Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Genes Cells ; 29(5): 380-396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454557

RESUMO

Left-right (LR) asymmetry is crucial for animal development, particularly in Drosophila where LR-asymmetric morphogenesis of organs hinges on cellular-level chirality, termed cell chirality. In this species, two class I myosins, Myosin1D (Myo1D), and Myosin1C (Myo1C), respectively determine dextral (wild type) and sinistral (mirror image) cell chirality. Previous studies demonstrated Myo1D's ability to propel F-actin in leftward circles during in vitro gliding assays, suggesting its mechanochemical role in defining dextral chirality. Conversely, Myo1C propels F-actin without exhibiting LR-directional preference in this assay, suggesting at other properties governing sinistral chirality. Given the interaction of Myo1D and Myo1C with the membrane, we hypothesized that differences in their membrane behaviors might be critical in dictating their dextral or sinistral activities. In this study, employing single-molecule imaging analyses, we investigated the dynamic behaviors of Myo1D and Myo1C on the plasma membrane. Our findings revealed that Myo1C exhibits a significantly greater proportion of slow-diffusing population compared to Myo1D. Importantly, this characteristic was contingent upon both head and tail domains of Myo1C. The distinct diffusion patterns of Myo1D and Myo1C did not exert mutual influence on each other. This divergence in membrane diffusion between Myo1D and Myo1C may be crucial for dictating cell and organ chirality.


Assuntos
Membrana Celular , Proteínas de Drosophila , Macrófagos , Miosina Tipo I , Animais , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Miosina Tipo I/metabolismo , Miosina Tipo I/genética , Macrófagos/metabolismo , Drosophila melanogaster/metabolismo , Actinas/metabolismo , Imagem Individual de Molécula , Drosophila/metabolismo
2.
J Agric Food Chem ; 72(3): 1539-1549, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38226494

RESUMO

The lethal mutation C423D in Fusarium graminearum myosin I (FgMyoI) occurs close to the binding pocket of the allosteric inhibitor phenamacril and causes severe inhibition on mycelial growth of F. graminearum strain PH-1. Here, based on extensive Gaussian accelerated molecular dynamics simulations and wet experiments, we elucidate the underlying molecular mechanism of the abnormal functioning of the FgMyoIC423D mutant at the atomistic level. Our results suggest that the damaging mutation C423D exhibits a synergistic allosteric inhibition mechanism similar to but more robust than that of phenamacril, including effects on the active site and actin binding. Unlike phenamacril-induced closure of Switch2, the mutation results in unfolding of the N-terminal relay helix with a partially opened Switch2 and blocks the structural rearrangement of the relay/SH1 helices, impairing the proper initiation of the recovery stroke. Due to the significant influence of C423D mutation on the function of FgMyoI, designing covalent inhibitors targeting this site holds tremendous potential.


Assuntos
Cianoacrilatos , Fungicidas Industriais , Fusarium , Miosina Tipo I/genética , Fungicidas Industriais/farmacologia , Mutação , Simulação de Dinâmica Molecular
3.
FEBS Open Bio ; 14(1): 138-147, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37953466

RESUMO

Extracellular vesicles (EV), important messengers in intercellular communication, can load and transport various bioactive components and participate in different biological processes. We previously isolated glioma human endothelial cells (GhECs) and found that GhECs, rather than normal human brain endothelial cells (NhECs), exhibit specific enrichment of MYO1C into EVs and promote the migration of glioma cells. In this study, we explored the mechanism by which MYO1C is secreted into EVs. We report that such secretion is dependent on RAB31, RAB27B, and FAS. When expression of RAB31 increases, MYO1C is enriched in secretory EVs. Finally, we identified an EV export mechanism for MYO1C that promotes glioma cell invasion and is dependent on RAB31 in GhECs. In summary, our data indicate that the knockdown of RAB31 can reduce enrichment of MYO1C in extracellular vesicles, thereby attenuating the promotion of glioma cell invasion by GhEC-EVs.


Assuntos
Vesículas Extracelulares , Glioma , Humanos , Células Endoteliais/metabolismo , Glioma/genética , Glioma/metabolismo , Transporte Biológico , Vesículas Extracelulares/metabolismo , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
4.
J Cell Biol ; 222(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37549220

RESUMO

Myosins are required for clathrin-mediated endocytosis, but their precise molecular roles in this process are not known. This is, in part, because the biophysical properties of the relevant motors have not been investigated. Myosins have diverse mechanochemical activities, ranging from powerful contractility against mechanical loads to force-sensitive anchoring. To better understand the essential molecular contribution of myosin to endocytosis, we studied the in vitro force-dependent kinetics of the Saccharomyces cerevisiae endocytic type I myosin called Myo5, a motor whose role in clathrin-mediated endocytosis has been meticulously studied in vivo. We report that Myo5 is a low-duty-ratio motor that is activated ∼10-fold by phosphorylation and that its working stroke and actin-detachment kinetics are relatively force-insensitive. Strikingly, the in vitro mechanochemistry of Myo5 is more like that of cardiac myosin than that of slow anchoring myosin-1s found on endosomal membranes. We, therefore, propose that Myo5 generates power to augment actin assembly-based forces during endocytosis in cells.


Assuntos
Actinas , Miosina Tipo I , Proteínas de Saccharomyces cerevisiae , Clatrina , Miosina Tipo I/genética , Miosinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Sci Rep ; 13(1): 11831, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481637

RESUMO

Head and neck squamous cell carcinoma (HNSC) is one of the leading causes of cancer death globally, yet there are few useful biomarkers for early identification and prognostic prediction. Previous studies have confirmed that CCND1 amplification is closely associated with head and neck oncogenesis, and the present study explored the ceRNA network associated with CCND1. Gene expression profiling of the Head and Neck Squamous Cell Carcinoma (HNSC) project of The Cancer Genome Atlas (TCGA) program identified the TPRG1-AS1-hsa-miR-363-3P-MYO1B gene regulatory axis associated with CCND1. Further analysis of the database showed that MYOB was regulated by methylation in head and neck tumors, and functional enrichment analysis showed that MYO1B was involved in "actin filament organization" and "cadherin binding ". Immune infiltration analysis suggested that MYO1B may influence tumorigenesis and prognosis by regulating the immune microenvironment of HNSC. MYO1B enhanced tumor spread through the EMT approach, according to epithelial mesenchymal transition (EMT) characterisation. We analyzed both herbal and GSCALite databases and found that CCND1 and MYO1B have the potential as predictive biomarkers for the treatment of HNSC patients. RT-qPCR validated bioinformatic predictions of gene expression in vitro cell lines. In conclusion, we found a CCND1-related ceRNA network and identified the novel TPRG1-AS1-hsa-miR-363-3p-MYO1B pathway as a possible HNSC diagnostic biomarker and therapeutic target.


Assuntos
Procedimentos Clínicos , Neoplasias de Cabeça e Pescoço , Humanos , Carcinogênese , Transformação Celular Neoplásica , Ciclina D1/genética , Neoplasias de Cabeça e Pescoço/genética , Miosina Tipo I/genética , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral , RNA Longo não Codificante/genética , MicroRNAs/genética
6.
EMBO J ; 42(17): e114415, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37427462

RESUMO

Cell fragmentation is commonly observed in human preimplantation embryos and is associated with poor prognosis during assisted reproductive technology (ART) procedures. However, the mechanisms leading to cell fragmentation remain largely unknown. Here, light sheet microscopy imaging of mouse embryos reveals that inefficient chromosome separation due to spindle defects, caused by dysfunctional molecular motors Myo1c or dynein, leads to fragmentation during mitosis. Extended exposure of the cell cortex to chromosomes locally triggers actomyosin contractility and pinches off cell fragments. This process is reminiscent of meiosis, during which small GTPase-mediated signals from chromosomes coordinate polar body extrusion (PBE) by actomyosin contraction. By interfering with the signals driving PBE, we find that this meiotic signaling pathway remains active during cleavage stages and is both required and sufficient to trigger fragmentation. Together, we find that fragmentation happens in mitosis after ectopic activation of actomyosin contractility by signals emanating from DNA, similar to those observed during meiosis. Our study uncovers the mechanisms underlying fragmentation in preimplantation embryos and, more generally, offers insight into the regulation of mitosis during the maternal-zygotic transition.


Assuntos
Actomiosina , Corpos Polares , Humanos , Animais , Camundongos , Corpos Polares/metabolismo , Actomiosina/metabolismo , Blastocisto , Cromossomos , Meiose , Oócitos/metabolismo , Fuso Acromático/genética , Miosina Tipo I/genética , Miosina Tipo I/metabolismo
7.
Front Immunol ; 14: 1041079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207213

RESUMO

γδT intraepithelial lymphocyte represents up to 60% of the small intestine intraepithelial compartment. They are highly migrating cells and constantly interact with the epithelial cell layer and lamina propria cells. This migratory phenotype is related to the homeostasis of the small intestine, the control of bacterial and parasitic infections, and the epithelial shedding induced by LPS. Here, we demonstrate that Myo1f participates in the adhesion and migration of intraepithelial lymphocytes. Using long-tailed class I myosins KO mice, we identified the requirement of Myo1f for their migration to the small intestine intraepithelial compartment. The absence of Myo1f affects intraepithelial lymphocytes' homing due to reduced CCR9 and α4ß7 surface expression. In vitro, we confirm that adhesion to integrin ligands and CCL25-dependent and independent migration of intraepithelial lymphocytes are Myo1f-dependent. Mechanistically, Myo1f deficiency prevents correct chemokine receptor and integrin polarization, leading to reduced tyrosine phosphorylation which could impact in signal transduction. Overall, we demonstrate that Myo1f has an essential role in the adhesion and migration in γδT intraepithelial lymphocytes.


Assuntos
Linfócitos Intraepiteliais , Camundongos , Animais , Linfócitos Intraepiteliais/metabolismo , Receptores de Quimiocinas/metabolismo , Intestino Delgado/metabolismo , Mucosa/metabolismo , Integrinas/metabolismo , Miosina Tipo I/genética , Miosina Tipo I/metabolismo
8.
Mol Carcinog ; 62(7): 920-939, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014156

RESUMO

BACKGROUND: Arecoline, the main component of betel nut, induces malignant transformation of oral cells through complicated unclear mechanisms. Thus, we aimed to screen the key genes involved in Arecoline-induced oral cancer and further verify their expressions and roles. METHODS: This study included a data-mining part, a bioinformatics verification part, and an experimental verification one. First, the key gene related to oral cancer induced by Arecoline was screened. Then, the expression and clinical significance of the key gene in head and neck/oral cancer tissues were verified, and its downstream mechanisms of action were explored. Afterwards, the expression and roles of the key gene were verified by experiments at the histological and cytological levels. RESULTS: MYO1B was identified as the key gene. Overexpression of MYO1B was associated with lymph node metastasis and unfavorable outcomes in oral cancer. MYO1B may be mainly related to metastasis, angiogenesis, hypoxia, and differentiation. A positive correlation between MYO1B and the infiltration of macrophages, B cells, and dendritic cells was presented. MYO1B might have a close relationship with SMAD3, which may be enriched in the Wnt signaling pathway. MYO1B suppression markedly inhibited the proliferation, invasion, and metastasis abilities of both Arecoline-transformed oral cells and oral cancer cells. CONCLUSION: This study revealed MYO1B as a key gene in Arecoline-induced oral tumorigenesis. MYO1B might be a novel prognostic indicator and therapeutic target for oral cancer.


Assuntos
Carcinoma , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Arecolina/efeitos adversos , Prognóstico , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Transformação Celular Neoplásica , Biomarcadores , Areca , Miosina Tipo I/genética
9.
Hum Mol Genet ; 32(13): 2251-2261, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37043208

RESUMO

Kabuki syndrome (KS) is a rare, multisystem disorder with a variable clinical phenotype. The majority of KS is caused by dominant loss-of-function mutations in KMT2D (lysine methyltransferase 2D). KMT2D mediates chromatin accessibility by adding methyl groups to lysine residue 4 of histone 3, which plays a critical role in cell differentiation and homeostasis. The molecular underpinnings of KS remain elusive partly because of a lack of histone modification data from human samples. Consequently, we profiled and characterized alterations in histone modification and gene transcription in peripheral blood mononuclear cells (PBMCs) from 33 patients with KMT2D mutations and 36 unaffected healthy controls. Our analysis identified unique enhancer signatures in H3K4me1 and H3K4me2 in KS compared with controls. Reduced enhancer signals were present for promoter-distal sites of immune-related genes for which co-binding of PBMC-specific transcription factors was predicted; 31% of super-enhancers of normal blood cells overlapped with disrupted enhancers in KS, supporting an association of reduced enhancer activity of immune-related genes with immune deficiency phenotypes. In contrast, increased enhancer signals were observed for promoter-proximal regions of metabolic genes enriched with EGR1 and E2F2 motifs, whose transcriptional levels were significantly increased in KS. Additionally, we identified ~100 de novo enhancers in genes, such as in MYO1F and AGAP2. Together, our results underscore the effect of KMT2D haploinsufficiency on dysregulation of enhancer states and gene transcription and provide a framework for the identification of therapeutic targets and biomarkers in preparation for clinical trial readiness.


Assuntos
Anormalidades Múltiplas , Doenças Hematológicas , Doenças Vestibulares , Humanos , Leucócitos Mononucleares , Lisina/genética , Anormalidades Múltiplas/genética , Doenças Hematológicas/genética , Doenças Vestibulares/genética , Mutação , Epigênese Genética/genética , Miosina Tipo I/genética
10.
Sci Rep ; 13(1): 4107, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914720

RESUMO

This study aims to perform a comprehensive genomic analysis to assess the influence of overexpression of MYO1E in non-small cell lung carcinoma (NSCLC) and whether there are differences in survival and mortality risk in NSCLC patients depending on both DNA methylation and RNA expression of MYO1E. The DNA methylation probe cg13887966 was inversely correlated with MYO1E RNA expression in both LUAD and LUSC subpopulations showing that lower MYO1E RNA expression was associated with higher MYO1E DNA methylation. Late stages of lung cancer showed significantly lower MYO1E DNA methylation and significantly higher MYO1E RNA expression for LUAD but not for LUSC. Low DNA methylation as well as high RNA expression of MYO1E are associated with a shorter median survival time and an increased risk of mortality for LUAD, but not for LUSC. This study suggests that changes in MYO1E methylation and expression in LUAD patients may have an essential role in lung cancer's pathogenesis. It shows the utility of MYO1E DNA methylation and RNA expression in predicting survival for LUAD patients. Also, given the low normal expression of MYO1E in blood cells MYO1E DNA methylation has the potential to be used as circulating tumor marker in liquid biopsies.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Metilação de DNA , RNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Miosina Tipo I/genética , Miosina Tipo I/metabolismo
11.
Cell Death Dis ; 14(2): 120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36781839

RESUMO

Emerging evidence indicates the critical roles of N6-methyladenosine (m6A) modification in human cancers. Herein, our work reported that a novel m6A-modified circRNA from the MYO1C gene, circMYO1C, upregulated in the pancreatic ductal adenocarcinoma (PDAC). Our findings demonstrated that circMYO1C is highly expressed in PDAC tissues. Functionally, circMYO1C promoted the proliferation and migration of PDAC cells in vitro and its silencing reduced the tumor growth in vivo. Mechanistically, circMYO1C cyclization was mediated by m6A methyltransferase METTL3. Moreover, methylated RNA immunoprecipitation sequencing (MeRIP-seq) unveiled the remarkable m6A modification on PD-L1 mRNA. Moreover, circMYO1C targeted the m6A site of PD-L1 mRNA to enhance its stability by cooperating with IGF2BP2, thereby accelerating PDAC immune escape. In conclusion, these findings highlight the oncogenic role of METTL3-induced circMYO1C in PDAC tumorigenesis via an m6A-dependent manner, inspiring a novel strategy to explore PDAC epigenetic therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , RNA Circular/genética , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , RNA Mensageiro/genética , Regulação Neoplásica da Expressão Gênica , Miosina Tipo I/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias Pancreáticas
12.
Eur J Immunol ; 53(3): e2250147, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541400

RESUMO

VAV1-MYO1F is a recently identified gain-of-function fusion protein of the proto-oncogene Vav guanine nucleotide exchange factor 1 (VAV1) that is recurrently detected in T-cell non-Hodgkin's lymphoma (T-NHL) patients. However, the pathophysiological functions of VAV1-MYO1F in lymphomagenesis are insufficiently defined. Therefore, we generated transgenic mouse models to conditionally express VAV1-MYO1F in T-cells in vivo. We demonstrate that VAV1-MYO1F triggers cell autonomous activation of T-cell signaling with an activation of the ERK, JNK, and AKT pathways. VAV1-MYO1F expression induces a T-cell activation phenotype with high surface expression of CD25, ICOS, CD44, PD-1, and decreased CD62L as well as aberrant T-cell differentiation, proliferation, and neoplastic transformation. Consequently, the VAV1-MYO1F expressing T-cells induce a malignant T lymphoproliferative disease with 100% penetrance in vivo that mimics key aspects of human peripheral T-cell lymphoma. These results demonstrate that the human T-cell oncogene VAV1-MYO1F is sufficient to trigger oncogenic T-cell signaling and neoplastic transformation, and moreover, it provides a new clinically relevant mouse model to explore the pathogenesis of and treatment concepts for human T-cell lymphoma.


Assuntos
Linfoma de Células T Periférico , Proteínas Proto-Oncogênicas c-vav , Camundongos , Humanos , Animais , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Linfoma de Células T Periférico/genética , Transdução de Sinais , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Camundongos Transgênicos , Oncogenes , Miosina Tipo I/genética , Miosina Tipo I/metabolismo
13.
Pediatr Nephrol ; 38(2): 439-449, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35723736

RESUMO

BACKGROUND: Pathogenic mutations in the non-muscle single-headed myosin, myosin 1E (Myo1e), are a rare cause of pediatric focal segmental glomerulosclerosis (FSGS). These mutations are biallelic, to date only reported as homozygous variants in consanguineous families. Myo1e regulates the actin cytoskeleton dynamics and cell adhesion, which are especially important for podocyte functions. METHODS: DNA and RNA sequencing were used to identify novel MYO1E variants associated with FSGS. We studied the effects of these variants on the localization of Myo1e in kidney sections. We then analyzed the clinical and histological observations of all known pathogenic MYO1E variants. RESULTS: We identified a patient compound heterozygote for two novel variants in MYO1E and a patient homozygous for a deletion of exon 19. Computer modeling predicted these variants to be disruptive. In both patients, Myo1e was mislocalized. As a rule, pathogenic MYO1E variants map to the Myo1e motor and neck domain and are most often associated with steroid-resistant nephrotic syndrome in children 1-11 years of age, leading to kidney failure in 4-10 years in a subset of patients. The ultrastructural features are the podocyte damage and striking diffuse and global Alport-like glomerular basement membrane (GBM) abnormalities. CONCLUSIONS: We hypothesize that MYO1E mutations lead to disruption of the function of podocyte contractile actin cables resulting in abnormalities of the podocytes and the GBM and dysfunction of the glomerular filtration barrier. The characteristic clinicopathological data can help to tentatively differentiate this condition from other genetic podocytopathies and Alport syndrome until genetic testing is done. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Podócitos , Humanos , Membrana Basal Glomerular/patologia , Glomerulosclerose Segmentar e Focal/patologia , Mutação , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Nefrite Hereditária/genética , Fenótipo , Podócitos/patologia , Proteinúria/complicações
14.
Cell Death Dis ; 13(11): 939, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347835

RESUMO

Myosin 1b (Myo1b) is an important single-headed membrane-associated motor of class I myosins that participate in many critical physiological and pathological processes. Mounting evidence suggests that the dysregulation of Myo1b expression has been extensively investigated in the development and progression of several tumors. However, the functional mechanism of Myo1b in CRC angiogenesis and autophagy progression remains unclear. Herein, we found that the expression of Myo1b was upregulated in CRC tissues and its high expression was correlated with worse survival. The overexpression of Myo1b promoted the proliferation, migration and invasion of CRC cells. Conversely, silencing of Myo1b suppressed tumor progression both in vitro and in vivo. Further studies indicated that Myo1b inhibited the autophagosome-lysosome fusion and potentiated the VEGF secretion of CRC cells to promote angiogenesis. Mechanistically, Myo1b blocked the autophagic degradation of HIF-1α and then led to the accumulation of HIF-1α, thus enhancing VEGF secretion and then promoting tumor angiogenesis in CRC. Together, our study provided novel insights into the role of Myo1b in CRC progression and revealed that it might be a feasible predictive biomarker and promising therapeutic target for CRC patients.


Assuntos
Neoplasias Colorretais , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Neovascularização Patológica/metabolismo , Miosinas , Autofagia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Colorretais/patologia , Miosina Tipo I/genética
15.
J Am Soc Nephrol ; 33(11): 1989-2007, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36316095

RESUMO

BACKGROUND: Myo1e is a nonmuscle motor protein enriched in podocytes. Mutations in MYO1E are associated with steroid-resistant nephrotic syndrome (SRNS). Most of the MYO1E variants identified by genomic sequencing have not been functionally characterized. Here, we set out to analyze two mutations in the Myo1e motor domain, T119I and D388H, which were selected on the basis of protein sequence conservation. METHODS: EGFP-tagged human Myo1e constructs were delivered into the Myo1e-KO mouse podocyte-derived cells via adenoviral infection to analyze Myo1e protein stability, Myo1e localization, and clathrin-dependent endocytosis, which is known to involve Myo1e activity. Furthermore, truncated Myo1e constructs were expressed using the baculovirus expression system and used to measure Myo1e ATPase and motor activity in vitro. RESULTS: Both mutants were expressed as full-length proteins in the Myo1e-KO cells. However, unlike wild-type (WT) Myo1e, the T119I variant was not enriched at the cell junctions or clathrin-coated vesicles (CCVs). In contrast, D388H variant localization was similar to that of WT. The rate of dissociation of the D388H variant from cell-cell junctions and CCVs was decreased, suggesting this mutation affects Myo1e interactions with binding partners. ATPase activity and ability to translocate actin filaments were drastically reduced for the D388H mutant, supporting findings from cell-based experiments. CONCLUSIONS: T119I and D388H mutations are deleterious to Myo1e functions. The experimental approaches used in this study can be applied to future characterization of novel MYO1E variants associated with SRNS.


Assuntos
Miosina Tipo I , Síndrome Nefrótica , Animais , Humanos , Camundongos , Mutação , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Síndrome Nefrótica/genética , Esteroides
16.
J Cell Physiol ; 237(9): 3671-3686, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861939

RESUMO

Myosin-related proteins play an important role in cancer progression. However, the clinical significance, biological functions, and mechanisms of myosin 1B (MYO1B), in esophageal squamous cell carcinoma (ESCC) remain unclear. The clinical relevance of MYO1B, SNAI2, and cyclin D1 in ESCC was determined by immunohistochemistry, Oncomine, and GEPIA databases. The oncogenic roles of MYO1B were determined by CCK8, colony formation assays, wound healing, and Transwell assay. MYO1B, SNAI2, and cyclin D1 at mRNA and protein levels in ESCC cells were detected by qPCR and Western blot analysis. In our study, we found that MYO1B expression was increased in ESCC tissue samples and correlated with tumor stage, TNM stage, and poor outcomes. Functional assays indicated that depletion of MYO1B impaired oncogenesis, and enhanced chemosensitivity in ESCC. Bioinformatic analysis and mechanistic studies illustrated that SNAI2 was a key downstream effector of MYO1B. Suppression of MYO1B downregulated expression of SNAI2, thereby inhibiting the SNAI2/cyclin D1 pathway. Furthermore, a selective inhibitor of cyclin D1 activation reversed siMYO1B cells overexpressing SNAI2-elicited aggressive phenotypes of ESCC cells. MYO1B positively correlated with SNAI2 and cyclin D1 in ESCC samples, and higher SNAI2 expression was also associated with poor prognosis in ESCC patients. Our finding demonstrated that MYO1B activates the SNAI2/cyclin D1 pathway to drive tumorigenesis and cisplatin cytotoxicity in ESCC, indicating that MYO1B is a potential therapeutic target for patients with ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Carcinogênese/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Miosinas/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
17.
Mol Genet Genomics ; 297(4): 1141-1150, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35704118

RESUMO

In this study, we aimed to determine the genetic basis of a Turkish family related to hereditary spastic paraplegia (HSP) by exome sequencing. HSP is a progressive neurodegenerative disorder and displays genetic and clinical heterogeneity. The major symptoms are muscle weakness and spasticity, especially in the lower extremities. We studied seven affected and seven unaffected family members, as well as a clinically undetermined member, to identify the disease-causing gene. Exome sequencing was performed for four affected and two unaffected individuals. The variants were firstly filtered for HSP-associated genes, and we found a common variant in the ZFYVE27 gene, which has been previously implied for association with HSP. Due to the incompletely penetrant segregation pattern of the ZFYVE27 variant, revealed by Sanger sequencing, with the disease in this family, filtering was re-performed according to the mode of inheritance and allelic frequencies. The resulting 14 rare variants were further evaluated in terms of their cellular functions, and three candidate variants in ATAD3C, VPS16, and MYO1H genes were selected as possible causative variants, which were analyzed for their familial segregation. ATAD3C and VPS16 variants were eliminated due to incomplete penetrance. Eventually, the MYO1H variant NM_001101421.3:c.2972_2974del (p.Glu992del, rs372231088) was found as the possible disease-causing deletion for HSP in this family. This is the first study reporting the possible role of a MYO1H variant in HSP pathogenesis. Further studies on the cellular roles of Myo1h protein are needed to validate the causality of MYO1H gene at the onset of HSP.


Assuntos
Miosina Tipo I , Paraplegia Espástica Hereditária , Humanos , Padrões de Herança , Mutação , Miosina Tipo I/genética , Linhagem , Proteínas/genética , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Proteínas de Transporte Vesicular/genética , Sequenciamento do Exoma
18.
Cell Rep ; 39(3): 110695, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443168

RESUMO

Peripheral T cell lymphoma not otherwise specified (PTCL-NOS) comprises heterogeneous lymphoid malignancies characterized by pleomorphic lymphocytes and variable inflammatory cell-rich tumor microenvironment. Genetic drivers in PTCL-NOS include genomic alterations affecting the VAV1 oncogene; however, their specific role and mechanisms in PTCL-NOS remain incompletely understood. Here we show that expression of Vav1-Myo1f, a recurrent PTCL-associated VAV1 fusion, induces oncogenic transformation of CD4+ T cells. Notably, mouse Vav1-Myo1f lymphomas show T helper type 2 features analogous to high-risk GATA3+ human PTCL. Single-cell transcriptome analysis reveals that Vav1-Myo1f alters T cell differentiation and leads to accumulation of tumor-associated macrophages (TAMs) in the tumor microenvironment, a feature linked with aggressiveness in human PTCL. Importantly, therapeutic targeting of TAMs induces strong anti-lymphoma effects, highlighting the lymphoma cells' dependency on the microenvironment. These results demonstrate an oncogenic role for Vav1-Myo1f in the pathogenesis of PTCL, involving deregulation in T cell polarization, and identify the lymphoma-associated macrophage-tumor microenvironment as a therapeutic target in PTCL.


Assuntos
Linfoma de Células T Periférico , Animais , Fusão Gênica , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Macrófagos/metabolismo , Camundongos , Miosina Tipo I/genética , Oncogenes , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Microambiente Tumoral/genética
19.
BMC Mol Cell Biol ; 22(1): 41, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380438

RESUMO

BACKGROUND: The human SH3 domain Binding Glutamic acid Rich Like 3 (SH3BGRL3) gene is highly conserved in phylogeny and widely expressed in human tissues. However, its function is largely undetermined. The protein was found to be overexpressed in several tumors, and recent work suggested a possible relationship with EGFR family members. We aimed at further highlighting on these issues and investigated SH3BGRL3 molecular interactions and its role in cellular migration ability. RESULTS: We first engineered the ErbB2-overexpressing SKBR3 cells to express exogenous SH3BGRL3, as well as wild type Myo1c or different deletion mutants. Confocal microscopy analysis indicated that SH3BGRL3 co-localized with Myo1c and ErbB2 at plasma membranes. However, co-immunoprecipitation assays and mass spectrometry demonstrated that SH3BGRL3 did not directly bind ErbB2, but specifically recognized Myo1c, on its IQ-bearing neck region. Importantly, the interaction with Myo1c was Ca2+-dependent. A role for SH3BGRL3 in cell migration was also assessed, as RNA interference of SH3BGRL3 in MDA-MB-231 cells, used as a classical migration model, remarkably impaired the migration ability of these cells. On the other side, its over-expression increased cell motility. CONCLUSION: The results of this study provide insights for the formulation of novel hypotheses on the putative role of SH3BGRL3 protein in the regulation of myosin-cytoskeleton dialog and in cell migration. It could be envisaged the SH3BGRL3-Myo1c interaction as a regulation mechanism for cytoskeleton dynamics. It is well known that, at low Ca2+ concentrations, the IQ domains of Myo1c are bound by calmodulin. Here we found that binding of Myo1c to SH3BGRL3 requires instead the presence of Ca2+. Thus, it could be hypothesized that Myo1c conformation may be modulated by Ca2+-driven mechanisms that involve alternative binding by calmodulin or SH3BGRL3, for the regulation of cytoskeletal activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Miosina Tipo I/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Calmodulina/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Humanos , Miosina Tipo I/genética , Ligação Proteica/genética
20.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301894

RESUMO

Opportunistic fungal infections have become one of the leading causes of death among immunocompromised patients, resulting in an estimated 1.5 million deaths each year worldwide. The molecular mechanisms that promote host defense against fungal infections remain elusive. Here, we find that Myosin IF (MYO1F), an unconventional myosin, promotes the expression of genes that are critical for antifungal innate immune signaling and proinflammatory responses. Mechanistically, MYO1F is required for dectin-induced α-tubulin acetylation, acting as an adaptor that recruits both the adaptor AP2A1 and α-tubulin N-acetyltransferase 1 to α-tubulin; in turn, these events control the membrane-to-cytoplasm trafficking of spleen tyrosine kinase and caspase recruitment domain-containing protein 9 Myo1f-deficient mice are more susceptible than their wild-type counterparts to the lethal sequelae of systemic infection with Candida albicans Notably, administration of Sirt2 deacetylase inhibitors, namely AGK2, AK-1, or AK-7, significantly increases the dectin-induced expression of proinflammatory genes in mouse bone marrow-derived macrophages and microglia, thereby protecting mice from both systemic and central nervous system C. albicans infections. AGK2 also promotes proinflammatory gene expression in human peripheral blood mononuclear cells after Dectin stimulation. Taken together, our findings describe a key role for MYO1F in promoting antifungal immunity by regulating the acetylation of α-tubulin and microtubules, and our findings suggest that Sirt2 deacetylase inhibitors may be developed as potential drugs for the treatment of fungal infections.


Assuntos
Candida albicans/fisiologia , Candidíase/imunologia , Imunidade Inata/imunologia , Leucócitos Mononucleares/imunologia , Microtúbulos/imunologia , Miosina Tipo I/metabolismo , Miosina Tipo I/fisiologia , Acetilação , Animais , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Candidíase/metabolismo , Candidíase/microbiologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/microbiologia , Miosina Tipo I/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...