Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.344
Filtrar
1.
Theranostics ; 14(9): 3486-3508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948064

RESUMO

Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-ß1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-ß1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-ß1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.


Assuntos
Fibrose , Metiltransferases , Monócitos , NF-kappa B , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Monócitos/metabolismo , Masculino , Animais , NF-kappa B/metabolismo , Eritrócitos/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Feminino , Metilação , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Micropartículas Derivadas de Células/metabolismo , Leucócitos Mononucleares/metabolismo , Angiotensina II/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Remodelação Ventricular , Miocárdio/metabolismo , Miocárdio/patologia , Nanomedicina/métodos
2.
J Transl Med ; 22(1): 648, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987805

RESUMO

Glioma is the most common malignant tumor in central nervous system, with significant health burdens to patients. Due to the intrinsic characteristics of glioma and the lack of breakthroughs in treatment modalities, the prognosis for most patients remains poor. This results in a heavy psychological and financial load worldwide. In recent years, cannabidiol (CBD) has garnered widespread attention and research due to its anti-tumoral, anti-inflammatory, and neuroprotective properties. This review comprehensively summarizes the preclinical and clinical research on the use of CBD in glioma therapy, as well as the current status of nanomedicine formulations of CBD, and discusses the potential and challenges of CBD in glioma therapy in the future.


Assuntos
Canabidiol , Glioma , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Humanos , Glioma/tratamento farmacológico , Glioma/patologia , Animais , Pesquisa Translacional Biomédica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Nanomedicina/métodos
3.
Int J Nanomedicine ; 19: 6619-6641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975321

RESUMO

The high malignant degree and poor prognosis of pancreatic cancer (PC) pose severe challenges to the basic research and clinical translation of next-generation therapies. The rise of immunotherapy has improved the treatment of a variety of solid tumors, while the application in PC is highly restricted by the challenge of immunosuppressive tumor microenvironment. The latest progress of nanotechnology as drug delivery platform and immune adjuvant has improved drug delivery in a variety of disease backgrounds and enhanced tumor therapy based on immunotherapy. Based on the immune loop of PC and the status quo of clinical immunotherapy of tumors, this article discussed and critically analyzed the key transformation difficulties of immunotherapy adaptation to the treatment of PC, and then proposed the rational design strategies of new nanocarriers for drug delivery and immune regulation, especially the design of combined immunotherapy. This review also put forward prospective views on future research directions, so as to provide information for the new means of clinical treatment of PC combined with the next generation of nanotechnology and immunotherapy.


Assuntos
Imunoterapia , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Imunoterapia/métodos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanomedicina/métodos
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000136

RESUMO

Nanomedicine could improve the treatment of diabetes by exploiting various therapeutic mechanisms through the use of suitable nanoformulations. For example, glucose-sensitive nanoparticles can release insulin in response to high glucose levels, mimicking the physiological release of insulin. Oral nanoformulations for insulin uptake via the gut represent a long-sought alternative to subcutaneous injections, which cause pain, discomfort, and possible local infection. Nanoparticles containing oligonucleotides can be used in gene therapy and cell therapy to stimulate insulin production in ß-cells or ß-like cells and modulate the responses of T1DM-associated immune cells. In contrast, viral vectors do not induce immunogenicity. Finally, in diabetic wound healing, local delivery of nanoformulations containing regenerative molecules can stimulate tissue repair and thus provide a valuable tool to treat this diabetic complication. Here, we describe these different approaches to diabetes treatment with nanoformulations and their potential for clinical application.


Assuntos
Diabetes Mellitus , Nanomedicina , Nanopartículas , Humanos , Nanomedicina/métodos , Animais , Diabetes Mellitus/tratamento farmacológico , Nanopartículas/química , Terapia Genética/métodos , Insulina/metabolismo , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos
5.
Int J Nanomedicine ; 19: 6857-6893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005956

RESUMO

Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.


Assuntos
Nanopartículas , Periodontite , Humanos , Periodontite/terapia , Periodontite/tratamento farmacológico , Nanopartículas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanomedicina/métodos
6.
Int J Nanomedicine ; 19: 6731-6756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979531

RESUMO

Osteoarthritis (OA) is the most common degenerative joint disease, affecting more than 595 million people worldwide. Nanomaterials possess superior physicochemical properties and can influence pathological processes due to their unique structural features, such as size, surface interface, and photoelectromagnetic thermal effects. Unlike traditional OA treatments, which suffer from short half-life, low stability, poor bioavailability, and high systemic toxicity, nanotherapeutic strategies for OA offer longer half-life, enhanced targeting, improved bioavailability, and reduced systemic toxicity. These advantages effectively address the limitations of traditional therapies. This review aims to inspire researchers to develop more multifunctional nanomaterials and promote their practical application in OA treatment.


Assuntos
Nanoestruturas , Osteoartrite , Osteoartrite/tratamento farmacológico , Osteoartrite/terapia , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Animais , Nanomedicina/métodos , Disponibilidade Biológica
7.
J Nanobiotechnology ; 22(1): 424, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026255

RESUMO

Ischemic stroke is a complex, high-mortality disease with multifactorial etiology and pathogenesis. Currently, drug therapy is mainly used treat ischemic stroke in clinic, but there are still some limitations, such as limited blood-brain barrier (BBB) penetration efficiency, a narrow treatment time window and drug side effects. Recent studies have pointed out that drug delivery systems based on polymeric nanocarriers can effectively improve the insufficient treatment for ischemic stroke. They can provide neuronal protection by extending the plasma half-life of drugs, enhancing the drug's permeability to penetrate the BBB, and targeting specific structures and cells. In this review, we classified polymeric nanocarriers used for delivering ischemic stroke drugs and introduced their preparation methods. We also evaluated the feasibility and effectiveness and discussed the existing limitations and prospects of polymeric nanocarriers for ischemic stroke treatment. We hoped that this review could provide a theoretical basis for the future development of nanomedicine delivery systems for the treatment of ischemic stroke.


Assuntos
Barreira Hematoencefálica , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , AVC Isquêmico , Nanopartículas , Polímeros , Humanos , Polímeros/química , Animais , AVC Isquêmico/tratamento farmacológico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Isquemia Encefálica/tratamento farmacológico , Nanomedicina/métodos
8.
AAPS J ; 26(4): 74, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955936

RESUMO

The paper highlights the necessity for a robust regulatory framework for assessing nanomedicines and their off-patent counterparts, termed as nanosimilar, which could be considered as 'similar' to the prototype nanomedicine,based on essential criteria describing the 'similarity'. The term 'similarity' should be focused on criteria that describe nanocarriers, encompassing their physicochemical, thermodynamic, morphological, and biological properties, including surface interactions and pharmacokinetics. Nanocarriers can be regarded as advanced self-assembled excipients (ASAEs) due to their complexity and chaotic behavior and should be evaluated by using essential criteria in order for off-patent nanomedicines be termed as nanosimilars, from a regulatory perspective. Collaboration between the pharmaceutical industry, regulatory bodies, and artificial intelligence (AI) startups is pivotal for the precise characterization and approval processes for nanomedicines and nanosimilars and embracing innovative tools and terminology facilitates the development of a sustainable regulatory framework, ensuring safety and efficacy. This crucial shift toward precision R&D practices addresses the complexity inherent in nanocarriers, paving the way for therapeutic advancements with economic benefits.


Assuntos
Nanomedicina , Nanomedicina/legislação & jurisprudência , Nanomedicina/métodos , Humanos , Medicamentos Biossimilares/administração & dosagem , Medicamentos Biossimilares/farmacocinética , Inteligência Artificial , Nanopartículas , Indústria Farmacêutica/legislação & jurisprudência , Aprovação de Drogas/legislação & jurisprudência , Portadores de Fármacos/química
9.
Nanotheranostics ; 8(4): 473-496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961885

RESUMO

Cardiotoxicity, the often-overlooked second leading cause of death in cancer patients, has been associated with certain anticancer drugs. These drugs can induce cardiac damage through various pathways, and their adverse effects on the heart are not fully understood. Cardiotoxicity is a major issue in cancer treatment, particularly with chemotherapeutics, because it can cause cardiac dysfunction such as hypotension, heart failure, and even death. Doxorubicin, 5-fluorouracil, and trastuzumab, all of which are very potent anticancer drugs, are known to cause cardiotoxicity. When it comes to lowering cardiotoxicity and alleviating the harmful effects of chemotherapy medications, nanomedicine has the potential to transport therapeutic molecules. Nanotheranostics offers novel options for identifying and treating cardiotoxicity resulting from a wide range of substances, including anticancer medications. Additionally, theranostics platforms such as micellar systems, carbon-based nanomedicine, solid lipid nanoparticles, polymeric nanoparticles, and liposomes can transport chemotherapeutic medications while minimising their cardiotoxicity. The present level of understanding of the molecular and cellular processes that lead to cardiotoxicity in reaction to both traditional chemotherapy and targeted drug delivery systems is summarised in this article. This review delves into nanomedicine and nanotheranostics, with an emphasis on reducing anticancer medication-induced cardiac toxicity. Nanotheranostics provide potential solutions for early diagnosis and tailored therapy of heart injury by combining diagnostic and therapeutic capabilities into nanomedicine.


Assuntos
Antineoplásicos , Cardiotoxicidade , Nanomedicina , Nanomedicina Teranóstica , Humanos , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Cardiotoxicidade/etiologia , Nanomedicina/métodos , Nanomedicina Teranóstica/métodos , Animais , Cardiopatias/induzido quimicamente , Neoplasias/tratamento farmacológico , Nanopartículas/química
10.
Int J Nanomedicine ; 19: 6757-6776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983132

RESUMO

Glioma is a primary malignant tumor in the central nervous system. In recent years, the treatment of glioma has developed rapidly, but the overall survival of glioma patients has not significantly improved. Due to the presence of the blood-brain barrier and intracranial tumor barrier, many drugs with good effects to cure glioma in vitro cannot be accurately transported to the corresponding lesions. In order to enable anti-tumor drugs to overcome the barriers and target glioma, nanodrug delivery systems have emerged recently. It is gratifying that liposomes, as a multifunctional nanodrug delivery carrier, which can be compatible with hydrophilic and hydrophobic drugs, easily functionalized by various targeted ligands, biodegradable, and hypoimmunogenic in vivo, has become a quality choice to solve the intractable problem of glioma medication. Therefore, we focused on the liposome nanodrug delivery system, and summarized its current research progress in glioma. Hopefully, this review may provide new ideas for the research and development of liposome-based nanomaterials for the clinical treatment of glioma.


Assuntos
Antineoplásicos , Barreira Hematoencefálica , Neoplasias Encefálicas , Glioma , Lipossomos , Nanoestruturas , Glioma/tratamento farmacológico , Lipossomos/química , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Animais , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Portadores de Fármacos/química
11.
Nat Commun ; 15(1): 6058, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025877

RESUMO

Heart failure causes considerable morbidity and mortality worldwide. Clinically applied drugs for the treatment of heart failure are still severely limited by poor delivery efficiency to the heart and off-target consumption. Inspired by the high heart delivery efficiency of inhaled drugs, we present an inhalable cardiac-targeting peptide (CTP)-modified calcium phosphate (CaP) nanoparticle for the delivery of TP-10, a selective inhibitor of PDE10A. The CTP modification significantly promotes cardiomyocyte and fibroblast targeting during the pathological state of heart failure in male mice. TP-10 is subsequently released from TP-10@CaP-CTP and effectively attenuates cardiac remodelling and improved cardiac function. In view of these results, a low dosage (2.5 mg/kg/2 days) of inhaled medication exerted good therapeutic effects without causing severe lung injury after long-term treatment. In addition, the mechanism underlying the amelioration of heart failure is investigated, and the results reveal that the therapeutic effects of this system on cardiomyocytes and cardiac fibroblasts are mainly mediated through the cAMP/AMPK and cGMP/PKG signalling pathways. By demonstrating the targeting capacity of CTP and verifying the biosafety of inhalable CaP nanoparticles in the lung, this work provides a perspective for exploring myocardium-targeted therapy and presents a promising clinical strategy for the long-term management of heart failure.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Nanomedicina , Nanopartículas , Animais , Masculino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/prevenção & controle , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Administração por Inalação , Nanopartículas/química , Nanomedicina/métodos , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Miocárdio/metabolismo , Miocárdio/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , GMP Cíclico/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Modelos Animais de Doenças , Fosfatos de Cálcio
12.
ACS Appl Mater Interfaces ; 16(26): 33070-33080, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904394

RESUMO

Nanomaterials have been extensively exploited in tumor treatment, leading to numerous innovative strategies for cancer therapy. While nanomedicines present immense potential, their application in cancer therapy is characterized by significant complexity and unpredictability, especially regarding biocompatibility and anticancer efficiency. These considerations underscore the essential need for the development of ex vivo research models, which provide invaluable insights and understanding into the biosafety and efficacy of nanomedicines in oncology. Fortunately, the emergence of organoid technology offers a novel approach to the preclinical evaluation of the anticancer efficacy of nanomedicines in vitro. Hence, in this study, we constructed intestine and hepatocyte organoid models (Intestine-orgs and Hep-orgs) for assessing intestinal and hepatic toxicity at the microtissue level. We utilized three typical metal-organic frameworks (MOFs), ZIF-8, ZIF-67, and MIL-125, as nanomedicines to further detect their interactions with organoids. Subsequently, the MIL-125 with biocompatibility loaded methotrexate (MTX), forming the nanomedicine (MIL-125-PEG-MTX), indicated a high loading efficiency (82%) and a well-release capability in an acid microenvironment. More importantly, the anticancer effect of the nanomedicine was investigated using an in vitro patient-derived organoids (PDOs) model, achieving inhibition rates of 48% and 78% for PDO-1 and PDO-2, respectively, demonstrating that PDOs could predict clinical response and facilitate prospective therapeutic selection. These achievements presented great potential for organoid-based ex vivo models for nano theragnostic evaluation in biosafety and function.


Assuntos
Estruturas Metalorgânicas , Nanomedicina , Organoides , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Nanomedicina/métodos , Metotrexato/farmacologia , Metotrexato/química , Metotrexato/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Intestinos/efeitos dos fármacos , Intestinos/patologia , Animais
13.
J Control Release ; 371: 498-515, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849090

RESUMO

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.


Assuntos
Artrite Reumatoide , Nanomedicina , Nanopartículas , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Humanos , Nanomedicina/métodos , Animais , Nanopartículas/administração & dosagem , Sistemas de Liberação de Medicamentos , Antirreumáticos/administração & dosagem , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Vesículas Extracelulares
14.
J Nanobiotechnology ; 22(1): 365, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918839

RESUMO

Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.


Assuntos
Bacteriófagos , Sistemas de Liberação de Medicamentos , Nanomedicina , Bacteriófagos/genética , Humanos , Nanomedicina/métodos , Sistemas de Liberação de Medicamentos/métodos , Animais , Técnicas de Transferência de Genes , Portadores de Fármacos/química , Nanopartículas/química , Nanotecnologia/métodos
15.
ACS Biomater Sci Eng ; 10(7): 4347-4358, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38841860

RESUMO

In order to improve the effectiveness of tumor treatment and reduce the toxic side effects of drugs, we formed carrier-free multifunctional nanoparticles (BI NPs) by noncovalent interaction of berberine hydrochloride and IR780. BI NPs possessed the synergistic effects of promoting apoptosis, inhibiting proliferation and metastasis of tumors, and phototherapeutic treatment. Dispersive and passive targeting ability retention (EPR) effects of BI NPs on tumor sites in vivo could be monitored by fluorescence imaging. In addition, BI NPs exhibited effective reactive oxygen species (ROS) generation and photothermal conversion capabilities, photodynamic therapy (PDT), and photothermal therapy (PTT). Importantly, BI NPs inhibit tumor suppression through the AMPK/PI3K/AKT signaling pathway to inhibit tumor proliferation and metastasis. BI NPs not only have efficient in vivo multimodal therapeutic effects but also have good biosafety and potential clinical applications.


Assuntos
Apoptose , Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Nanomedicina , Nanopartículas , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Humanos , Proliferação de Células/efeitos dos fármacos , Animais , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanomedicina/métodos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Berberina/farmacologia , Berberina/química , Berberina/uso terapêutico , Terapia Fototérmica , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico
16.
Nano Lett ; 24(27): 8217-8231, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38848540

RESUMO

Theranostic medicine combines diagnostics and therapeutics, focusing on solid tumors at minimal doses. Optically activated photosensitizers are significant examples owing to their photophysical and chemical properties. Several optotheranostics have been tested that convert light to imaging signals, therapeutic radicals, and heat. Upon light exposure, conjugated photosensitizers kill tumor cells by producing reactive oxygen species and heat or by releasing cancer antigens. Despite clinical trials, these molecularly conjugated photosensitizers require protection from their surroundings and a localized direction for site-specific delivery during blood circulation. Therefore, cell membrane biomimetic ghosts have been proposed for precise and safe delivery of these optically active large molecules, which are clinically relevant because of their biocompatibility, long circulation time, bypass of immune cell recognition, and targeting ability. This review focuses on the role of biomimetic nanoparticles in the treatment and diagnosis of tumors through light-mediated diagnostics and therapy, providing insights into their preclinical and clinical status.


Assuntos
Materiais Biomiméticos , Neoplasias , Fármacos Fotossensibilizantes , Nanomedicina Teranóstica , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Animais , Biomimética , Nanomedicina/métodos
17.
Bioconjug Chem ; 35(7): 867-882, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38919067

RESUMO

Cancer immunotherapy has yielded remarkable results across a variety of tumor types. Nevertheless, the complex and immunosuppressive microenvironment within solid tumors poses significant challenges to established therapies such as immune checkpoint blockade (ICB) and chimeric antigen receptor T-cell (CAR-T) therapy. Within the milieu, tumor-associated macrophages (TAMs) play a significant role by directly suppressing T-cell functionality and fostering an immunosuppressive environment. Effective regulation of TAMs is, therefore, crucial to enhancing the efficacy of immunotherapies. Various therapeutic strategies targeting TAM modulation have emerged, including blocking TAM recruitment, direct elimination, promoting repolarization toward the M1 phenotype, and enhancing phagocytic capacity against tumor cells. The recently introduced CAR macrophage (CAR-M) therapy opens new possibilities for macrophage-based immunotherapy. Compared with CAR-T, CAR-M may demonstrate superior targeting and infiltration capabilities toward solid tumors. This review predominantly delves into the origin and development process of TAMs, their role in promoting tumor growth, and provides a comprehensive overview of immunotherapies targeting TAMs. It underscores the significance of regulating TAMs in bolstering antitumor therapies while discussing the potential and challenges of developing TAMs as targets for immunotherapy.


Assuntos
Imunoterapia , Neoplasias , Macrófagos Associados a Tumor , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Nanomedicina/métodos , Nanopartículas/química
18.
Int J Pharm ; 660: 124313, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857663

RESUMO

Nanomaterials have become increasingly important over time as research technology has enabled the progressively precise study of materials at the nanoscale. Developing an understanding of how nanomaterials are produced and tuned allows scientists to utilise their unique properties for a variety of applications, many of which are already incorporated into commercial products. Fullerenol nanoparticles C60(OH)n, 2 ≤ n ≤ 44 are fullerene derivatives and are produced synthetically. They have good biocompatibility, low toxicity and no immunological reactivity. In addition, their nanometre size, large surface area to volume ratio, ability to penetrate cell membranes, adaptable surface that can be easily modified with different functional groups, drug release, high physical stability in biological media, ability to remove free radicals, magnetic and optical properties make them desirable candidates for various applications. This review comprehensively summarises the various applications of fullerenol nanoparticles in different scientific fields such as nanobiomedicine, including antibacterial and antiviral agents, and provides an overview of their use in agriculture and biosensor technology. Recommendations are also made for future research that would further elucidate the mechanisms of fullerenols actions.


Assuntos
Fulerenos , Nanopartículas , Fulerenos/química , Nanopartículas/química , Humanos , Animais , Técnicas Biossensoriais/métodos , Nanomedicina/métodos , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia
19.
EBioMedicine ; 105: 105200, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876044

RESUMO

Nanoparticles have shown great potential for tumor targeting delivery via enhanced permeability and retention effect. However, the tumor mechanical microenvironment, characterized by dense extracellular matrix (ECM), high tumor stiffness and solid stress, leads to only 0.7% of administered dose accumulating in solid tumors and even fewer (∼0.0014%) reaching tumor cells, limiting the therapeutic efficacy of nanoparticles. Furthermore, the tumor mechanical microenvironment can regulate tumor cell stemness, promote tumor invasion, metastasis and reduce treatment efficacy. In this review, methods detecting the mechanical are introduced. Strategies for modulating the mechanical microenvironment including elimination of dense ECM by physical, chemical and biological methods, disruption of ECM formation, depletion or inhibition of cancer-associated fibroblasts, are then summarized. Finally, prospects and challenges for further clinical applications of mechano-modulating strategies to enhance the therapeutic efficacy of nanomedicines are discussed. This review may provide guidance for the rational design and application of nanoparticles in clinical settings.


Assuntos
Antineoplásicos , Matriz Extracelular , Nanopartículas , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Matriz Extracelular/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Nanomedicina/métodos
20.
Int J Pharm ; 660: 124345, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38885775

RESUMO

Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.


Assuntos
Sistemas de Liberação de Medicamentos , Nanomedicina , Nanotecnologia , Neoplasias , Viroses , Humanos , Animais , Neoplasias/tratamento farmacológico , Viroses/tratamento farmacológico , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanopartículas , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antivirais/administração & dosagem , Antivirais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...