Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Neuromuscul Disord ; 33(12): 990-995, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980206

RESUMO

Congenital myopathies are defined by early clinical onset, slow progression, hereditary nature and disease-specific myopathological lesions - however, with exceptions - demanding special techniques in regard to morphological diagnostic and research work-up. To identify an index disease in a family requires a muscle biopsy - and no congenital myopathy has ever been first described at autopsy. The nosographic history commenced when - in addition to special histopathological techniques in the earliest classical triad of central core disease, 1956, nemaline myopathy, 1963, and centronuclear myopathy, 1966/67, within a decade - electron microscopy and enzyme histochemistry were applied to unfixed frozen muscle tissue and, thus, revolutionized diagnostic and research myopathology. During the following years, the list of structure-defined congenital myopathies grew to some 40 conditions. Then, the introduction of immunohistochemistry allowed myopathological documentation of proteins and their abnormalities in individual congenital myopathies. Together with the diagnostic evolution of molecular genetics, many more congenital myopathies were described, without new disease-specific lesions or only already known ones. These were nosographically defined by individual mutations in hitherto congenital myopathies-unrelated genes. This latter development may also affect the nomenclature of congenital myopathies in that the mutant gene needs to be attached to the individually identified congenital myopathies with or without the disease-specific lesion, such as CCD-RYR1 or CM-RYR1. This principle is similar to that of the nomenclature of Congenital Disorders of Glycosylation. Retroactive molecular characterization of originally and first described congenital myopathies has only rarely been achieved.


Assuntos
Miopatias da Nemalina , Miopatias Congênitas Estruturais , Miopatia da Parte Central , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Miopatias Congênitas Estruturais/patologia , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Músculos/patologia , Miopatia da Parte Central/patologia , Mutação , Músculo Esquelético/patologia
2.
Genes (Basel) ; 13(5)2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35627144

RESUMO

Central Core Disease (CCD) is a genetic neuromuscular disorder characterized by the presence of cores in muscle biopsy. The inheritance has been described as predominantly autosomal dominant (AD), and the disease may present as severe neonatal or mild adult forms. Here we report clinical and molecular data on a large cohort of Brazilian CCD patients, including a retrospective clinical analysis and molecular screening for RYR1 variants using Next-Generation Sequencing (NGS). We analyzed 27 patients from 19 unrelated families: four families (11 patients) with autosomal dominant inheritance (AD), two families (3 patients) with autosomal recessive (AR), and 13 sporadic cases. Biallelic RYR1 variants were found in six families (two AR and four sporadic cases) of the 14 molecularly analyzed families (~43%), suggesting a higher frequency of AR inheritance than expected. None of these cases presented a severe phenotype. Facial weakness was more common in biallelic than in monoallelic patients (p = 0.0043) and might be a marker for AR forms. NGS is highly effective for the identification of RYR1 variants in CCD patients, allowing the discovery of a higher proportion of AR cases with biallelic mutations. These data have important implications for the genetic counseling of the families.


Assuntos
Miopatia da Parte Central , Neuroblastoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Linhagem , Estudos Retrospectivos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
3.
Acta Neuropathol Commun ; 10(1): 54, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428369

RESUMO

Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied. Clinical and histopathological features were collected. Clinical phenotype was highly heterogeneous ranging from asymptomatic or paucisymptomatic hyperCKemia to severe muscle weakness and skeletal deformity with loss of ambulation. Sixty-eight RYR1 mutations, generally missense, were identified, of which 16 were novel. The combined analysis of the clinical presentation, disease progression and the structural bioinformatic analyses of RYR1 allowed to associate some phenotypes to mutations in specific domains. In addition, this study highlighted the structural bioinformatics potential in the prediction of the pathogenicity of RYR1 mutations. Further improvement in the comprehension of genotype-phenotype relationship of core myopathies can be expected in the next future: the actual lack of the human RyR1 crystal structure paired with the presence of large intrinsically disordered regions in RyR1, and the frequent presence of more than one RYR1 mutation in core myopathy patients, require designing novel investigation strategies to completely address RyR1 mutation effect.


Assuntos
Miopatias Congênitas Estruturais , Miopatia da Parte Central , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Músculo Esquelético/patologia , Mutação/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
5.
Muscle Nerve ; 63(3): 304-310, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33146414

RESUMO

BACKGROUND: The diagnosis of uncommon pediatric neuromuscular disease (NMD) is challenging due to genetic and phenotypic heterogeneity, yet is important to guide treatment, prognosis, and recurrence risk. Patients with diagnostically challenging presentations typically undergo extensive testing with variable molecular diagnostic yield. Given the advancement in next generation sequencing (NGS), we investigated the value of clinical whole exome sequencing (ES) in uncommon pediatric NMD. METHODS: A retrospective cohort study of 106 pediatric NMD patients with a combination of ES, chromosomal microarray (CMA), and candidate gene testing was completed at a large tertiary referral center. RESULTS: A molecular diagnosis was achieved in 37/79 (46%) patients with ES, 4/44 (9%) patients with CMA, and 15/74 (20%) patients with candidate gene testing. In 2/79 (3%) patients, a dual molecular diagnosis explaining the neuromuscular disease process was identified. A total of 42 patients (53%) who received ES remained without a molecular diagnosis at the conclusion of the study. CONCLUSIONS: Due to NGS, molecular diagnostic yield of rare neurological diseases is at an all-time high. We show that ES has a higher diagnostic rate compared to other genetic tests in a complex pediatric neuromuscular disease cohort and should be considered early in the diagnostic journey for select NMD patients with challenging presentations in which a clinical diagnosis is not evident.


Assuntos
Sequenciamento do Exoma , Doenças Neuromusculares/diagnóstico , Adolescente , Biópsia , Criança , Pré-Escolar , Estudos de Coortes , Eletromiografia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Análise em Microsséries , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/patologia , Técnicas de Diagnóstico Molecular , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Miopatia da Parte Central/diagnóstico , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Miosite/diagnóstico , Miosite/genética , Miosite/patologia , Condução Nervosa , Doenças Neuromusculares/genética , Doenças Neuromusculares/patologia , Estudos Retrospectivos , Análise de Sequência de DNA , Atrofias Musculares Espinais da Infância/diagnóstico , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/patologia , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
6.
J Neuropathol Exp Neurol ; 79(12): 1370-1375, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33184643

RESUMO

Typical central core disease (CCD) is characterized pathologically by the presence of a core and is accompanied by type 1 fiber uniformity. Congenital neuromuscular disease with uniform type 1 fiber (CNMDU1) is characterized pathologically by the presence of type 1 fiber uniformity but without the abnormal structural changes in muscle fibers. Interestingly, typical CCD and 40% of CNMDU1 cases are caused by the same mutations in RYR1, and thus CNMDU1 has been considered an early precursor to CCD. To better understand the nature of CNMDU1, we re-evaluated muscle biopsies from 16 patients with CNMDU1 using immunohistochemistry to RYR1, triadin and TOM20, and compared this to muscle biopsies from 36 typical CCD patients. In CCD, RYR1, and triadin were present in the core regions, while TOM20 was absent in the core regions. Interestingly, in 5 CNMDU1 cases with the RYR1 mutation, RYR1, and triadin were similarly present in core-like areas, while TOM20 was absent in the subsarcolemmal region. Furthermore, there was a correlation between the core position and the disease duration or progression-the older patients in more advanced stages had more centralized cores. Our results indicate that CNMDU1 due to RYR1 mutation is a de facto core myopathy.


Assuntos
Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Miopatia da Parte Central/patologia , Proteínas de Transporte/genética , Pré-Escolar , Humanos , Proteínas Musculares/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
7.
Acta Neuropathol Commun ; 8(1): 192, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176865

RESUMO

Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy. Measurement of calcium fluxes in isolated muscle fibers demonstrated a reduction in the amplitude of RyR1-related calcium release mirroring the reduction in the protein amount. Alterations in the muscle structure were observed, with fibers atrophy, abnormal mitochondria distribution and membrane remodeling. An increase in the expression level of many proteins was observed, as well as an inhibition of the autophagy process. This model demonstrates that RyR1 reduction is sufficient to recapitulate most features of Central Core Disease, and accordingly similar alterations were observed in muscle biopsies from Dusty Core Disease patients (a subtype of Central Core Disease), pointing to common pathophysiological mechanisms related to RyR1 reduction.


Assuntos
Debilidade Muscular/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Miopatia da Parte Central/metabolismo , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
Acta Myol ; 39(4): 274-282, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33458582

RESUMO

Central Core Disease (CCD) is an inherited neuromuscular disorder characterized by the presence of cores in muscle biopsy. CCD is caused by mutations in the RYR1 gene. This gene encodes the ryanodine receptor 1, which is an intracellular calcium release channel from the sarcoplasmic reticulum to the cytosol in response to depolarization of the plasma membrane. Mutations in this gene are also associated with susceptibility to Malignant Hyperthermia (MHS). In this study, we evaluated 20 families with clinical and histological characteristics of CCD to identify primary mutations in patients, for diagnosis and genetic counseling of the families. We identified variants in the RYR1 gene in 19/20 families. The molecular pathogenicity was confirmed in 16 of them. Most of these variants (22/23) are missense and unique in the families. Two variants were recurrent in two different families. We identified six families with biallelic mutations, five compound heterozygotes with no consanguinity, and one homozygous, with consanguineous parents, resulting in 30% of cases with possible autosomal recessive inheritance. We identified seven novel variants, four of them classified as pathogenic. In one family, we identified two mutations in exon 102, segregating in cis, suggesting an additive effect of two mutations in the same allele. This work highlights the importance of using Next-Generation Sequencing technology for the molecular diagnosis of genetic diseases when a very large gene is involved, associated to a broad distribution of the mutations along it. These data also influence the prevention through adequate genetic counseling for the families and cautions against malignant hyperthermia susceptibility.


Assuntos
Padrões de Herança/genética , Mutação/genética , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adulto , Brasil , Criança , Pré-Escolar , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino
9.
Biomed Res Int ; 2019: 7638946, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165076

RESUMO

The skeletal muscle ryanodine receptor (RyR1), i.e., the Ca2+ channel of the sarco/endoplasmic reticulum (S/ER), and the voltage-dependent calcium channel Cav1.1 are the principal channels involved in excitation-contraction coupling in skeletal muscle. RYR1 gene variants are linked to distinct skeletal muscle disorders, including malignant hyperthermia susceptibility and central core disease (CCD), mainly with autosomal dominant inheritance, and autosomal recessive myopathies with a broad phenotypic and histopathological spectrum. The age at onset of RYR1-related myopathies varies from infancy to adulthood. We report the identification of four RYR1 variants in two Italian families: one with myopathy and variants c.4003C>T (p.R1335C) and c.7035C>A (p.S2345R), and another with CCD and variants c.9293G>T (p.S3098I) and c.14771_14772insTAGACAGGGTGTTGCTCTGTTGCCCTTCTT (p.F4924_V4925insRQGVALLPFF). We demonstrate that, in patient-specific lymphoblastoid cells, the c.4003C>T (p.R1335C) variant is not expressed and the in-frame 30-nucleotide insertion variant is expressed at a low level. Moreover, Ca2+ release in response to the RyR1 agonist 4-chloro-m-cresol and to thapsigargin showed that the c.7035C>A (p.S2345R) variant causes depletion of S/ER Ca2+ stores and that the compound heterozygosity for variant c.9293G>T (p.S3098I) and the 30-nucleotide insertion increases RyR1-dependent Ca2+ release without affecting ER Ca2+ stores. In conclusion, we detected and functionally characterized disease-causing variants of the RyR1 channel in patient-specific lymphoblastoid cells. This paper is dedicated to the memory and contribution of Luigi Del Vecchio.


Assuntos
Família , Regulação da Expressão Gênica , Variação Genética , Hipertermia Maligna , Músculo Esquelético , Miopatia da Parte Central , Canal de Liberação de Cálcio do Receptor de Rianodina , Adulto , Pré-Escolar , Feminino , Humanos , Itália , Masculino , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patologia , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatia da Parte Central/genética , Miopatia da Parte Central/metabolismo , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
10.
Muscle Nerve ; 58(2): 235-244, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29669168

RESUMO

INTRODUCTION: Congenital myopathies are muscle diseases characterized by specific histopathologic features, generalized hypotonia from birth, and perinatal complications, although some cases develop during childhood or, rarely, in adulthood. We undertook this study to characterize congenital myopathies among patients registered at our institution. METHODS: Clinical, histopathologic, and genetic features were evaluated in 34 patients recruited for this study. RESULTS: The majority of patients experienced a childhood onset, and no disease-related mortality was recorded during follow-up. Functional outcomes were no better for those with late-onset disease, indicating later disease progression can be significant. Nemaline myopathy was the most frequent pathology, followed by central core disease and centronuclear myopathy. Among the 18 (54.5%) genetically confirmed patients, NEB and RYR1 mutations were the most common, followed by DNM2 mutations. DISCUSSION: This study shows features not previously reported and suggests that congenital myopathy should be considered an important issue among adult patients. Muscle Nerve 58: 235-244, 2018.


Assuntos
Miotonia Congênita/patologia , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Dinamina II , Dinaminas/genética , Feminino , Humanos , Lactente , Masculino , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Miopatias Congênitas Estruturais/congênito , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatia da Parte Central/congênito , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Miotonia Congênita/genética , República da Coreia , Estudos Retrospectivos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Resultado do Tratamento , Adulto Jovem
11.
Neuromuscul Disord ; 28(5): 422-426, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576327

RESUMO

Myopathies due to mutations in the skeletal muscle ryanodine receptor (RYR1) gene are amongst the most common non-dystrophic neuromuscular disorders and have been associated with both dominant and recessive inheritance. Several cases with apparently de novo dominant inheritance have been reported. Here we report two siblings with features of Central Core Disease (CCD) born to unaffected parents. Genetic testing revealed a heterozygous dominant RYR1 c.14582G>A (p. Arg4861His) mutation previously identified in other CCD pedigrees. The variant was absent in blood from the asymptomatic mother but detected at low but variable levels in blood- and saliva-derived DNA from the unaffected father, suggesting that this mutation has arisen as a paternal post-zygotic de novo event. These findings suggest that parental mosaicism should be considered in RYR1-related myopathies, and may provide one possible explanation for the marked intergenerational variability seen in some RYR1 pedigrees.


Assuntos
Mosaicismo , Músculo Esquelético/patologia , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Criança , Pré-Escolar , Feminino , Testes Genéticos , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Miopatia da Parte Central/diagnóstico por imagem , Miopatia da Parte Central/patologia , Pais , Irmãos , Ultrassonografia
13.
Oxid Med Cell Longev ; 2017: 6792694, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062463

RESUMO

Central core disease (CCD) is a congenital myopathy linked to mutations in the ryanodine receptor type 1 (RYR1), the sarcoplasmic reticulum Ca2+ release channel of skeletal muscle. CCD is characterized by formation of amorphous cores within muscle fibers, lacking mitochondrial activity. In skeletal muscle of RYR1Y522S/WT knock-in mice, carrying a human mutation in RYR1 linked to malignant hyperthermia (MH) with cores, oxidative stress is elevated and fibers present severe mitochondrial damage and cores. We treated RYR1Y522S/WT mice with N-acetylcysteine (NAC), an antioxidant provided ad libitum in drinking water for either 2 or 6 months. Our results show that 2 months of NAC treatment starting at 2 months of age, when mitochondrial and fiber damage was still minimal, (i) reduce formation of unstructured and contracture cores, (ii) improve muscle function, and (iii) decrease mitochondrial damage. The beneficial effect of NAC treatment is also evident following 6 months of treatment starting at 4 months of age, when structural damage was at an advanced stage. NAC exerts its protective effect likely by lowering oxidative stress, as supported by the reduction of 3-NT and SOD2 levels. This work suggests that NAC administration is beneficial to prevent mitochondrial damage and formation of cores and improve muscle function in RYR1Y522S/WT mice.


Assuntos
Antioxidantes/metabolismo , Músculo Esquelético/fisiologia , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Humanos , Camundongos , Miopatia da Parte Central/patologia
14.
J Neuromuscul Dis ; 4(1): 67-76, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28269792

RESUMO

BACKGROUND: Pathogenic variants in ryanodine receptor type 1 (RYR1) gene are an important cause of congenital myopathy. The clinical, histopathologic and genetic spectrum is wide. OBJECTIVE: Review a group of the patients diagnosed with ryanodinopathy in a tertiary centre from North Portugal, as an attempt to define some phenotypical patterns that may help guiding future diagnosis. METHODS: Patients were identified from the database of the reference centre for Neuromuscular Disorders in North Portugal. Their data (clinical, histological and genetic) was retrospectively accessed. RESULTS: Seventeen RYR1-related patients (including 4 familial cases) were identified. They were divided in groups according to three distinctive clinical characteristics: extraocular muscle (EOM) weakness (N = 6), disproportionate axial muscle weakness (N = 2) and joint laxity (N = 5). The fourth phenotype includes patients with mild tetraparesis and no distinctive clinical features (N = 4). Four different histopathological patterns were found: centronuclear (N = 5), central core (N = 4), type 1 fibres predominance (N = 4) and congenital fibre type disproportion (N = 1) myopathies. Each index case, except two patients, had a different RYR1 variant. Four new genetic variants were identified. All centronuclear myopathies were associated with autosomal recessive inheritance and EOM weakness. All central core myopathies were caused by pathogenic variants in hotspot 3 with autosomal dominant inheritance. Three genetic variants were reported to be associated to malignant hyperthermia susceptibility. CONCLUSIONS: Distinctive clinical features were recognized as diagnostically relevant: extraocular muscle weakness (and centronuclear pattern on muscle biopsy), severe axial weakness disproportionate to the ambulatory state and mild tetraparesis associated with (proximal) joint laxity. There was a striking genetic heterogeneity, including four new RYR1 variants.


Assuntos
Instabilidade Articular/fisiopatologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/fisiopatologia , Músculos Oculomotores/fisiopatologia , Paresia/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Heterogeneidade Genética , Variação Genética , Humanos , Lactente , Instabilidade Articular/etiologia , Instabilidade Articular/genética , Instabilidade Articular/patologia , Masculino , Hipertermia Maligna/genética , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/patologia , Debilidade Muscular/etiologia , Debilidade Muscular/genética , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Doenças Musculares/complicações , Doenças Musculares/genética , Doenças Musculares/patologia , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Miopatia da Parte Central/fisiopatologia , Músculos Oculomotores/patologia , Paresia/etiologia , Paresia/genética , Paresia/patologia , Fenótipo , Portugal , Estudos Retrospectivos , Índice de Gravidade de Doença , Centros de Atenção Terciária , Adulto Jovem
16.
Muscle Nerve ; 54(3): 432-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26799446

RESUMO

INTRODUCTION: Ryanodine receptor 1 (RYR1), myosin heavy chain 7 (MYH7), and selenoprotein N1 (SEPN1) mutations are associated with core myopathies. RYR1 mutations cause most cases of central core disease (CCD). METHODS: We screened 8 Chinese patients with clinicopathological diagnosis of CCD. Genetic analysis was carried out by targeted next generation sequencing (NGS) to identify causative genes. Variants were assessed for pathogenicity using bioinformatic approaches, and NGS results were confirmed by Sanger sequencing. RESULTS: One novel (p.L4578V) and heterozygous missense mutations in RYR1 were identified in 7 patients. Two patients carried a novel mutation, 1 had p.M4640R, 3 had p.R4861H, and 1 had p.R4861C. All patients had mild to moderate severity phenotypes. Histopathological findings demonstrated central cores and type I fiber predominance. CONCLUSIONS: NGS is an efficient strategy to identify variants in RYR1 in CCD. However, genetic results revealed by NGS must be combined with clinicopathologic features to validate the diagnosis. Muscle Nerve, 2016 Muscle Nerve 54: 432-438, 2016.


Assuntos
Predisposição Genética para Doença/genética , Mutação/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Povo Asiático/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletromiografia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Miopatia da Parte Central/patologia , Adulto Jovem
17.
Neuromuscul Disord ; 25(7): 567-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25958340

RESUMO

Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic myopathy triggered by exposure to volatile anesthetics and/or depolarizing muscle relaxants. Susceptibility to MH is primarily associated with dominant mutations in the ryanodine receptor type 1 gene (RYR1). Recent genetic studies have shown that RYR1 variants are the most common cause of dominant and recessive congenital myopathies - central core and multi-minicore disease, congenital fiber type disproportion, and centronuclear myopathy. However, the MH status of many patients, especially with recessive RYR1-related myopathies, remains uncertain. We report the occurrence of a triplet of RYR1 variants, c.4711A>G (p.Ile1571Val), c.10097G>A (p.Arg3366His), c.11798A>G (p.Tyr3933Cys), found in cis in four unrelated families, one from Belgium, one from The Netherlands and two from Canada. Phenotype-genotype correlation analysis indicates that the presence of the triplet allele alone confers susceptibility to MH, and that the presence of this allele in a compound heterozygous state with the MH-associated RYR1 variant c.14545G>A (p.Val4849Ile) results in the MH susceptibility phenotype and a congenital myopathy with cores and rods. Our study underlines the notion that assigning pathogenicity to individual RYR1 variants or combination of variants, and counseling in RYR1-related myopathies may require integration of clinical, histopathological, in vitro contracture testing, MRI and genetic findings.


Assuntos
Predisposição Genética para Doença , Heterozigoto , Hipertermia Maligna/genética , Miopatia da Parte Central/genética , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adulto , Criança , Pré-Escolar , Família , Feminino , Estudos de Associação Genética , Variação Genética , Humanos , Perna (Membro)/patologia , Masculino , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patologia , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatia da Parte Central/metabolismo , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , População Branca/genética
18.
Elife ; 42015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25564733

RESUMO

Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations.


Assuntos
Doenças Musculares/patologia , Potássio/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Biomarcadores/metabolismo , Biópsia , Cálcio/metabolismo , Dieta , Etilnitrosoureia , Regulação da Expressão Gênica/efeitos dos fármacos , Glibureto/farmacologia , Heterozigoto , Homeostase/efeitos dos fármacos , Humanos , Canais KATP/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/genética , Mutação/genética , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , NAD/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
19.
Neurology ; 84(1): 28-35, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25428687

RESUMO

OBJECTIVE: To assess the natural history of congenital myopathies (CMs) due to different genotypes. METHODS: Retrospective cross-sectional study based on case-note review of 125 patients affected by CM, followed at a single pediatric neuromuscular center, between 1984 and 2012. RESULTS: Genetic characterization was achieved in 99 of 125 cases (79.2%), with RYR1 most frequently implicated (44/125). Neonatal/infantile onset was observed in 76%. At birth, 30.4% required respiratory support, and 25.2% nasogastric feeding. Twelve percent died, mainly within the first year, associated with mutations in ACTA1, MTM1, or KLHL40. All RYR1-mutated cases survived and did not require long-term ventilator support including those with severe neonatal onset; however, recessive cases were more likely to require gastrostomy insertion (p = 0.0028) compared with dominant cases. Independent ambulation was achieved in 74.1% of all patients; 62.9% were late walkers. Among ambulant patients, 9% eventually became wheelchair-dependent. Scoliosis of variable severity was reported in 40%, with 1/3 of (both ambulant and nonambulant) patients requiring surgery. Bulbar involvement was present in 46.4% and required gastrostomy placement in 28.8% (at a mean age of 2.7 years). Respiratory impairment of variable severity was a feature in 64.1%; approximately half of these patients required nocturnal noninvasive ventilation due to respiratory failure (at a mean age of 8.5 years). CONCLUSIONS: We describe the long-term outcome of a large cohort of patients with CMs. While overall course is stable, we demonstrate a wide clinical spectrum with motor deterioration in a subset of cases. Severity in the neonatal/infantile period is critical for survival, with clear genotype-phenotype correlations that may inform future counseling.


Assuntos
Proteínas Musculares/genética , Músculo Esquelético , Miopatias da Nemalina/genética , Miopatia da Parte Central/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Consanguinidade , Estudos Transversais , Transtornos de Deglutição/etiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Limitação da Mobilidade , Músculo Esquelético/patologia , Miopatias da Nemalina/complicações , Miopatias da Nemalina/patologia , Miopatias Congênitas Estruturais/complicações , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatia da Parte Central/complicações , Miopatia da Parte Central/patologia , Insuficiência Respiratória/etiologia , Estudos Retrospectivos , Escoliose/etiologia , Adulto Jovem
20.
J Neurol Neurosurg Psychiatry ; 85(10): 1149-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24828896

RESUMO

BACKGROUND: Autosomal dominant (AD) central core disease (CCD) is a congenital myopathy characterised by the presence of cores in the muscle fibres which correspond to broad areas of myofibrils disorganisation, Z-line streaming and lack of mitochondria. Heterozygous mutations in the RYR1 gene were observed in the large majority of AD-CCD families; however, this gene was excluded in some of AD-CCD families. OBJECTIVE: To enlarge the genetic spectrum of AD-CCD demonstrating mutations in an additional gene. PATIENTS AND METHODS: Four affected AD family members over three generations, three of whom were alive and participate in the study: the mother and two of three siblings. The symptoms began during the early childhood with mild delayed motor development. Later they developed mainly tibialis anterior weakness, hypertrophy of calves and significant weakness (amyotrophic) of quadriceps. No cardiac or ocular involvement was noted. RESULTS: The muscle biopsies sections showed a particular pattern: eccentric cores in type 1 fibres, associated with type 1 predominance. Most cores have abrupt borders. Electron microscopy confirmed the presence of both unstructured and structured cores. Exome sequencing analysis identified a novel heterozygous missense mutation p.Leu1723Pro in MYH7 segregating with the disease and affecting a conserved residue in the myosin tail domain. CONCLUSIONS: We describe MYH7 as an additional causative gene for AD-CCD. These findings have important implications for diagnosis and future investigations of AD-congenital myopathies with cores, without cardiomyopathy, but presenting a particular involvement of distal and quadriceps muscles.


Assuntos
Miosinas Cardíacas/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto/genética , Miopatia da Parte Central/genética , Cadeias Pesadas de Miosina/genética , Adulto , Idoso , Feminino , Heterozigoto , Humanos , Masculino , Fibras Musculares de Contração Lenta/diagnóstico por imagem , Fibras Musculares de Contração Lenta/patologia , Fibras Musculares de Contração Lenta/ultraestrutura , Miopatia da Parte Central/diagnóstico por imagem , Miopatia da Parte Central/patologia , Linhagem , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...