Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
J Mater Chem B ; 9(47): 9700-9710, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34779468

RESUMO

Gold nanoparticles (AuNPs) were surface-engineered with a cationic corona to enhance the incorporation of photosensitizers for photodynamic therapy (PDT). The cationic corona composed of poly(2-(dimethylamino)ethyl methacrylate) was atom transfer radical-polymerized on the surface of the AuNPs. The cationic corona of the engineered surface was characterized by dynamic light scattering, electron microscopy, Raman spectroscopy, and mass spectroscopy. Chlorin-e6 (Ce6) incorporated onto the surface-engineered AuNPs exhibited higher cell incorporation efficiency than bare AuNPs. Ce6-incorporated AuNPs were confirmed to release singlet oxygen upon NIR irradiation. Compared to Ce6, Ce6-incorporated AuNPs exhibited higher cellular uptake and cytotoxicity against cancer cells in an irradiation time-dependent manner. Near-infrared-irradiated animals administered Ce6-incorporated AuNPs exhibited higher levels of tumor suppression without noticeable body weight loss. This result was attributed to the higher localization of Ce6 at the tumor sites to induce cancer cell apoptosis. Thus, we envision that engineered AuNPs with cationic corona can be tailored to effectively deliver photosensitizers to tumor sites for photodynamic therapy.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Clorofilídeos/síntese química , Clorofilídeos/efeitos da radiação , Clorofilídeos/uso terapêutico , Feminino , Ouro/química , Ouro/efeitos da radiação , Humanos , Raios Infravermelhos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Metacrilatos/síntese química , Metacrilatos/química , Metacrilatos/efeitos da radiação , Camundongos Endogâmicos BALB C , Camundongos Nus , Nylons/síntese química , Nylons/química , Nylons/efeitos da radiação , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Polimerização , Oxigênio Singlete/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
ACS Appl Mater Interfaces ; 13(36): 43290-43300, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464079

RESUMO

We report the first successful combination of three distinct high-throughput techniques to deliver the accelerated design, synthesis, and property screening of a library of novel, bio-instructive, polymeric, comb-graft surfactants. These three-dimensional, surface-active materials were successfully used to control the surface properties of particles by forming a unimolecular deep layer on the surface of the particles via microfluidic processing. This strategy deliberately utilizes the surfactant to both create the stable particles and deliver a desired cell-instructive behavior. Therefore, these specifically designed, highly functional surfactants are critical to promoting a desired cell response. This library contained surfactants constructed from 20 molecularly distinct (meth)acrylic monomers, which had been pre-identified by HT screening to exhibit specific, varied, and desirable bacterial biofilm inhibitory responses. The surfactant's self-assembly properties in water were assessed by developing a novel, fully automated, HT method to determine the critical aggregation concentration. These values were used as the input data to a computational-based evaluation of the key molecular descriptors that dictated aggregation behavior. Thus, this combination of HT techniques facilitated the rapid design, generation, and evaluation of further novel, highly functional, cell-instructive surfaces by application of designed surfactants possessing complex molecular architectures.


Assuntos
Metacrilatos/química , Polietilenoglicóis/química , Bibliotecas de Moléculas Pequenas/química , Tensoativos/química , Ensaios de Triagem em Larga Escala , Aprendizado de Máquina , Metacrilatos/síntese química , Micelas , Modelos Químicos , Transição de Fase , Polietilenoglicóis/síntese química , Polimerização , Bibliotecas de Moléculas Pequenas/síntese química , Tensoativos/síntese química
3.
ACS Appl Mater Interfaces ; 13(26): 30284-30294, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170101

RESUMO

The facile and controlled fabrication of homogeneously grafted cationic polymers on carbon nanotubes (CNTs) remains poorly investigated, which further hinders the understanding of interactions between functionalized CNTs with different nucleic acids and the rational design of appropriate gene delivery vehicles. Herein, we describe the controlled grafting of cationic poly(2-dimethylaminoethylmethacrylate) brushes on CNTs via surface-initiated atom transfer radical polymerization integrated with mussel-inspired polydopamine chemistry. The binding of nucleic acids with different brush-CNT hybrids discloses the highly architectural-dependent behavior with dense short brush-coated CNTs displaying the highest binding among all the other hybrids, namely, dense long, sparse long, and sparse short brush-coated CNTs. Additionally, different chemistries of the brush coatings were shown to influence the biocompatibility, cellular uptake, and silencing efficiency in vitro. This platform provides great flexibility for the design of polymer brush-CNT hybrids with precise control over their structure-activity relationship for the rational design of nucleic acid delivery systems.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos/química , Metacrilatos/química , Nanotubos de Carbono/química , Nylons/química , RNA Interferente Pequeno/farmacologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/síntese química , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Metacrilatos/síntese química , Camundongos , Nylons/síntese química
4.
J Chromatogr A ; 1638: 461869, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33433375

RESUMO

Grafting functional polymer chains onto porous resins has been found to drastically increase both adsorption capacity and uptake rate in protein chromatography. In this work, 2-aminoethyl methacrylate (AEM) was used for grafting onto Sepharose FF gel, and six anion-exchangers of different polyAEM (pAEM) chain lengths (ionic capacities, ICs), FF-pAEM, were obtained for protein adsorption and chromatography. It was found that protein adsorption capacity (qm) increased with increasing pAEM chain length, but the uptake rate, represented by the ratio of effective pore diffusivity to the free solution diffusivity (De/D0), showed an up-down trend, reaching a peak value (De/D0=0.55) at an IC of 313 mmol/L. Partial charge neutralization of the AEM-grafted resin of the highest IC (513 mmol/L) by reaction with sodium acetate produced three charge-reduced resins, FF-pAEM513-R. With reducing the charge density, the adsorption capacity kept unchanged and then decreased, but the uptake rate monotonically increased, reaching a maximum (about 2-fold increase) at a residual IC of 263 mmol/L. It is notable that, at the same IC, the charge-reduced resin (FF-pAEM513-R) presented similar or even higher values of qm and De/D0 than its FF-pAEM counterpart. Particularly, at the same IC of 263 mmol/L, a ~50% enhancement of De/D0 was observed. Both adsorption capacity and uptake rate in the charge-reduced resin with a residual IC of 339 mmo/L (FF-pAEM513-R339) decreased more sharply with increasing NaCl concentration by comparison with FF-pAEM513, indicating its increased salt-sensitivity than FF-pAEM513. That is, charge reduction on the AEM-grafted resin could accelerate protein uptake at 0 mmol/L NaCl but decrease salt tolerance. Column breakthrough experiments showed that FF-pAEM513-R339 was favorable for high flow rate protein chromatography at low NaCl concentration (0 mmol/L), whereas FF-pAEM513 was a good choice in a wide range of salt concentrations at low flow rate. This research proved the excellent protein chromatography performance of the AEM-based anion-exchangers.


Assuntos
Géis/química , Metacrilatos/química , Polímeros/química , Sefarose/química , Soroalbumina Bovina/química , Eletricidade Estática , Adsorção , Animais , Ânions , Bovinos , Cromatografia por Troca Iônica , Cinética , Metacrilatos/síntese química , Concentração Osmolar , Polímeros/síntese química , Porosidade , Ligação Proteica
5.
J Mater Chem B ; 9(6): 1557-1567, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33491722

RESUMO

Casein is a naturally derived amino group (-NH2) rich protein, that enables surface functionalization leading to hydrophilicity, which in turn facilitates better cell adhesion. Casein obtained from either commercial ß-casein rich skim milk (A2 milk) or dissolved air flotation (DAF) technology was tested for its potential for tissue engineering applications in a comparative study. A novel biodegradable biomaterial was synthesized from casein by chemically modifying with methacrylic anhydride (MA) and combined with polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blend. The resulting methacrylated casein (CasMA) with the two polymers was processed into porous scaffolds with low and high MA concentrations to demonstrate CasMA's ease of modification and reproducibility. Fourier Transform Infrared Microscopy (FTIR) and Proton Nuclear Magnetic Resonance (1H NMR) revealed the presence of all the components and the successful modification of casein. The rheological and morphological analysis presented viscous behaviour and columnar hollow tube-like microstructures in agreement with the biomaterials' swelling and biodegradation behaviour. The live/dead in vitro assay showed high cell viability that agreed with the cell proliferation (MTT) assay in vitro, which indicated increased proliferation upon casein modification at appropriate biomaterial concentrations and volumes. This study not only showed a possible mechanism of casein methacrylation but also presented the potential use of waste materials like DAF-casein as a value-added product for tissue engineering applications.


Assuntos
Caseínas/química , Células-Tronco Mesenquimais/citologia , Metacrilatos/química , Engenharia Tecidual , Alicerces Teciduais/química , Caseínas/síntese química , Células Cultivadas , Humanos , Teste de Materiais , Metacrilatos/síntese química , Tamanho da Partícula , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 13(5): 6659-6669, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497184

RESUMO

Dendritic polyglycerol (PG) was covalently coupled to 2-hydroxyethyl methacrylate (HEMA) by an anionically catalyzed ring-opening polymerization generating a dendritic PG-HEMA with four PG repetition units (PG4MA). Coatings of the methacrylate monomer were prepared by grafting-through and compared against commercially available hydrophilic monomers of HEMA, poly(ethylene) glycol methacrylate (PEGMA), and poly(propylene) glycol methacrylate (PPGMA). The obtained coatings were characterized by modern surface analytical techniques, including water contact angle goniometry (sessile and captive bubble), attenuated total internal reflection Fourier transform infrared spectroscopy, and atomic force microscopy. The antifouling (AF) and fouling-release (FR) properties of the coatings were tested against the model organisms Cobetia marina and Navicula perminuta in laboratory-scale dynamic accumulation assays as well as in a dynamic short-term field exposure (DSFE) in the marine environment. In addition, the hydration of the coatings and their susceptibility toward silt uptake were evaluated, revealing a strong correlation between water uptake, silt incorporation, and field assay performance. While all glycol derivatives showed good resistance in laboratory settlement experiments, PPGMA turned out to be less susceptible to silt incorporation and outperformed PEGMA and PG4MA in the DSFE assay.


Assuntos
Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Diatomáceas/efeitos dos fármacos , Halomonadaceae/efeitos dos fármacos , Metacrilatos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Metacrilatos/síntese química , Metacrilatos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Água/química
7.
Macromol Biosci ; 21(1): e2000317, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33043610

RESUMO

Bioinks play a key role in determining the capability of the biofabricatoin processes and the resolution of the printed constructs. Excellent biocompatibility, tunable physical properties, and ease of chemical or biological modifications of gelatin methacryloyl (GelMA) have made it an attractive choice as bioinks for biomanufacturing of various tissues or organs. However, the current preparation methods for GelMA-based bioinks lack the ability to tailor their physical properties for desired bioprinting methods. Inherently, GelMA prepolymer solution exhibits a fast sol-gel transition at room temperature, which is a hurdle for its use in stereolithography (SLA) bioprinting. Here, synthesis parameters are optimized such as solvents, pH, and reaction time to develop GelMA bioinks which have a slow sol-gel transition at room temperature and visible light crosslinkable functions. A total of eight GelMA combinations are identified as suitable for digital light processing (DLP)-based SLA (DLP-SLA) bioprinting through systematic characterizations of their physical and rheological properties. Out of various types of GelMA, those synthesized in reverse osmosis (RO) purified water (referred to as RO-GelMA) are regarded as most suitable to achieve high DLP-SLA printing resolution. RO-GelMA-based bioinks are also found to be biocompatible showing high survival rates of encapsulated cells in the photocrosslinked gels. Additionally, the astrocytes and fibroblasts are observed to grow and integrate well within the bioprinted constructs. The bioink's superior physical and photocrosslinking properties offer pathways of tuning the scaffold microenvironment and highlight the applicability of developed GelMA bioinks in various tissue engineering and regenerative medicine applications.


Assuntos
Bioimpressão , Gelatina/farmacologia , Metacrilatos/farmacologia , Estereolitografia , Engenharia Tecidual , Sobrevivência Celular/efeitos dos fármacos , Gelatina/síntese química , Gelatina/efeitos da radiação , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Tinta , Luz , Metacrilatos/síntese química , Metacrilatos/efeitos da radiação , Impressão Tridimensional , Alicerces Teciduais/química
8.
Bioorg Chem ; 106: 104355, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223200

RESUMO

In this study, we prepared a novel amino cellulose derivative (benzyl cellulose-g-poly [2-(N,N-Dimethylamino)ethyl methacrylate]) via a homogeneous ATRP method. The successful synthesis of the novel amino cellulose was confirmed by FT-IR and 1H NMR. This study addressed the different characteristics of the prepared polymer including the thermal stability, solubility, and X-ray diffraction pattern. The antibacterial activity of the synthesized cellulose derivative was investigated using the diffusion disk method against both gram-negative (Escherichia coli, Salmonella enterica) and gram-positive (Staphylococcus aureus, Bacillus subtilis) bacteria. Based on the inhibition zone, it was confirmed that the prepared benzyl cellulose-g-PDMAEMA possesses acceptable antibacterial activity against Escherichia coli, Salmonella enterica, and Staphylococcus aureus while Bacillus subtilis is resistant to the prepared polymer. Also according to the inhibition zone, it was shown that benzyl cellulose-g-PDMAEMA has more impact on E. coli and Salmonella enterica than Staphylococcus aureus. Molecular dynamics simulation was also used to study the interaction of the synthesized cellulose derivative with a model membrane which presented atomistic details of the polymer-lipid interactions. According to the results obtained from the molecular dynamics simulation, the polymer was able to destabilize the structure of the membrane and clearly express its signs of degradation.


Assuntos
Antibacterianos/farmacologia , Celulose/análogos & derivados , Celulose/farmacologia , Metacrilatos/farmacologia , Nylons/farmacologia , Antibacterianos/síntese química , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Celulose/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Metacrilatos/síntese química , Metacrilatos/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Nylons/síntese química , Nylons/metabolismo , Solubilidade
9.
ACS Appl Mater Interfaces ; 12(51): 56805-56814, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33289537

RESUMO

There has been significant interest in the use of peptides as antimicrobial agents, and peptide containing hydrogels have been proposed as biological scaffolds for various applications. Limited stability and rapid clearance of small molecular weight peptides pose challenges to their widespread implementation. As a common approach, antibacterial peptides are physically loaded into hydrogel scaffolds, which leads to continuous release through the passive mode with spatial control but provides limited control over drug dosage. Although utilization of peptide covalent linkage onto hydrogels addresses partially this problem, the peptide release is commonly too slow. To alleviate these challenges, in this work, maleimide-modified antimicrobial peptides are covalently conjugated onto furan-based cryogel (CG) scaffolds via the Diels-Alder cycloaddition at room temperature. The furan group offers a handle for specific loading of the peptides, thus minimizing passive and burst drug release. The porous nature of the CG matrix provides rapid loading and release of therapeutic peptides, apart from high water uptake. Interfacing the peptide adduct containing a CG matrix with a reduced graphene oxide-modified Kapton substrate allows "on-demand" photothermal heating upon near-infrared (NIR) irradiation. A fabricated photothermal device enables tunable and efficient peptide release through NIR exposure to kill bacteria. Apart from spatial confinement offered by this CG-based bandage, the selective ablation of planktonic Staphylococcus aureus is demonstrated. It can be envisioned that this modular "on-demand" peptide-releasing device can be also employed for other topical applications by appropriate choice of therapeutic peptides.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Criogéis/química , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Criogéis/síntese química , Criogéis/efeitos da radiação , Reação de Cicloadição , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Furanos/síntese química , Furanos/química , Furanos/efeitos da radiação , Células HeLa , Calefação , Humanos , Raios Infravermelhos , Metacrilatos/síntese química , Metacrilatos/química , Metacrilatos/efeitos da radiação , Testes de Sensibilidade Microbiana , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos
10.
Biomed Res Int ; 2020: 5905740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150177

RESUMO

Large bone defects pose an unsolved challenge for orthopedic surgeons. Our group has previously reported the construction of a barrier membrane made of ammoniomethacrylate copolymer USP (AMCA), which supports the adhesion, proliferation, and osteoblastic differentiation of human mesenchymal stem cells (hMSCs). In this study, we report the use of AMCA membranes to seclude critical segmental defect (~1.0 cm) created in the middle third of rabbit radius and test the efficiency of bone regeneration. Bone regeneration was assessed by radiography, biweekly for 8 weeks. The results were verified by histology and micro-CT at the end of the follow-up. The AMCA membranes were found superior to no treatment in terms of new bone formation in the defect, bone volume, callus surface area normalized to total volume, and the number of bone trabeculae, after eight weeks. Additional factors were then assessed, and these included the addition of simvastatin to the membrane, coating the membrane with human MSC, and a combination of those. The addition of simvastatin to the membranes demonstrated a stronger effect at a similar radiological follow-up. We conclude that AMCA barrier membranes per se and simvastatin delivered in a controlled manner improve bone regeneration outcome.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fraturas Ósseas/terapia , Metacrilatos/farmacologia , Sinvastatina/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/patologia , Humanos , Masculino , Membranas Artificiais , Células-Tronco Mesenquimais/citologia , Metacrilatos/síntese química , Coelhos , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/efeitos dos fármacos , Rádio (Anatomia)/lesões , Microtomografia por Raio-X
11.
Molecules ; 25(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080832

RESUMO

A well-defined block copolymer brush poly(glycidyl methacrylate)-graft-(poly(methyl methacrylate)-block- poly(oligo(ethylene glycol) methyl ether methacrylate)) (PGMA-g-(PMMA-b-POEGMA)) is synthesized via grafting from an approach based on a combination of click chemistry and reversible addition-fragmentation chain transfer (RAFT) polymerization. The resulting block copolymer brushes were characterized by 1H-NMR and size exclusion chromatography (SEC). The self-assembly of the block copolymer brush was then investigated under selective solvent conditions in three systems: THF/water, THF/CH3OH, and DMSO/CHCl3. PGMA-g-(PMMA-b-POEGMA) was found to self-assemble into spherical micelle structures as analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The average size of the particles was much smaller in THF/CH3OH and DMSO/CHCl3 as compared with the THF/water system. Thin film of block copolymer brushes with tunable surface properties was then prepared by the spin-coating technique. The thickness of the thin film was confirmed by scanning electron microscopy (SEM). Atom force microscopy (AFM) analysis revealed a spherical morphology when the block copolymer brush was treated with poor solvents for the backbone and hydrophobic side chains. The contact angle measurements were used to confirm the surface rearrangements of the block copolymer brushes.


Assuntos
Metilmetacrilatos/química , Polietilenoglicóis/química , Polímeros/química , Polimetil Metacrilato/química , Química Click , Compostos de Epóxi/química , Metacrilatos/síntese química , Metacrilatos/química , Metilmetacrilatos/síntese química , Micelas , Microscopia de Força Atômica , Polietilenoglicóis/síntese química , Polimerização , Polímeros/síntese química , Polimetil Metacrilato/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água/química
12.
Bioconjug Chem ; 31(9): 2116-2124, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32786374

RESUMO

Macroporous cryogels that are amenable to facile functionalization are attractive platforms for biomolecular immobilization, a vital step for fabrication of scaffolds necessary for areas like tissue engineering and diagnostic sensing. In this work, thiol-reactive porous cryogels are obtained via photopolymerization of a furan-protected maleimide-containing poly(ethylene glycol) (PEG)-based methacrylate (PEGFuMaMA) monomer. A series of cryogels are prepared using varying amounts of the masked hydrophilic PEGFuMaMA monomer, along with poly(ethylene glycol) methyl ether methacrylate and poly(ethylene glycol) dimethacrylate, a hydrophilic monomer and cross-linker, respectively, in the presence of a photoinitiator. Subsequent activation to the thiol-reactive form of the furan-protected maleimide groups is performed through the retro Diels-Alder reaction. As a demonstration of direct protein immobilization, bovine serum albumin is immobilized onto the cryogels. Furthermore, ligand-directed immobilization of proteins is achieved by first attaching mannose- or biotin-thiol onto the maleimide-containing platforms, followed by ligand-directed immobilization of concanavalin A or streptavidin, respectively. Additionally, we demonstrate that the extent of immobilized proteins can be controlled by varying the amount of thiol-reactive maleimide groups present in the cryogel matrix. Compared to traditional hydrogels, cryogels demonstrate enhanced protein immobilization/detection. Additionally, it is concluded that utilization of a longer linker, distancing the thiol-reactive maleimide group from the gel scaffold, considerably increases protein immobilization. It can be envisioned that the facile fabrication, conjugation, and control over the extent of functionalization of these cryogels will make these materials desirable scaffolds for numerous biomedical applications.


Assuntos
Criogéis/química , Proteínas Imobilizadas/química , Metacrilatos/química , Polietilenoglicóis/química , Soroalbumina Bovina/química , Materiais Inteligentes/química , Compostos de Sulfidrila/química , Animais , Bovinos , Química Click , Criogéis/síntese química , Reação de Cicloadição , Maleimidas/síntese química , Maleimidas/química , Metacrilatos/síntese química , Polietilenoglicóis/síntese química , Porosidade , Materiais Inteligentes/síntese química
13.
J Mater Sci Mater Med ; 31(8): 61, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32696259

RESUMO

In this work, pH-sensitive hydrogel nanoparticles based on N-isopropyl acrylamide (NIPAM) and methacrylic acid (MAA) at various molar ratios, were synthesized and characterized in terms of physicochemical and biological properties. FTIR and 1HNMR spectra confirmed the successful synthesis of the copolymer that formed nanoparticles. AFM images and FE-SEM micrographs showed that nanoparticles were spherical, but their round-shape was slightly compromised with MAA content; besides, the size of particles tends to decrease as MAA content increased. The hydrogels nanoparticles also exhibited an interesting pH-sensitivity, displaying changes in its particle size when changes in pH media occurred. Biological characterization results indicate that all the synthesized particles are non-cytotoxic to endothelial cells and hemocompatible, although an increase of MAA content leads to a slight increase in the hemolysis percentage. Therefore, the pH-sensitivity hydrogels may serve as a versatile platform as self-regulated drug delivery systems in response to environmental pH changes.


Assuntos
Acrilamidas/síntese química , Hidrogéis/síntese química , Ácidos Polimetacrílicos/síntese química , Acrilamidas/química , Acrilamidas/farmacologia , Animais , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/fisiologia , Bovinos , Células Cultivadas , Liofilização , Hemólise/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Concentração de Íons de Hidrogênio , Teste de Materiais , Metacrilatos/síntese química , Metacrilatos/química , Nanopartículas/química , Tamanho da Partícula , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Testes de Toxicidade
14.
Biofabrication ; 12(4): 045012, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32619999

RESUMO

Bioengineered artificial blood vessels have been a major area of interest over the last decade. Of particular interest are small diameter vessels, as surgical options are currently limited. This study aimed to fabricate a small diameter, heterogeneous bilayer blood vessel-like construct in a single step with gelatin methacryloyl (GelMA) bioink using a 3D micro-extrusion bioprinter on a solid platform. GelMA was supplemented with Hyaluronic acid (HA), glycerol and gelatin to form a GelMA bioink with good printability, mechanical strength, and biocompatibility. Two separate concentrations of GelMA bioink with unique pore sizes were selected to fabricate a heterogeneous bilayer. A higher concentration of GelMA bioink (6% w/v GelMA, 2% gelatin, 0.3% w/v HA, 10% v/v glycerol) was used to load human umbilical vein endothelial cells (HUVECs) and form an inner, endothelial tissue layer. A lower concentration of GelMA bioink (4% w/v GelMA, 4% gelatin, 0.3% w/v HA, 10% v/v glycerol) was used to load smooth muscle cells (SMCs) and form an outer, muscular tissue layer. Bioprinted blood vessel-like grafts were then assessed for mechanical properties with Instron mechanical testing, and suture-ability, and for biological properties including viability, proliferation, and histological analysis. The resulting 20 mm long, 4.0 mm diameter lumen heterogeneous bilayer blood vessel-like construct closely mimics a native blood vessel and maintains high cell viability and proliferation. Our results represent a novel strategy for small diameter blood vessel biofabrication.


Assuntos
Bioimpressão , Vasos Sanguíneos/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Miócitos de Músculo Liso/citologia , Alicerces Teciduais/química , Proliferação de Células , Sobrevivência Celular , Gelatina/química , Humanos , Tinta , Metacrilatos/síntese química , Metacrilatos/química , Porosidade , Pressão
15.
ACS Appl Mater Interfaces ; 12(29): 32233-32246, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32438798

RESUMO

An efficient procedure for chemical initiator-free, in situ synthesis of a functional polyethylene glycol methacrylate (PEG MA) hydrogel on regular glass substrates is reported. It is demonstrated that self-initiated photografting and photopolymerization driven by UV irradiation can yield tens of nanometer-thick coatings of carboxy-functionalized PEG MA on the aldehyde-terminated borosilicate glass surface. The most efficient formulation for hydrogel synthesis contained methyl methacrylic acid (MAA), 2-hydroxyethyl methacrylate (HEMA), and PEG methacrylate (PEG10MA) monomers (1:1:1). The resulting HEMA/PEG10MA/MAA (HPMAA) coatings had a defined thickness in the range from 11 to 50 nm. The physicochemical properties of the synthesized HPMAA coatings were analyzed by combining water contact angle measurements, stylus profilometry, imaging null ellipsometry, and atomic force microscopy (AFM). The latter technique was employed in the quantitative imaging mode not only for direct probing of the surface topography but also for swelling behavior characterization in the pH range from 4.5 to 8.0. The estimated high swelling ratios of the HPMAA hydrogel (up to 3.2) together with its good stability and resistance to nonspecific protein binding were advantageous in extracellular matrix mimetics via patterning of fibronectin (FN) at a resolution close to 200 nm. It was shown that the fabricated FN micropatterns on HPMAA were equally suitable for single-cell arraying, as well as controlled cell culture lasting at least for 96 h.


Assuntos
Técnicas Biossensoriais , Materiais Revestidos Biocompatíveis/química , Hidrogéis/química , Metacrilatos/química , Polietilenoglicóis/química , Análise de Célula Única , Técnicas de Cultura de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/síntese química , Fibronectinas/química , Vidro/química , Humanos , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Metacrilatos/síntese química , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Polietilenoglicóis/síntese química , Propriedades de Superfície , Raios Ultravioleta
16.
Macromol Biosci ; 20(7): e2000143, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32401412

RESUMO

Owing to the biodegradability and good biocompatibility polycarbonates show the versatile class of applications in biomedical fields. While their poor functional ability seriously limited the development of functional polycarbonates. Herein, a new Br-containing cyclic carbonate (MTC-Br) and a polycarbonate atom transfer radical polymerization (ATRP) macro-initiator (PEG-PMTC-Br) is synthesized. Then, by initiating the side-chain ATRP of 2-(dimethyl amino)ethyl methacrylate (DMAEMA) on PEG-PMTC-Br, a series of comb-like amphiphilic cationic polycarbonates, PEG-b-(PMTC-g-PDMAEMA) (GMDMs), with different lengths of cationic branches are successfully prepared. All these poly(ethylene glycol)-b-(poly((5-methyl-2-oxo-1,3-dioxane-5-yl) methyl 2-bromo-2-methylpropanoate/1,3-dioxane-2-one)-g-poly(2-dimethyl aminoethyl methacrylate) (GMDMs) self-assembled nanoparticles (NPs) (≈180 nm, +40 mV) can well bind siRNA to form GMDM/siRNA NPs. The gene silence efficiency of GMDM/siRNA high to 80%, which is even higher than the commercial transfection reagent lipo2000 (76%). But GMDM/siRNA shows lower cell uptake than lipo2000. So, the high gene silence ability of GMDM/siRNA NPs can be attributed to the strong intracellular siRNA trafficking capacity. Therefore, GMDM NPs are potential siRNA vectors and the successful preparation of comb-like polycarbonates also provides a facile way for diverse side-chain functional polycarbonates, expanding the application of polycarbonates.


Assuntos
Técnicas de Transferência de Genes , Cimento de Policarboxilato/química , RNA Interferente Pequeno/metabolismo , Tensoativos/química , Brometos/química , Cátions , Endocitose , Células Hep G2 , Humanos , Metacrilatos/síntese química , Metacrilatos/química , Nanopartículas/química , Nylons/síntese química , Nylons/química , Tamanho da Partícula , Cimento de Policarboxilato/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
17.
Colloids Surf B Biointerfaces ; 191: 111008, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32298955

RESUMO

Cross-liked poly(2-hydroxyethyl methacrylate-co-methacrylic acid) seeds with different morphologies such as cauliflower-like, lobed spherical, and spherical were used in seeded emulsion polymerization (SEP) of 2-(dimethylamino)ethyl methacrylate (DMAEMA), 2-hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA). The morphological structure of produced composite particles was observed using field emission scanning electron microscopy (FE-SEM). The origin of the formation of different morphologies was discussed using various thermodynamic parameters such as solubility parameters and intermolecular forces between polymeric components involved. Also, the effect of the morphology of seed particles on the resultant structures was investigated. Results showed that morphology of fabricated composite particles is induced from morphology of seed particles with larger sizes. Finally, the fabricated composite particles were utilized in the controlled release of DOX. The effect of morphological changes of synthesized composite particles on the cumulative release behavior at acidic environment indicated the pH-sensitive nature of drug release through carriers. The particles with PDMAEMA shell showed the highest release of DOX at pH = 7.4 whereas PMAA shells displayed the least cumulative release. Inversely, the lowest cumulative release at pH = 1.2 was shown by PDMAEMA-coated carriers. Moreover, particles with spherical morphology had better drug release than cauliflower-like ones originated from smart nature of carriers.


Assuntos
Sistemas de Liberação de Medicamentos , Metacrilatos/síntese química , Nylons/síntese química , Emulsões/síntese química , Emulsões/química , Metacrilatos/química , Nylons/química , Tamanho da Partícula , Polimerização , Propriedades de Superfície
18.
Appl Microbiol Biotechnol ; 104(8): 3585-3595, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125481

RESUMO

The prevalence of stomatitis, especially that caused by Candida albicans, has highlighted the need for new antifungal agents. We previously found that a type of quaternary ammonium salts, dimethylaminododecyl methacrylate (DMADDM), incorporated in dental materials inhibited the growth and hyphal development of C. albicans. However, how the quaternary ammonium salts inhibited the fungal pathogens and whether the oral condition, such as salivary pH variation under different diseases, can affect the antimicrobial capacity of quaternary ammonium salts is unknown. This study evaluated the antifungal effects of DMADDM at different pH in vitro and in vivo. A pH-dependent antifungal effect of DMADDM was observed in planktonic and biofilm growth. DMADDM enhanced antifungal activity at alkaline pH. Two pH-regulated genes (PHR1/PHR2) of C. albicans were correlated with the pH-dependent antifungal effects of DMADDM. The PHR1/PHR2 genes and pH values regulated the zeta potential of C. albicans, which then influenced the binding between C. albicans cells and DMADDM. The pH-dependent antifungal activity of DMADDM was then substantiated in a murine oropharyngeal candidiasis model. We directly demonstrated that the antifungal abilities of quaternary ammonium salts relied on the cell zeta potential which affected the binding between fungal cells and quaternary ammonium salts. These findings suggest a new antifungal mechanism of quaternary ammonium under different pH and that DMADDM can be a potential antifungal agent applied in dental materials and stomatitis therapy.Key Points • DMADDM has stronger antifungal activity in alkaline than in acidic pH conditions. • The pH values and pH-regulated genes can affect the zeta potential of fungal cells. • Zeta potential of fungal cells directly affect the binding between DMADDM and cells. Graphical abstract Schematic diagram of the antifungal activities of DMADDM at different pH values.


Assuntos
Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Metacrilatos/uso terapêutico , Orofaringe/microbiologia , Compostos de Amônio Quaternário/uso terapêutico , Animais , Biofilmes/efeitos dos fármacos , Materiais Dentários , Modelos Animais de Doenças , Feminino , Concentração de Íons de Hidrogênio , Metacrilatos/síntese química , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Compostos de Amônio Quaternário/síntese química
19.
Macromol Biosci ; 20(4): e1900412, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32090495

RESUMO

The purpose of the study is to obtain multicomponent polyelectrolyte hydrogels with optimal synergistic properties by combining a modified starch with a synthetic one. Thus, new low-cost and biocompatible semi-interpenetrating polymer network (semi-IPN) hydrogels of carboxymethyl starch and poly(2-dimethylaminoethyl methacrylate) are prepared and investigated. The synthesized hydrogels are studied with respect to the specific characteristics of the gels: swelling kinetics, thermal analysis, viscoelastic characteristics, and their ability to be used as a matrix in drug delivery systems. Therefore, the semi-IPN gels are loaded with ibuprofen, followed by additional tests to assess the in vitro drug release. The cytocompatibility of the hydrogels with respect to their composition is evaluated in vitro on fibroblast cell culture. The investigations confirm the obtainment of new semi-IPN hydrogels with pH and temperature responsiveness, good mechanical strength, and potential for use as drug delivery systems or transdermal patches.


Assuntos
Anti-Inflamatórios/síntese química , Materiais Biocompatíveis/síntese química , Portadores de Fármacos/síntese química , Metacrilatos/síntese química , Nylons/síntese química , Amido/análogos & derivados , Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Elasticidade , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Ibuprofeno/química , Cinética , Metacrilatos/farmacologia , Nylons/farmacologia , Amido/química , Viscosidade , Molhabilidade
20.
Carbohydr Polym ; 234: 115899, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070519

RESUMO

Cellulose nanocrystals (CNCs) are used to design nanocomposites because of their high aspect ratio and their outstanding mechanical and barrier properties. However, the low compatibility of hydrophilic CNCs with hydrophobic polymers remains a barrier to their use in the nanocomposite field. To improve this compatibility, poly(glycidyl methacrylate) (PGMA) was grafted from CNCs containing α-bromoisobutyryl moieties via surface-initiated atom transfer radical polymerization. The novelty of this research is the use of a reactive epoxy-containing monomer that can serve as a new platform for further modifications or crosslinking. Polymer-grafted CNC-PGMA-Br prepared at different polymerization times were characterized by XRD, DLS, FTIR, XPS and elemental analysis. Approximately 40 % of the polymer at the surface of the CNCs was quantified after only 1 h of polymerization. Finally, nanocomposites prepared with 10 wt% CNC-PGMA-Br as nanofillers in a poly(lactic acid) (PLA) matrix exhibited an improvement in their compatibilization based on SEM observation.


Assuntos
Celulose/química , Compostos de Epóxi/síntese química , Metacrilatos/síntese química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Compostos de Epóxi/química , Metacrilatos/química , Tamanho da Partícula , Polimerização , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...