Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Chem Commun (Camb) ; 60(40): 5330-5333, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666704

RESUMO

Single-cell nanoencapsulation (SCNE) has great potential in the enhancement of therapeutic effects of probiotic microbes. However, the material scope has been limited to water-soluble compounds to avoid non-biocompatible organic solvents that are harmful to living cells. In this work, the SCNE of probiotic Lactobacillus acidophilus with water-insoluble luteolin and Fe3+ ions is achieved by the vortex-assisted, biphasic water-oil system. The process creates L. acidophilus nanoencapsulated in the luteolin-Fe3+ shells that empower the cells with extrinsic properties, such as resistance to lysozyme attack, anti-ROS ability, and α-amylase-inhibition activity, as well as sustaining viability under acidic conditions. The proposed protocol, embracing water-insoluble flavonoids as shell components in SCNE, will be an advanced add-on to the chemical toolbox for the manipulation of living cells at the single-cell level.


Assuntos
Lactobacillus acidophilus , Luteolina , Óleos , Probióticos , Água , Lactobacillus acidophilus/metabolismo , Probióticos/química , Água/química , Luteolina/química , Óleos/química , alfa-Amilases/metabolismo
2.
Drug Des Devel Ther ; 18: 1175-1188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645986

RESUMO

Purpose: Many herbs can promote neurological recovery following traumatic brain injury (TBI). There must lie a shared mechanism behind the common effectiveness. We aimed to explore the key therapeutic targets for TBI based on the common effectiveness of the medicinal plants. Material and methods: The TBI-effective herbs were retrieved from the literature as imputes of network pharmacology. Then, the active ingredients in at least two herbs were screened out as common components. The hub targets of all active compounds were identified through Cytohubba. Next, AutoDock vina was used to rank the common compound-hub target interactions by molecular docking. A highly scored compound-target pair was selected for in vivo validation. Results: We enrolled sixteen TBI-effective medicinal herbs and screened out twenty-one common compounds, such as luteolin. Ten hub targets were recognized according to the topology of the protein-protein interaction network of targets, including epidermal growth factor receptor (EGFR). Molecular docking analysis suggested that luteolin could bind strongly to the active pocket of EGFR. Administration of luteolin or the selective EGFR inhibitor AZD3759 to TBI mice promoted the recovery of body weight and neurological function, reduced astrocyte activation and EGFR expression, decreased chondroitin sulfate proteoglycans deposition, and upregulated GAP43 levels in the cortex. The effects were similar to those when treated with the selective EGFR inhibitor. Conclusion: The common effectiveness-based, common target screening strategy suggests that inhibition of EGFR can be an effective therapy for TBI. This strategy can be applied to discover core targets and therapeutic compounds in other diseases.


Assuntos
Lesões Encefálicas Traumáticas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Animais , Camundongos , Plantas Medicinais/química , Masculino , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Luteolina/farmacologia , Luteolina/química , Camundongos Endogâmicos C57BL , Humanos
3.
PLoS One ; 19(4): e0301086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662719

RESUMO

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Assuntos
Antivirais , Iridoides , Simulação de Acoplamento Molecular , Olea , Extratos Vegetais , Folhas de Planta , Polifenóis , SARS-CoV-2 , Olea/química , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Iridoides/farmacologia , Iridoides/química , Humanos , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/química , Glucosídeos/farmacologia , Glucosídeos/química , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Simulação por Computador , Tratamento Farmacológico da COVID-19 , Luteolina/farmacologia , Luteolina/química , RNA Helicases/metabolismo , RNA Helicases/antagonistas & inibidores , Apigenina/farmacologia , Apigenina/química
4.
Food Chem ; 438: 137963, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37976878

RESUMO

The growing recognition of luteolin (Lu) as a vital functional component is attributed to its notable bioactive properties. However, the effective use of Lu is hindered by its inherent limitations related to water solubility, stability, and bioavailability. Here, we aim to develop sesame leaves-derived exosome-like nanovesicles (Exo) for Lu delivery (Exo@Lu) as vehicles. The encapsulation mechanism, solubility, stability, and bioactivity of Exo@Lu were thoroughly evaluated. Exo enriched abundant lipids, proteins, and phenolic compounds with an encapsulation efficiency of âˆ¼ 91.9 % and a loading capacity of âˆ¼ 20.5 % for Lu. The primary binding forces responsible for the encapsulation were hydrogen bonds and van der Waals forces. After encapsulation, the water solubility and stability of Lu were significantly improved under various conditions, including thermal, light, storage, ionic strength, and pH. Exo@Lu maintained structural integrity during simulated digestion, enhancing bioaccessibility and efficacy in mitigating oxidative stress and inflammatory response compared to Exo and free Lu.


Assuntos
Exossomos , Sesamum , Luteolina/química , Simulação de Acoplamento Molecular , Água
5.
Food Chem ; 438: 137996, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37979260

RESUMO

Herein, we used pH-shifted and pH-driven methods to assemble kidney-bean protein isolate (KPI) and luteolin (Lut) into a nanocomplex and subsequently investigated their binding mechanism, structure, and functional properties. Results showed that the nanocomplex prepared by the pH-driven method exhibited a better encapsulation effect and controlled release of Lut. Fluorescence spectroscopy and molecular docking analysis showed that the binding affinities under alkaline conditions were higher than those under acidic and neutral conditions. Various spectral techniques were used to determine the structural changes in the KPI-Lut nanocomplex, including the transformation of α-helices and ß-sheets and alteration of specific amino acid microenvironments, which were more pronounced in the pH-driven nanocomplex. The structural changes in the nanocomplex further affected their surface hydrophobicity and thermal stability. Additionally, the combination of KPI and Lut significantly improved the antioxidant activity and α-glucosidase inhibitory ability of the resultant nanocomplexes, particularly the one prepared by the pH-driven method.


Assuntos
Luteolina , Simulação de Acoplamento Molecular , Concentração de Íons de Hidrogênio , Luteolina/química
6.
J Trace Elem Med Biol ; 80: 127286, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37634345

RESUMO

BACKGROUND: Although luteolin has been confirmed as potent anticancer agent, its potential application as therapeutic is limited by its water solubility. To overcome this shortcoming nanoparticle technology approach was applied. Owing to their proven low toxicity and the possibility to be easily functionalized gold nanoparticles (AuNP) were the nanosystem of choice used in this study. Novel luteolin capped gold nanoparticles (AuNPL) were synthesized and their anticancer effect towards human cervical adenocarcinoma HeLa cells was investigated in vitro. METHODS: AuNPL were synthesized by reducing chloroauric acid by trisodium citrate with subsequent addition of luteoline during synthesis and their physicochemical characterization was done. AuNPL cytotoxicity against HeLa, human malignant melanoma A375, and normal human keratinocytes HaCaT cells was tested by MTT cell survival assay, and their IC50 values were determined. The capability of AuNPL to induce cell cycle arrest and apoptosis in HeLa cells were demonstrated by flow cytometry. The antioxidant activity of AuNPL was assessed by DPPH· and ABTS·+ scavenging assays. Cytoprotective properties of AuNPL towards HaCaT cells were examined by measuring the physiological and H2O2 induced intracellular reactive oxygen species (ROS) levels using flow cytometry. Also, genotoxicity of AuNPL in HaCaT cells was investigated by the single cell alkaline comet assay. RESULTS: Spherical AuNPL, stable in aqueous solution up to six months at 4 °C were obtained in the synthesis. The selectivity in the cytotoxic action of AuNPL on HeLa and A375 cancer cells compared with their cytotoxicity on normal keratinocytes HaCaT was observed. AuNPL exerted their cytotoxic activity against HeLa cells through accumulation of the cells in the subG1 phase of the cell cycle, inducing the apoptotic cell death mediated by the activation of caspase-3 - 8, and - 9. AuNPL antioxidative potential was confirmed by DPPH· and ABTS·+ scavenging assays. IC50 concentration of AuNPL exerted cytoprotective effect against HaCaT cells by the significant reduction of the physiological intracellular ROS level. Additionally, AuNPL were shown as more cytoprotective towards HaCaT cells then luteolin due to the more successful elimination of H2O2 induced intracellular ROS. Moreover, nontoxic concentrations of AuNPL did not cause considerable DNA damage of HaCaT cells, indicating low genotoxicity of the nanoparticles. CONCLUSION: Synthesized AuNPL showed selective cytotoxic activity against HeLa cells, while being nontoxic and cytoprotective against HaCaT cells. The observed findings encourage further investigation of AuNPL as a promising novel anticancer agent.


Assuntos
Adenocarcinoma , Antineoplásicos , Nanopartículas Metálicas , Humanos , Células HeLa , Luteolina/farmacologia , Luteolina/química , Ouro/farmacologia , Ouro/química , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Nanopartículas Metálicas/química , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/química , Antioxidantes/farmacologia
7.
Molecules ; 28(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446667

RESUMO

Luteolin from Patrinia villosa exhibits strong antiviral activity. Here, the conditions for extracting and enriching luteolin from P. villosa were optimized. Response surface methodology was used to determine the optimal extraction parameters in terms of reflux time, solvent ratio, extraction temperature, material-to-liquid ratio, and number of extractions. Thereafter, a macroporous resin method was used to enrich luteolin from P. villosa. Finally, the following optimal extraction and enrichment conditions were established: an extraction time of 43.00 min, a methanol/hydrochloric acid solvent ratio of 13:1, an extraction temperature of 77.60 °C, a material/liquid ratio of 1:22, and a total of two extractions. NKA-9 was determined to be the most appropriate resin for enrichment. The ideal adsorption conditions were as follows: a pH of 5.0, a temperature of 25 °C, an initial luteolin concentration of 19.58 µg/mL, a sample loading volume of 2.9 BV, and a sample loading rate of 2 BV/h. The ideal desorption conditions were as follows: distilled water, 30% ethanol and 80% ethanol elution, and 5 BV at a flow rate of 2 BV/h. After optimization, the enrichment recovery rate was 80.06% and the luteolin content increased 3.8-fold. Additionally, the enriched product exhibited a significant inhibitory effect on PRV (Porcine pseudorabies virus) in vitro and in vivo, providing data for developing and applying luteolin from P. villosa.


Assuntos
Patrinia , Animais , Suínos , Patrinia/química , Luteolina/farmacologia , Luteolina/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Etanol , Solventes
8.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985836

RESUMO

Flavones such as 7,8-dihydroxyflavone (tropoflavin), 5,6,7-trihydroxyflavone (baicalein), 3',4',5,6-tetrahydroxyflavone (luteolin), 3,3',4',5,5',7-hexahydroxyflavone (myricetin), 4',5,7-trihydroxyflavone (apigenin), and 5,7-dihydroxyflavone (chrysin) are important both for their presence in natural products and for their pharmacological applications. However, due to their chemical characteristics and their metabolic processes, they have low solubility and low bioavailability. Knowledge about the physicochemical properties of nanocarriers and the possible mechanisms of covalent and non-covalent interaction between nanoparticles (NPs) and drugs is essential for the design of nanocarriers to improve the bioavailability of molecules with pharmacological potential, such as tropoflavin, baicalein, luteolin, myricetin, apigenin, and chrysin. The parameters of characterization of some NPs of these flavones, such as size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE), and % release/time, utilized in biomedical applications and the covalent and non-covalent interactions existing between the polymeric NPs and the drug were analyzed. Similarly, the presence of functional groups in the functionalized carbon nanotubes (CNTs), as well as the effect of pH on the % adsorption of flavonoids on functionalized multi-walled carbon nanotubes (MWCNT-COOH), were analyzed. Non-covalent interaction mechanisms between polymeric NPs and flavones, and covalent interaction mechanisms that could exist between the NPs and the amino and hydroxyl functional groups, are proposed.


Assuntos
Flavonas , Nanotubos de Carbono , Flavonas/química , Apigenina/química , Luteolina/química , Flavonoides/química
9.
Food Chem ; 414: 135738, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841103

RESUMO

In this work, the potential of soy protein isolate (SPI)-luteolin (Lut)/apigenin (Ap)/chrysin (Chr) complexes as natural preservatives for food and cosmetics was evaluated by comparing their interactional and functional properties with structure-activity relationship. The results of spectrometry and molecular docking indicated that the B-ring hydroxylation of flavonoids affected their binding constants with SPI, which were determined as Lut (1.45 × 106 L/mol) > Ap (2.04 × 105 L/mol) > Chr (3.81 × 104 L/mol) at 298.15 K. It demonstrated that the hydrogen bonding force played an important role in binding flavonoids to SPI. Moreover, the anti-oxidation ability, antimicrobial effect, and foaming properties were positively correlated with increase in number of hydroxyl groups on the B-ring, but the amount and type of the preservative should be adjusted aimed at the nutrition components. This study provides a theoretical basis for the use of flavonoids and SPI-flavonoid complexes as natural preservatives for food and cosmetics.


Assuntos
Apigenina , Luteolina , Apigenina/química , Luteolina/química , Proteínas de Soja/química , Simulação de Acoplamento Molecular , Flavonoides/química , Conservantes Farmacêuticos
10.
J Biomol Struct Dyn ; 41(5): 1553-1560, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34974817

RESUMO

In silico methods such as molecular docking and molecular dynamic (MD) simulations have significant interest due to their ability to identify the protein-ligand interactions at the atomic level. In this work, different computational methods were used to elucidate the ability of some olive oil components to act as Neisseria adhesion A Regulatory protein (NadR) inhibitors. The frontier molecular orbitals (FMOs) and the global properties such as global hardness, electronegativity, and global softness of ten olive oil components (α-Tocopherol, Erythrodiol, Hydroxytyrosol, Linoleic acid, Apigenin, Luteolin, Oleic acid, Oleocanthal, Palmitic acid, and Tyrosol) were reported using Density Functional Theory (DFT) methods. Among all investigated compounds, Erythrodiol, Apigenin, and Luteolin demonstrated the highest binding affinities (-8.72, -7.12, and -8.24 kcal/mol, respectively) against NadR, compared to -8.21 kcal/mol of the native ligand based on molecular docking calculations. ADMET properties and physicochemical features showed that Erythrodiol, Apigenin, and Luteolin have good physicochemical features and can act as drugs candidate. Molecular dynamics (MD) simulations demonstrated that Erythrodiol, Apigenin, and Luteolin show stable binding affinity and molecular interaction with NadR. Further Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analyses using the MD trajectories also demonstrated the higher binding affinity of Erythrodiol, Apigenin and Luteolin inside NadR protein. The overall study provides a rationale to use Erythrodiol, Apigenin, and Luteolin in the drug development as anti-adhesive drugs lead. Communicated by Ramaswamy H. Sarma.


Assuntos
Apigenina , Luteolina , Simulação de Acoplamento Molecular , Azeite de Oliva , Apigenina/farmacologia , Apigenina/química , Luteolina/farmacologia , Luteolina/química , Ligantes , Simulação de Dinâmica Molecular
11.
J Chromatogr A ; 1678: 463377, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35926390

RESUMO

UiO-66(NH2), a metal-organic framework, exhibits excellent UV absorption and energy transfer performance and can be used as a substrate for surface-assisted laser desorption/ionization (SALDI) analysis of small molecules. Molecularly imprinted polymers (MIPs) exhibit outstanding selectivity toward certain targets. The complexes of UiO-66(NH2) and MIPs can be applied as both an adsorbent and substrate for SALDI-time-of-flight mass spectrometry (SALDI-TOF MS) analysis of small molecules. Herein, magnetic UiO-66(NH2)-molecularly imprinted polymers (MUMIPs) were prepared for the selective enrichment and detection of luteolin via SALDI-TOF MS. The amino group on UiO-66(NH2) were used as functional monomer to prepare MIPs that interact with luteolin via hydrogen bonding. The surface functional monomer can effectively control the coating thickness of the MIPs to avoid embedding template molecules and enhance adsorption performance. In addition, Fe3O4 particles were introduced for rapid magnetic separation. The physicochemical properties of the MUMIPs were characterized via scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, vibrating sample magnetometry, Brunauer-Emmett-Teller analysis, and X-ray photoelectron spectroscopy. Adsorption experiments and selectivity studies indicated that MUMIPs exhibited good adsorption capacity, fast adsorption rates, and excellent luteolin selectivity. MUMIPs are efficient substrates for the SALDI analysis of luteolin and its structural analogs. In addition, the MUMIPs-SALDI-TOF MS method successfully detected luteolin in rat plasma and urine after administration of oral Chrysanthemum morifolium Ramat extracts. This method possessed high sensitivity with a limit of detection of 0.5 ng/mL. The traditional precipitation method combined with high-performance liquid chromatography-mass spectrometry was also used to analyze luteolin in biological samples. Compared with the traditional method, the novel MUMIP-SALDI-TOF MS method can more effectively detect the target compounds in complex samples. Ultimately, the MUMIP-SALDI-TOF MS method was applied to detect luteolin and its metabolites in rat liver after oral luteolin treatment. Three luteolin metabolites (apigenin, chrysoeriol, and diosmetin) were analyzed using the newly developed MUMIP-SALDI-TOF MS method.


Assuntos
Estruturas Metalorgânicas , Impressão Molecular , Adsorção , Animais , Lasers , Luteolina/química , Fenômenos Magnéticos , Espectrometria de Massas , Polímeros Molecularmente Impressos , Ácidos Ftálicos , Polímeros/química , Ratos
12.
J Agric Food Chem ; 70(28): 8738-8745, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35795971

RESUMO

Luteolin (LUT), a plant-derived flavone, exhibits various bioactivities; however, the poor aqueous solubility hampers its applications. Here, we revealed bioconversion of LUT by Bacillus subtilis BCRC 80517, yielding three water-soluble phosphate conjugates. These derivatives were identified as luteolin 4'-O-phosphate (L4'P), luteolin 3'-O-phosphate (L3'P), and luteolin 7-O-phosphate (L7P) by LC-ESI-MS/MS and NMR. Besides, we found that Bacillus subtilis BCRC 80517 was able to convert different levels of LUT but showed a limited conversion rate. By observing bacterial morphology with transmission electron microscopy and confocal fluorescence microscopy, we found that LUT disrupted the bacterial membrane integrity, which explained the incomplete conversion. Additionally, we revealed a spontaneous intramolecular transesterification of L4'P to L3'P, the thermodynamically more stable form, under acidic conditions and proposed the possible mechanism involving a cyclic phosphate as the intermediate. This study provides insight into development of a potent structural modification strategy to enhance the solubility of LUT through biophosphorylation.


Assuntos
Bacillus subtilis , Luteolina , Cromatografia Líquida , Luteolina/química , Fosfatos , Espectrometria de Massas em Tandem
13.
Nutrients ; 14(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35334812

RESUMO

Flavonoids are interesting molecules synthetized by plants. They can be found abundantly in seeds and fruits, determining the color, flavor, and other organoleptic characteristics, as well as contributing to important nutritional aspects. Beyond these characteristics, due to their biochemical properties and characteristics, they can be considered bioactive compounds. Several interesting studies have demonstrated their biological activity in different cellular and physiological processes in high-order organisms including humans. The flavonoid molecular structure confers the capability of reacting with and neutralizing reactive oxygen species (ROS), behaving as scavengers in all processes generating this class of molecules, such as UV irradiation, a process widely present in plant physiology. Importantly, the recent scientific literature has demonstrated that flavonoids, in human physiology, are active compounds acting not only as scavengers but also with the important role of counteracting the inflammation process. Among the wide variety of flavonoid molecules, significant results have been shown by investigating the role of the flavones luteolin and luteolin-7-O-glucoside (LUT-7G). For these compounds, experimental results demonstrated an interesting anti-inflammatory action, both in vitro and in vivo, in the interaction with JAK/STAT3, NF-κB, and other pathways described in this review. We also describe the effects in metabolic pathways connected with inflammation, such as cellular glycolysis, diabetes, lipid peroxidation, and effects in cancer cells. Moreover, the inhibition of inflammatory pathway in endothelial tissue, as well as the NLRP3 inflammasome assembly, demonstrates a key role in the progression of such phenomena. Since these micronutrient molecules can be obtained from food, their biochemical properties open new perspectives with respect to the long-term health status of healthy individuals, as well as their use as a coadjutant treatment in specific diseases.


Assuntos
Anti-Inflamatórios , Luteolina , Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Humanos , Inflamação/tratamento farmacológico , Luteolina/química , Luteolina/farmacologia
14.
Pak J Pharm Sci ; 35(1(Supplementary)): 219-225, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35228180

RESUMO

A polyphenolic flavone Luteolin (3',4',5,7-tetrahydroxyflavone) is found in various plants and is traditionally used in Chinese medicine. It is obtained from Alstonia scholaris (L.) R.Br Flower belonging to the family Apocynaceae while investigation. Various studies have been demonstrated the antioxidant or antiulcer potential of luteolin from different plant sources. In the present investigation the antioxidant or antiulcer effect of the Luteolin has been carried out using molecular docking simulations. The objective of this study was to analyze the antioxidant and antiulcer potential of luteolin obtained during isolation. The in vitro biological evaluation has been supported by the in silico studies using Autodock vina 4 shows the ligand-protein interaction of lute olin with 1HD2, 4GY7 and 3O1Q. Luteolin showed significant DPPH scavenging and urease inhibition activity i.e., 23.4 ± 0.87, 6.21±0.45 IC50 (uM) respectively as compared to the standard BHA and thiourea 44.2±0.45, 22.4±0.29 IC50 (uM) respectively. The docking simulations showed significant binding pocket sites with the respective proteins1HD2, 4GY7 and 3O1Q with the least binding energy -6.8, -8.0 and -8.2 kcal/mol respectively. Thus, Strong evidence has been presented with their confirmation structural interaction via molecular docking with proteins that serve as binding sites for available Luteolin molecule. The findings justify the application of the compound as a novel antioxidant and antiulcer agent.


Assuntos
Alstonia/química , Luteolina/farmacologia , Compostos Fitoquímicos/farmacologia , Urease/antagonistas & inibidores , Compostos de Bifenilo , Sequestradores de Radicais Livres , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Luteolina/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Compostos Fitoquímicos/química , Picratos
15.
Med Res Rev ; 42(4): 1423-1462, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35187675

RESUMO

Cutaneous malignant melanoma is the fastest growing and the most aggressive form of skin cancer that is diagnosed. However, its incidence is relatively scarce compared to the highest mortality rate of all skin cancers. The much more common skin cancers include nonmelanoma malignant skin cancers. Moreover, over the past several decades, the frequency of all skin cancers has increased much more dynamically than that of almost any other type of cancer. Among the available therapeutic options for skin cancers, chemotherapy used immediately after the surgical intervention has been an essential element. Unfortunately, the main problem with conventional chemopreventive regimens involves the lack of response to treatment and the associated side effects. Hence, there is a need for much more effective anticancer drugs. Correspondingly, the targeted alternatives have involved phytochemicals, which are safer chemotherapeutic agents and exhibit competitive anticancer activity with high therapeutic efficacy. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in medicinal plants, have been demonstrated to influence the modulation of signaling pathways at each stage of the carcinogenesis process, which is also important in the context of skin cancers. Hence, this review focuses on an exhaustive overview of the therapeutic effects of luteolin and its derivatives in the treatment and prevention of skin cancers. The bioavailability and structure-activity relationships of luteolin derivatives are also discussed. This review is the first such complete account of all of the scientific reports concerning this particular group of natural compounds that target a specific area of neoplastic diseases.


Assuntos
Antineoplásicos , Melanoma , Neoplasias Cutâneas , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Luteolina/química , Luteolina/farmacologia , Luteolina/uso terapêutico , Melanoma/tratamento farmacológico , Compostos Fitoquímicos , Neoplasias Cutâneas/tratamento farmacológico
16.
Molecules ; 27(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35164232

RESUMO

Herein, we report the use of the Suzuki-Miyaura cross-coupling reaction for the preparation of a library of synthetic derivatives of flavonoids for biological activity assays. We have investigated the reactivity of halogenated flavonoids with aryl boronates and with boronyl flavonoids. This reaction was used to prepare new synthetic derivatives of flavonoids substituted at C-8 with aryl, heteroaryl, alkyl, and boronate substituents. The formation of flavonoid boronate enabled a cross-coupling reaction with halogenated flavones yielding biflavonoids connected at C-8. This method was used for the preparation of natural compounds including C-8 prenylated compounds, such as sinoflavonoid NB. Flavonoid boronates were used for the preparation of rare C-8 hydroxyflavonoids (natural flavonoids gossypetin and hypolaetin). A series of previously unknown derivatives of quercetin and luteolin were prepared and fully characterized.


Assuntos
Ácidos Borônicos/química , Flavonoides/química , Luteolina/química , Paládio/química , Quercetina/química , Catálise , Estrutura Molecular
17.
Mikrochim Acta ; 189(2): 59, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015150

RESUMO

A  nanocomposite of rGO/MXene-Pd/rGO with hierarchical structure based on Ti3C2Tx MXene, Pd nanoparticles, and reduced graphene oxide (rGO) was synthesized by a green approach. Ti3C2Tx MXene decorated with Pd nanoparticles (MXene-Pd) was prepared first. Then, graphene oxide (GO), MXene-Pd, and GO were coated on the surface of the glassy carbon electrode (GCE) in sequence. After each coating of the GO layer, the GO nanosheets were reduced to rGO electrochemically. The fabricated rGO/MXene-Pd/rGO hierarchical framework performs a pie structure with MXene-Pd as the stuffing and rGO nanosheets as the crust, which will be beneficial to the enhancement of its electrochemical sensing performance. As compared with other electrodes, the rGO/MXene-Pd/rGO/GCE exhibited higher electrocatalytic activity and better sensing performance for luteolin detection, with a wide linear range of 6.0 × 10-10 to 8 × 10-7 M and 1.0 × 10-6 to 1.0 × 10-5 M (oxidation peak potential Epa = 0.34 V vs. SCE), a low detection limit of 2.0 × 10-10 M, and a high sensitivity of 112.72 µA µM-1 cm-2. Moreover, the fabricated sensor also showed high selectivity, reproducibility, and repeatability toward the detection of luteolin. The real sample analysis for luteolin in honeysuckle was successfully carried out by rGO/MXene-Pd/rGO and verified with high-performance liquid chromatography (HPLC) analysis techniques with acceptable results. All the above tests indicate the promising application prospect of the rGO/MXene-Pd/rGO framework for luteolin detection in honeysuckle and other herbs containing luteolin.


Assuntos
Técnicas Eletroquímicas , Grafite , Luteolina , Paládio , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Grafite/química , Luteolina/química , Paládio/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-35085987

RESUMO

Both luteolin (LUT) and resveratrol (RES) are natural polyphenols that exert therapeutic effects on liver injuries. Extensive glucuronidation by uridine diphosphate-glucuronosyltransferases 1As (UGT1As) results in poor bioavailability of LUT, which limits its clinical application. As an inhibitor of UGT1A1 and UGT1A9, RES may affect the bioavailability of LUT. The purpose of this study was to develop and validate an HPLC-MS/MS method for the simultaneous determination of LUT, luteolin-3'-O-glucuronide (LUT-3'-G), RES and resveratrol-3-O-glucuronide (RES-3-G) in rat plasma to investigate the effects of RES on the bioavailability and metabolism of LUT after coadministration. The samples were extracted by protein precipitation with methanol using daidzein and naringenin as the internal standards. Separation was achieved on an XBridgeTM C18 column by isocratic elution using 88% methanol-12% water with 2 mM ammonium acetate and 0.01% formic acid. Multiple reaction monitoring mode with a negative electrospray ionization interface was used for quantification of the analytes. The calibration curves were linear over the concentration ranges of 1-1000 (r > 0.995), 2-2000 (r > 0.999), 5-5000 (r > 0.998) and 10-40000 ng/mL (r > 0.996) for LUT, LUT-3'-G, RES and RES-3-G, respectively. The method was fully validated in terms of accuracy, precision, matrix effect, recovery and stability. The validated data met the acceptance criteria in FDA guidelines. The method was successfully applied in a pharmacokinetic interaction study of LUT and RES. The results indicated that RES had a significant effect on the enhanced bioavailability of LUT by reducing the major glucuronidation metabolite in rats, which provides a reference for the combination of LUT and RES in liver diseases.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Luteolina/química , Resveratrol/química , Espectrometria de Massas em Tandem/métodos , Animais , Limite de Detecção , Luteolina/sangue , Luteolina/farmacocinética , Masculino , Plasma/química , Ratos , Ratos Sprague-Dawley , Resveratrol/sangue , Resveratrol/farmacocinética
19.
Med Sci Monit ; 28: e934102, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35075100

RESUMO

BACKGROUND Heat-clearing and detoxifying herbs (HDHs) play an important role in the prevention and treatment of coronavirus infection. However, their mechanism of action needs further study. This study aimed to explore the anti-coronavirus basis and mechanism of HDHs. MATERIAL AND METHODS Database mining was performed on 7 HDHs. Core ingredients and targets were screened according to ADME rules combined with Neighborhood, Co-occurrence, Co-expression, and other algorithms. GO enrichment and KEGG pathway analyses were performed using the R language. Finally, high-throughput molecular docking was used for verification. RESULTS HDHs mainly acts on NOS3, EGFR, IL-6, MAPK8, PTGS2, MAPK14, NFKB1, and CASP3 through quercetin, luteolin, wogonin, indirubin alkaloids, ß-sitosterol, and isolariciresinol. These targets are mainly involved in the regulation of biological processes such as inflammation, activation of MAPK activity, and positive regulation of NF-kappaB transcription factor activity. Pathway analysis further revealed that the pathways regulated by these targets mainly include: signaling pathways related to viral and bacterial infections such as tuberculosis, influenza A, Ras signaling pathways; inflammation-related pathways such as the TLR, TNF, MAPK, and HIF-1 signaling pathways; and immune-related pathways such as NOD receptor signaling pathways. These pathways play a synergistic role in inhibiting lung inflammation and regulating immunity and antiviral activity. CONCLUSIONS HDHs play a role in the treatment of coronavirus infection by regulating the body's immunity, fighting inflammation, and antiviral activities, suggesting a molecular basis and new strategies for the treatment of COVID-19 and a foundation for the screening of new antiviral drugs.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavirus/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Alcaloides/química , Alcaloides/farmacologia , Caspase 3/efeitos dos fármacos , Caspase 3/genética , Coronavirus/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Bases de Dados de Produtos Farmacêuticos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Flavanonas/química , Flavanonas/farmacologia , Humanos , Indóis/química , Indóis/farmacologia , Interleucina-6/genética , Lignina/química , Lignina/farmacologia , Luteolina/química , Luteolina/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 8 Ativada por Mitógeno/genética , Simulação de Acoplamento Molecular , Subunidade p50 de NF-kappa B/efeitos dos fármacos , Subunidade p50 de NF-kappa B/genética , Naftóis/química , Naftóis/farmacologia , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/genética , Mapas de Interação de Proteínas , Quercetina/química , Quercetina/farmacologia , SARS-CoV-2/metabolismo , Transdução de Sinais , Sitosteroides/química , Sitosteroides/farmacologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
20.
J Inorg Biochem ; 226: 111635, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717250

RESUMO

Luteolin has been reviewed as a flavonoid possessing potential cardioprotective, anti-inflammatory, anti-cancer activities. Having multiple biological effects, luteolin may act as either an antioxidant or a pro-oxidant. In this work, the protective role of copper(II)-chelation by luteolin on DNA damage via the Cu-Fenton reaction was studied. EPR and UV-vis spectroscopic data demonstrated that the luteolin, lacking 3-OH group, chelates to Cu(II) via the 5-OH and 4-CO groups, respectively. EPR spin trapping experiments using DMPO spin trap confirmed that the coordination of luteolin to Cu(II) significantly suppressed formation of hydroxyl and superoxide radicals (by 80%) in a Cu-Fenton system. Absorption titrations showed that the chelation of Cu(II) by luteolin slightly increased the mild intercalation strength of its interaction with DNA, as compared with free luteolin. Comparison with kaempferol and quercetin revealed, that the strength of the interaction between the free flavonoids/Cu-flavonoid complexes with DNA is only mildly affected by the presence/absence of 3-OH group. Due to the differences in the sensitivities of absorption titrations and viscometry, the latter confirmed weaker DNA intercalating efficiency of Cu-luteolin complex than does free luteolin. A dose dependent protective effect of luteolin against ROS-induced DNA damage was observed using gel electrophoresis. This effect was more pronounced compared to quercetin and kaempferol. In conclusion, the administration of luteolin to patients suffering from oxidative stress-related diseases with disturbed Cu-metabolism such as Alzheimer's diseases (antioxidant effect) and certain cancers (prooxidant effect) may have several health benefits.


Assuntos
Cobre/química , Dano ao DNA , Luteolina/química , Plasmídeos/química , Catálise , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...