA and phyC; 17 plastid genes; and mitochondrial matR, atpA, and cob). Within the newly generated phylogenetic tree of Liliales, we evaluate the ancestral state changes of selected morphological traits in the order. There are no significant differences in plastid genome features among species that show divergent characteristics correlated with family circumscriptions. However, the results clearly differentiate between photosynthetic and mycoheterotrophic taxa of Liliales in terms of genome structure, and gene content and order. The newly sequenced plastid genomes and combined three-genome data revealed Smilacaceae as sister to Liliaceae instead of Philesiaceae and Ripogonaceae. Additionally, we propose a revised familial classification system of Liliales that consists of nine families, considering Ripogonaceae a synonym of Philesiaceae. The ancestral state reconstruction indicated synapomorphies for each family of Liliales, except Liliaceae, Melanthiaceae and Colchicaceae. A taxonomic key for all nine families of Liliales is also provided.


Assuntos
Evolução Molecular , Genomas de Plastídeos , Lilium/genética , Sequência de Bases , Teorema de Bayes , DNA de Cloroplastos/genética , Lilium/anatomia & histologia , Fases de Leitura Aberta/genética , Fotossíntese , Filogenia , Especificidade da Espécie
3.
Plant Cell Rep ; 39(7): 861-872, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32270280

RESUMO

KEY MESSAGE: The cytokinin pathway promotes the initiation of bulbil formation, and iPA may an important type of cytokinin during bulbil formation in Lilium lancifolium. Bulbils are important vegetative reproductive organs in triploid Lilium lancifolium. We previously showed that cytokinins are involved in bulbil formation, but how cytokinins participate in bulbil formation is not clear. In this study, bulbil formation was divided into three stages on the basis of anatomical and histological observations: the bulbil initiation stage, bulbil primordium-formation stage and bulbil structure-formation stage. The results indicated that iPA was the most critical cytokinin during the bulbil initiation. qRT-PCR revealed that increased iPA content during bulbil initiation was mainly due to increased expression of cytokinin synthesis genes (IPT1/5) and cytokinin activation genes (LOG1/3/5/7) and significantly decreased expression of the cytokinin degradation gene CKX4. Exogenous 6-BA and lovastatin affected the cytokinin pathway and promoted or inhibited bulbil initiation by increasing or decreasing the content of endogenous iPA, respectively. In summary, we demonstrate that cytokinins positively regulate bulbil formation and provide preliminary insight into the regulatory mechanisms by which the cytokinin pathway promotes bulbil initiation.


Assuntos
Citocininas/farmacologia , Lilium/anatomia & histologia , Compostos de Benzil/farmacologia , Citocininas/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lilium/efeitos dos fármacos , Lilium/genética , Lovastatina/farmacologia , Modelos Biológicos , Purinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Am J Bot ; 106(5): 622-632, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31022316

RESUMO

PREMISE: Evolutionary transitions among floral morphologies, many of which provide evidence for adaptation to novel pollinators, are common. Some trumpet-shaped flowers are among the largest flowers in angiosperms, occurring in different lineages. Our goal was to investigate the role of pollinators in the evolution of these flowers using Lilium. METHODS: We investigated floral traits and pollinators of L. primulinum var. ochraceum and L. brownii var. viridulum and reviewed reports of visitors to huge trumpet-shaped flowers. Using a published phylogeny of Lilium, we reconstructed ancestral floral morphological states in Lilium to elucidate the origins of trumpet-shaped lilies. RESULTS: Both lilies are largely self-incompatible and show floral syndromes indicative of hawkmoth pollination. The short trumpet-shaped lily can be pollinated by short-tongued (<40 mm) but not long-tongued hawkmoths (>65 mm), while the huge trumpet-shaped lily can be pollinated by both. A literature review including 22 species of trumpet-shaped flowers suggests that their pollinator guilds commonly include both short- and long-tongued moths. A phylogenetic reconstruction indicates that trumpet-shaped lilies possibly have multiple origins from tepal-reflexed ancestors, at least six of which have evolved huge flowers (>50 mm). CONCLUSIONS: Adaptation to short-tongued hawkmoths may have initiated the evolution of trumpet-shaped lilies. Huge trumpet-shaped lilies may have evolved as a response to selection by long-tongued hawkmoths, without excluding the short-tongued ones. This evolutionary pathway leads to a functionally more generalized pollination system instead of an increasingly specialized one and is not necessarily associated with pollinator shifts.


Assuntos
Flores/anatomia & histologia , Lilium/anatomia & histologia , Lilium/fisiologia , Polinização , Animais , Cadeia Alimentar , Mariposas/fisiologia , Filogenia , Especificidade da Espécie
5.
Int J Mol Sci ; 17(11)2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27879624

RESUMO

Lily tepals have a short lifespan. Once the tepals senesce, the ornamental value of the flower is lost. Some cultivars have attractive purple ovaries and fruits which greatly enhance the ornamental value of Asiatic hybrid lilies. However, little is known about the molecular mechanisms of anthocyanin biosynthesis in Asiatic hybrid lily ovaries. To investigate the transcriptional network that governs purple ovary coloration in Asiatic hybrid lilies, we obtained transcriptome data from green ovaries (S1) and purple ovaries (S2) of Asiatic "Tiny Padhye". Comparative transcriptome analysis revealed 4228 differentially expressed genes. Differential expression analysis revealed that ten unigenes including four CHS genes, one CHI gene, one F3H gene, one F3'H gene, one DFR gene, one UFGT gene, and one 3RT gene were significantly up-regulated in purple ovaries. One MYB gene, LhMYB12-Lat, was identified as a key transcription factor determining the distribution of anthocyanins in Asiatic hybrid lily ovaries. Further qPCR results showed unigenes related to anthocyanin biosynthesis were highly expressed in purple ovaries of three purple-ovaried Asiatic hybrid lilies at stages 2 and 3, while they showed an extremely low level of expression in ovaries of three green-ovaried Asiatic hybrid lilies during all developmental stages. In addition, shading treatment significantly decreased pigment accumulation by suppressing the expression of several unigenes related to anthocyanin biosynthesis in ovaries of Asiatic "Tiny Padhye". Lastly, a total of 15,048 Simple Sequence Repeats (SSRs) were identified in 13,710 sequences, and primer pairs for SSRs were designed. The results could further our understanding of the molecular mechanisms of anthocyanin biosynthesis in Asiatic hybrid lily ovaries.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lilium/genética , Fatores de Transcrição/genética , Transcriptoma , Antocianinas/biossíntese , Antocianinas/genética , Quimera , China , Cor , Flores/anatomia & histologia , Flores/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Lilium/anatomia & histologia , Lilium/classificação , Lilium/metabolismo , Repetições de Microssatélites , Anotação de Sequência Molecular , Filogenia , Pigmentação/genética , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
6.
BMC Genomics ; 17(1): 611, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27516339

RESUMO

BACKGROUND: Color patterns in angiosperm flowers are produced by spatially and temporally restricted deposition of pigments. Identifying the mechanisms responsible for restricted pigment deposition is a topic of broad interest. Some dicots species develop bicolor petals, which are often caused by the post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. An Asiatic hybrid lily (Lilium spp.) cultivar Lollypop develops bicolor tepals with pigmented tips and white bases. Here, we analyzed the global transcription of pigmented and non-pigmented tepal parts from Lollypop, to determine the main transcriptomic differences. RESULTS: De novo assembly of RNA-seq data yielded 49,239 contigs (39,426 unigenes), which included a variety of novel transcripts, such as those involved in flavonoid-glycosylation and sequestration and in regulation of anthocyanin biosynthesis. Additionally, 1258 of the unigenes exhibited significantly differential expression between the tepal parts (false discovery rates <0.05). The pigmented tepal parts accumulated more anthocyanins, and unigenes annotated as anthocyanin biosynthesis genes (e.g., CHS, dihydroflavonol 4-reductase, and anthocyanidin synthase) were expressed 7-30-fold higher than those in non-pigmented parts. These results indicate that the transcriptional regulation of biosynthesis genes is more likely involved in the development of bicolor lily tepals rather than the PTGS of CHS genes. In addition, the expression level of a unigene homologous to LhMYB12, which often regulates full-tepal anthocyanin pigmentation in lilies, was >2-fold higher in the pigmented parts. Thus, LhMYB12 should be involved in the transcriptional regulation of the biosynthesis genes in bicolor tepals. Other factors that potentially suppress or enhance the expression of anthocyanin biosynthesis genes, including a WD40 gene, were identified, and their involvement in bicolor development is discussed. CONCLUSIONS: Our results indicate that the bicolor trait of Lollypop tepals is caused by the transcriptional regulation of anthocyanin biosynthesis genes and that the transcription profile of LhMYB12 provides a clue for elucidating the mechanisms of the trait. The tepal transcriptome constructed in this study will accelerate investigations of the genetic controls of anthocyanin color patterns, including the bicolor patterns, of Lilium spp.


Assuntos
Antocianinas/biossíntese , Flores/genética , Regulação da Expressão Gênica de Plantas , Lilium/genética , Proteínas de Plantas/genética , Transcriptoma , Aciltransferases/genética , Aciltransferases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Antocianinas/genética , Cor , Flores/anatomia & histologia , Flores/metabolismo , Ontologia Genética , Inativação Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Lilium/anatomia & histologia , Lilium/metabolismo , Anotação de Sequência Molecular , Oxigenases/genética , Oxigenases/metabolismo , Pigmentação/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Food Sci ; 80(8): C1661-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26194949

RESUMO

Lilium (Liliaceae) is an important wild plant and is used as food and traditional medicine worldwide. One Lilium cultivar (Lilium lancifolium) and 2 wild types (Lilium leucanthum and Lilium rosthornii) that are commonly distributed in Western China were investigated to completely utilize Lilium resources. The morphology of the flowers, bulbs, and scales and soluble sugar, total starch and amylose contents was remarkably different among the 3 Lilium species. Starches from the 3 Lilium species presented different granule size and shape. The starch of L. lancifolium exhibited higher swelling power and solubility than that of L. leucanthum and L. rosthornii. The starches from the 3 Lilium bulbs presented similar X-ray diffraction patterns and Fourier transform infrared spectroscopy. Among the 3 Lilium species, L. lancifolium showed the lowest crystallinity and the largest proportion of ordered structures in granule external region. Gelatinization temperatures and retrogradation percentage were significantly lower, but gelatinization enthalpy was significantly higher in L. lancifolium than those in L. leucanthum and L. rosthornii. Pasting properties of starch were different among the 3 Lilium species. Starch from L. lancifolium showed the highest degree of amylopectin branching, followed by L. leucanthum and L. rosthornii. Starches from L. leucanthum and L. rosthornii showed higher resistance to porcine pancreatic α-amylase hydrolysis compared to that of L. lancifolium. These results indicated that 3 Lilium bulbs exhibited remarkable differences in morphological, crystal, thermal, pasting, and hydrolysis properties of starches.


Assuntos
Lilium , Fenótipo , Raízes de Plantas/química , Amido/química , Amilopectina/química , Amilose/química , Animais , China , Hidrólise , Lilium/anatomia & histologia , Lilium/química , Lilium/genética , alfa-Amilases Pancreáticas/metabolismo , Solubilidade , Especificidade da Espécie , Suínos , Temperatura , Difração de Raios X
8.
BMC Evol Biol ; 15: 147, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26219287

RESUMO

BACKGROUND: Several previous studies have shown that some morphologically distinctive, small genera of vascular plants that are endemic to the Qinghai-Tibetan Plateau and adjacent Hengduan Mountains appear to have unexpected and complex phylogenetic relationships with their putative sisters, which are typically more widespread and more species rich. In particular, the endemic genera may form one or more poorly resolved paraphyletic clades within the sister group despite distinctive morphology. Plausible explanations for this evolutionary and biogeographic pattern include extreme habitat specialization and hybridization. One genus consistent with this pattern is Nomocharis Franchet. Nomocharis comprises 7-15 species bearing showy-flowers that are endemic to the H-D Mountains. Nomocharis has long been treated as sister to Lilium L., which is comprised of more than 120 species distributed throughout the temperate Northern Hemisphere. Although Nomocharis appears morphologically distinctive, recent molecular studies have shown that it is nested within Lilium, from which is exhibits very little sequence divergence. In this study, we have used a dated molecular phylogenetic framework to gain insight into the timing of morphological and ecological divergence in Lilium-Nomocharis and to preliminarily explore possible hybridization events. We accomplished our objectives using dated phylogenies reconstructed from nuclear internal transcribed spacers (ITS) and six chloroplast markers. RESULTS: Our phylogenetic reconstruction revealed several Lilium species nested within a clade of Nomocharis, which evolved ca. 12 million years ago and is itself nested within the rest of Lilium. Flat/open and horizon oriented flowers are ancestral in Nomocharis. Species of Lilium nested within Nomocharis diverged from Nomocharis ca. 6.5 million years ago. These Lilium evolved recurved and campanifolium flowers as well as the nodding habit by at least 3.5 million years ago. Nomocharis and the nested Lilium species had relatively low elevation ancestors (<1000 m) and underwent diversification into new, higher elevational habitats 3.5 and 5.5 million years ago, respectively. Our phylogeny reveals signatures of hybridization including incongruence between the plastid and nuclear gene trees, geographic clustering of the maternal (i.e., plastid) lineages, and divergence ages of the nuclear gene trees consistent with speciation and secondary contact, respectively. CONCLUSIONS: The timing of speciation and ecological and morphological evolutionary events in Nomocharis are temporally consistent with uplift in the Qinghai-Tibetan Plateau and of the Hengduan Mountains 7 and 3-4 million years ago, respectively. Thus, we speculate that the mountain building may have provided new habitats that led to specialization of morphological and ecological features in Nomocharis and the nested Lilium along ecological gradients. Additionally, we suspect that the mountain building may have led to secondary contact events that enabled hybridization in Lilium-Nomocharis. Both the habitat specialization and hybridization have probably played a role in generating the striking morphological differences between Lilium and Nomocharis.


Assuntos
Lilium/anatomia & histologia , Lilium/classificação , Evolução Biológica , DNA de Plantas/genética , Ecossistema , Flores/anatomia & histologia , Hibridização Genética , Lilium/genética , Filogenia , Plastídeos/genética , Tibet
9.
New Phytol ; 201(3): 1009-1020, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24180488

RESUMO

Many angiosperm families develop spatially regulated anthocyanin spots on their flowers. The Asiatic hybrid lily (Lilium spp.) cv 'Latvia' develops splatter-type spots on its tepals. The splatters arise simply from the deposition of anthocyanin pigments in the tepal epidermis. To determine how splatter development was regulated, we analysed the transcription of anthocyanin biosynthesis genes, and isolated and characterized an R2R3-MYB gene specific to splatter pigmentation. All anthocyanin biosynthesis genes were expressed in splatter-containing regions of tepals, but not in other regions, indicating that splatter pigmentation is caused by the transcriptional regulation of biosynthesis genes. Previously characterized LhMYB12 regulators were not involved in splatter pigmentation, but, instead, a new allele of the LhMYB12 gene, LhMYB12-Lat, isolated in this study, contributed to splatter development. In 'Latvia' and other lily plants expressing splatters, LhMYB12-Lat was preferentially transcribed in the splatter-containing region of tepals. Progeny segregation analysis showed that LhMYB12-Lat genotype and splatter phenotype were co-segregated among the F1 population, indicating that LhMYB12-Lat determines the presence or absence of splatters. LhMYB12-Lat contributes to splatter development, but not to full-tepal pigmentation and raised spot pigmentation. As a result of its unique sequences and different transcription profiles, this new allele of LhMYB12 should be a novel R2R3-MYB specifically associating with splatter spot development.


Assuntos
Alelos , Flores/anatomia & histologia , Flores/genética , Genes de Plantas/genética , Hibridização Genética , Lilium/genética , Pigmentação , Sequência de Aminoácidos , Antocianinas/biossíntese , Vias Biossintéticas/genética , Segregação de Cromossomos , Cruzamentos Genéticos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Lilium/anatomia & histologia , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Nicotiana/genética , Transcrição Gênica , Transformação Genética
10.
Plant J ; 73(4): 617-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23106269

RESUMO

Plant cell expansion is controlled by a fine-tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in-depth knowledge of cell wall mechanics. Pollen tubes are tip-growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20-90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM-based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.


Assuntos
Lilium/fisiologia , Células Vegetais/fisiologia , Tubo Polínico/fisiologia , Fenômenos Biomecânicos , Parede Celular/fisiologia , Simulação por Computador , Elasticidade , Lilium/anatomia & histologia , Microscopia/instrumentação , Microscopia/métodos , Modelos Biológicos , Tubo Polínico/anatomia & histologia , Pressão , Estresse Mecânico
11.
New Phytol ; 196(4): 1030-1037, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22998410

RESUMO

Understanding the processes that underlie pollen release is a prime target for controlling fertility to enable selective breeding and the efficient production of hybrid crops. Pollen release requires anther opening, which involves changes in the biomechanical properties of the anther wall. In this research, we develop and use a mathematical model to understand how these biomechanical processes lead to anther opening. Our mathematical model describing the biomechanics of anther opening incorporates the bilayer structure of the mature anther wall, which comprises the outer epidermal cell layer, whose turgor pressure is related to its hydration, and the endothecial layer, whose walls contain helical secondary thickening, which resists stretching and bending. The model describes how epidermal dehydration, in association with the thickened endothecial layer, creates forces within the anther wall causing it to bend outwards, resulting in anther opening and pollen release. The model demonstrates that epidermal dehydration can drive anther opening, and suggests why endothecial secondary thickening is essential for this process (explaining the phenotypes presented in the myb26 and nst1nst2 mutants). The research hypothesizes and demonstrates a biomechanical mechanism for anther opening, which appears to be conserved in many other biological situations where tissue movement occurs.


Assuntos
Arabidopsis/fisiologia , Flores/anatomia & histologia , Flores/fisiologia , Lilium/fisiologia , Modelos Biológicos , Modelos Teóricos , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenômenos Biomecânicos , Lilium/anatomia & histologia , Mutação , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/fisiologia , Pólen/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água
12.
Proc Natl Acad Sci U S A ; 108(14): 5516-21, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21422290

RESUMO

Despite the common use of the blooming metaphor, its floral inspiration remains poorly understood. Here we study the physical process of blooming in the asiatic lily Lilium casablanca. Our observations show that the edges of the petals wrinkle as the flower opens, suggesting that differential growth drives the deployment of these laminar shell-like structures. We use a combination of surgical manipulations and quantitative measurements to confirm this hypothesis and provide a simple theory for this change in the shape of a doubly curved thin elastic shell subject to differential growth across its planform. Our experiments and theory overturn previous hypotheses that suggest that blooming is driven by differential growth of the inner layer of the petals and in the midrib by providing a qualitatively different paradigm that highlights the role of edge growth. This functional morphology suggests new biomimetic designs for deployable structures using boundary or edge actuation rather than the usual bulk or surface actuation.


Assuntos
Flores/crescimento & desenvolvimento , Lilium/crescimento & desenvolvimento , Modelos Biológicos , Fenômenos Biomecânicos , Flores/anatomia & histologia , Lilium/anatomia & histologia , Observação
13.
Pak J Biol Sci ; 10(15): 2517-21, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19070125

RESUMO

Experiments were carried out to investigate the effects of various concentrations of Picloram (0, 1, 2, 3, 6 and 9 mg L(-1)), TDZ (0, 0.5, 1, 1.5 and 2 mg L(-1)), NAA (1.5 mg L(-1)) in combination with TDZ (0.08, 0.2 and 0.4 mg L(-1)), 2,4-D (2.5, 5 and 10 mg L(-1)) combined with BAP (0.25 mg L(-1)) and different types of explants (basal, central and distal part of the bulb scale) on direct somatic embryogenesis induction of Lilium longiflorum var. Ceb-Dazzle. The explants were surface sterilized and cultured on MS medium supplemented with 3% sucrose, 0.3% Phytagel and various concentrations of mentioned growth regulators. It was found that Picloram at a concentration of 2 mg L-' was the most effective treatment for induction of direct somatic embryogenesis and gave the highest number of embryos (18.6) on each explant. The explants from basal part of the bulb scale showed the best responses (19.9 embryos/explant). TDZ alone or combined with NAA in various concentrations was not able to induce somatic embryogenesis, but gave direct bulblet regeneration. Similar results were obtained for 2, 4-D and BAP combination treatments. Induced somatic embryos were transferred to MS medium without growth regulators for maturation and matured plantlets were successfully acclimatized and transferred to in vivo conditions.


Assuntos
Desenvolvimento Embrionário , Germinação/fisiologia , Lilium/fisiologia , Reprodução/fisiologia , Aclimatação , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Germinação/efeitos dos fármacos , Herbicidas/farmacologia , Lilium/anatomia & histologia , Lilium/efeitos dos fármacos , Picloram/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA