Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607253

RESUMO

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Assuntos
Oxirredução , Transaldolase , Espectroscopia por Absorção de Raios X , Cisteína/química , Cisteína/metabolismo , Lisina/química , Lisina/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/química , Processamento de Proteína Pós-Traducional , Soluções , Enxofre/química , Enxofre/metabolismo , Transaldolase/metabolismo , Transaldolase/química
2.
Biochemistry ; 60(41): 3098-3113, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609833

RESUMO

The MtrCDE system confers multidrug resistance to Neisseria gonorrhoeae, the causative agent of gonorrhea. Using free and directed molecular dynamics (MD) simulations, we analyzed the interactions between MtrD and azithromycin, a transport substrate of MtrD, and a last-resort clinical treatment for multidrug-resistant gonorrhea. We then simulated the interactions between MtrD and streptomycin, an apparent nonsubstrate of MtrD. Using known conformations of MtrD homologues, we simulated a potential dynamic transport cycle of MtrD using targeted MD techniques (TMD), and we noted that forces were not applied to ligands of interest. In these TMD simulations, we observed the transport of azithromycin and the rejection of streptomycin. In an unbiased, long-time scale simulation of AZY-bound MtrD, we observed the spontaneous diffusion of azithromycin through the periplasmic cleft. Our simulations show how the peristaltic motions of the periplasmic cleft facilitate the transport of substrates by MtrD. Our data also suggest that multiple transport pathways for macrolides may exist within the periplasmic cleft of MtrD.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neisseria gonorrhoeae/química , Azitromicina/química , Azitromicina/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Transporte Biológico , Ligação de Hidrogênio , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Ligação Proteica , Estreptomicina/química , Estreptomicina/metabolismo
3.
Dokl Biochem Biophys ; 495(1): 334-337, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33368046

RESUMO

Three-dimensional full-atom model of the enzyme complex with acetyl-CoA and substrate was constructed on the basis of the primary sequence of amino acid residues of N-acetyl glutamate synthase. Bioinformatics approaches of computer modeling were applied, including multiple sequence alignment, prediction of co-evolutionary contacts, and ab initio folding. On the basis of the results of calculations by classical molecular dynamics and combined quantum and molecular mechanics (QM/MM) methods, the structure of the active site and the reaction mechanism of N-acetylglutamate formation are described. Agreement of the structures of the enzyme-product complexes obtained in computer modeling and in the X-ray studies validates the reliability of modeling predictions.


Assuntos
Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/metabolismo , Neisseria gonorrhoeae/enzimologia , Catálise , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Modelos Moleculares , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Molecules ; 25(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081246

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) have become viable targets for the development of antimicrobial agents due to their crucial role in protein translation. A series of six amino acids were coupled to the purine-like 7-amino-5-hydroxymethylbenzimidazole nucleoside analogue following an optimized synthetic pathway. These compounds were designed as aaRS inhibitors and can be considered as 1,3-dideazaadenine analogues carrying a 2-hydroxymethyl substituent. Despite our intentions to obtain N1-glycosylated 4-aminobenzimidazole congeners, resembling the natural purine nucleosides glycosylated at the N9-position, we obtained the N3-glycosylated benzimidazole derivatives as the major products, resembling the respective purine N7-glycosylated nucleosides. A series of X-ray crystal structures of class I and II aaRSs in complex with newly synthesized compounds revealed interesting interactions of these "base-flipped" analogues with their targets. While the exocyclic amine of the flipped base mimics the reciprocal interaction of the N3-purine atom of aminoacyl-sulfamoyl adenosine (aaSA) congeners, the hydroxymethyl substituent of the flipped base apparently loses part of the standard interactions of the adenine N1 and the N6-amine as seen with aaSA analogues. Upon the evaluation of the inhibitory potency of the newly obtained analogues, nanomolar inhibitory activities were noted for the leucine and isoleucine analogues targeting class I aaRS enzymes, while rather weak inhibitory activity against the corresponding class II aaRSs was observed. This class bias could be further explained by detailed structural analysis.


Assuntos
Aminoacil-tRNA Sintetases/ultraestrutura , Benzimidazóis/química , Inibidores Enzimáticos/síntese química , Ribonucleosídeos/química , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/química , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/patogenicidade , Conformação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
5.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32041800

RESUMO

The Gram-negative pathogen Neisseria gonorrhoeae (gonococcus [Gc]) colonizes lysozyme-rich mucosal surfaces. Lysozyme hydrolyzes peptidoglycan, leading to bacterial lysis. Gc expresses two proteins, SliC and NgACP, that bind and inhibit the enzymatic activity of lysozyme. SliC is a surface-exposed lipoprotein, while NgACP is found in the periplasm and also released extracellularly. Purified SliC and NgACP similarly inhibit lysozyme. However, whereas mutation of ngACP increases Gc susceptibility to lysozyme, the sliC mutant is only susceptible to lysozyme when ngACP is inactivated. In this work, we examined how lipidation contributes to SliC expression, cellular localization, and resistance of Gc to killing by lysozyme. To do so, we mutated the conserved cysteine residue (C18) in the N-terminal lipobox motif of SliC, the site for lipid anchor attachment, to alanine. SliC(C18A) localized to soluble rather than membrane fractions in Gc and was not displayed on the bacterial surface. Less SliC(C18A) was detected in Gc lysates compared to the wild-type protein. This was due in part to some release of the C18A mutant, but not wild-type, protein into the extracellular space. Surprisingly, Gc expressing SliC(C18A) survived better than SliC (wild type)-expressing Gc after exposure to lysozyme. We conclude that lipidation is not required for the ability of SliC to inhibit lysozyme, even though the lipidated cysteine is 100% conserved in Gc SliC alleles. These findings shed light on how members of the growing family of lysozyme inhibitors with distinct subcellular localizations contribute to bacterial defense against lysozyme.IMPORTANCENeisseria gonorrhoeae is one of many bacterial species that express multiple lysozyme inhibitors. It is unclear how inhibitors that differ in their subcellular localization contribute to defense from lysozyme. We investigated how lipidation of SliC, an MliC (membrane-bound lysozyme inhibitor of c-type lysozyme)-type inhibitor, contributes to its localization and lysozyme inhibitory activity. We found that lipidation was required for surface exposure of SliC and yet was dispensable for protecting the gonococcus from killing by lysozyme. To our knowledge, this is the first time the role of lipid anchoring of a lysozyme inhibitor has been investigated. These results help us understand how different lysozyme inhibitors are localized in bacteria and how this impacts resistance to lysozyme.


Assuntos
Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/metabolismo , Gonorreia/microbiologia , Lipoproteínas/metabolismo , Muramidase/antagonistas & inibidores , Neisseria gonorrhoeae/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Inibidores Enzimáticos/química , Gonorreia/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Muramidase/metabolismo , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/genética , Periplasma/genética , Periplasma/metabolismo , Transporte Proteico
6.
J Bacteriol ; 201(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31331979

RESUMO

Neisseria gonorrhoeae responds to host-derived antimicrobials by inducing the expression of the mtrCDE-encoded multidrug efflux pump, which expels microbicides, such as bile salts, fatty acids, and multiple extrinsically administered drugs, from the cell. In the absence of these cytotoxins, the TetR family member MtrR represses the mtrCDE genes. Although antimicrobial-dependent derepression of mtrCDE is clear, the physiological inducers of MtrR are unknown. Here, we report the crystal structure of an induced form of MtrR. In the binding pocket of MtrR, we observed electron density that we hypothesized was N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), a component of the crystallization reagent. Using the MtrR-CAPS structure as an inducer-bound template, we hypothesized that bile salts, which bear significant chemical resemblance to CAPS, are physiologically relevant inducers. Indeed, characterization of MtrR-chenodeoxycholate and MtrR-taurodeoxycholate interactions, both in vitro and in vivo, revealed that these bile salts, but not glyocholate or taurocholate, bind MtrR tightly and can act as bona fide inducers. Furthermore, two residues, W136 and R176, were shown to be important in binding chenodeoxycholate but not taurodeoxycholate, suggesting different binding modes of the bile salts. These data provide insight into a crucial mechanism utilized by the pathogen to overcome innate human defenses.IMPORTANCENeisseria gonorrhoeae causes a significant disease burden worldwide, and a meteoric rise in its multidrug resistance has reduced the efficacy of antibiotics previously or currently approved for therapy of gonorrheal infections. The multidrug efflux pump MtrCDE transports multiple drugs and host-derived antimicrobials from the bacterial cell and confers survival advantage on the pathogen within the host. Transcription of the pump is repressed by MtrR but relieved by the cytosolic influx of antimicrobials. Here, we describe the structure of induced MtrR and use this structure to identify bile salts as physiological inducers of MtrR. These findings provide a mechanistic basis for antimicrobial sensing and gonococcal protection by MtrR through the derepression of mtrCDE expression after exposure to intrinsic and clinically applied antimicrobials.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Neisseria gonorrhoeae/patogenicidade , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sítios de Ligação , Ácido Quenodesoxicólico/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/metabolismo , Ligação Proteica , Ácido Taurodesoxicólico/metabolismo
7.
Methods Mol Biol ; 1997: 87-96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119619

RESUMO

Neisseria gonorrhoeae is a gram-negative obligate human pathogen that contains lipooligosaccharide (LOS) as a major constituent within the outer membrane. LOS plays a major role in pathogenesis by inducing host inflammatory responses and also enabling evasion of host innate immunity through sialylation. Epitopes within LOS are also potential vaccine candidates. In this chapter, we describe a general method based on the Westphal hot phenol extraction process to purify whole LOS from N. gonorrhoeae for structural analyses and for use in in vivo and in vitro biological assays.


Assuntos
Antígenos de Bactérias/isolamento & purificação , Fracionamento Químico/métodos , Lipopolissacarídeos/isolamento & purificação , Neisseria gonorrhoeae/química , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Neisseria gonorrhoeae/imunologia , Neisseria gonorrhoeae/patogenicidade , Fenol/química
8.
Methods Mol Biol ; 1997: 97-110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119620

RESUMO

The Type IV pili are displayed peritrichously on the surfaces of Neisseria gonorrhoeae cells. Here we present protocols for isolating and purifying Type IV pili and dissociating them into PilE pilin subunits. Pilus filaments are isolated from the bacterial cell surface by mechanical shearing and purified by differential precipitation and centrifugation. PilE subunits are extracted by treating the purified pili with detergent to disrupt the hydrophobic interactions holding them together in the filaments. Purified pili and pilin subunits can be used for structural, biophysical, or biochemical characterization and as antigens for antibody production.


Assuntos
Fracionamento Químico/métodos , Proteínas de Fímbrias/isolamento & purificação , Fímbrias Bacterianas/química , Neisseria gonorrhoeae/citologia , Técnicas de Cultura Celular por Lotes/métodos , Detergentes/química , Proteínas de Fímbrias/química , Interações Hidrofóbicas e Hidrofílicas , Neisseria gonorrhoeae/química
9.
Methods Mol Biol ; 1997: 111-120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119621

RESUMO

The composition of Neisseria peptidoglycan has been of scientific interest for over four decades. Initial investigations focused on discovering the mechanisms causing rising rates of antibiotic resistance in N. gonorrhoeae by determining differences in peptidoglycan composition in penicillin susceptible and resistant strains. The discovery that cytotoxic peptidoglycan fragments are also released by Neisseria furthered the interest in peptidoglycan composition. This method describes the purification, enzymatic degradation, and separation of peptidoglycan fragments by high-performance liquid chromatography (HPLC). It also describes the preparation of samples so that they can be positively identified by mass spectrometry.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Neisseria gonorrhoeae/química , Peptidoglicano/isolamento & purificação , Proteínas de Bactérias/química , Parede Celular/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Neisseria gonorrhoeae/citologia , Peptidoglicano/química
10.
Methods Mol Biol ; 1997: 233-266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119628

RESUMO

Modern DNA recombinant techniques and major advances in genetic engineering have resulted in the development of bacterial expression systems that guarantee an unlimited supply of valuable proteins that have potential clinical or industrial use, but which are often limited by their low natural availability. This chapter provides the reader with a general scheme to clone, express, and purify native histidine (His)-tagged proteins in the desired quantity and quality required for its intended use, and reviews the most important factors affecting the production of recombinant proteins in a soluble form. Alternative methods for purification of insoluble recombinant proteins under denaturing conditions are also discussed. An optimized protocol to successfully purify native Neisseria gonorrhoeae Adhesin Complex Protein (Ng-ACP; NGO1981) is used as a technical example for the processes, which could potentially be applied to any gonococcal recombinant protein of interest.


Assuntos
Adesinas Bacterianas/genética , Clonagem Molecular/métodos , Neisseria gonorrhoeae/genética , Adesinas Bacterianas/química , Adesinas Bacterianas/isolamento & purificação , Cromatografia de Afinidade/métodos , Escherichia coli/genética , Vetores Genéticos/genética , Neisseria gonorrhoeae/química , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Transformação Bacteriana
11.
Biomol NMR Assign ; 13(1): 63-66, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30276628

RESUMO

Gonorrhea infections are becoming more difficult to treat due to the prevalence of strains exhibiting resistance to antibiotics and new therapeutic approaches are needed. N-acetylmuramyl-L-alanine amidase (AmiC) from Neisseria gonorrhoeae is a hydrolase that functions during cell division by cleaving the bond between the N-acetylmuramyl and L-alanine moieties of peptidoglycan. Inhibiting this enzyme offers the prospect of restoring the efficacy of existing antibiotics as treatments against N. gonorrhoeae. Of its two domains, the C-terminal domain catalyses the hydrolysis reaction and the N-terminal domain (NTD) is believed to target AmiC to its peptidoglycan substrate. Here, we report the 1H, 13C, and 15N resonance assignments of a 131 amino acid NTD construct of AmiC by heteronuclear NMR spectroscopy. The assignments represent the first for N. gonorrhoeae AmiC-NTD, laying the groundwork for detailed examination of its structure and dynamics, and providing a platform for new drug discovery efforts to address antimicrobial-resistant N. gonorrhoeae.


Assuntos
Proteínas de Bactérias/química , Neisseria gonorrhoeae/química , Ressonância Magnética Nuclear Biomolecular , Isótopos de Carbono , Isótopos de Nitrogênio , Domínios Proteicos , Prótons
12.
J Med Microbiol ; 67(9): 1287-1293, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30051801

RESUMO

OBJECTIVE: The development of an accurate, sensitive, specific, rapid, reproducible, stable-at-room-temperature and cost-effective diagnostic kit, and a low-cost portable fluorescence detector to fulfil the requirements of diagnostic facilities in developing countries. METHODS: We developed the 'Chlamy and Ness CT/NG kit' based on molecular beacons for the detection of Chlamydia trachomatis (CT) and Neisseriagonorrhoeae (NG). Multi-centric evaluation of the CT/NG kit was performed using the commercially available nucleic acid amplification test (NAAT)-based FTD Urethritis basic kit for comparison from December 2014 to November 2016. The stability of the kit reagents at 4 and 37 ˚C and the inter-day reproducibility of results were also analysed. RESULTS: The sensitivity and specificity of the kit were found to be 95.83 and 100.00 % for the detection of C. trachomatis and 93.24 and 99.75 % for N. gonorrhoeae, respectively, when tested against the commercial kit. The positive predictive value (PPV) was 100.00 and 98.57 %, whereas the negative predictive value (NPV) was 99.54 and 98.79 % for C. trachomatis and N. gonorrhoeae, respectively. Analysis of the kappa statistics enhanced the 'inter-rater' κ=0.976 for Chlamydia and κ=0.943 for Neisseria. CONCLUSION: Our kit was found to be as sensitive and specific as commercially available kits. Its low cost and ease of use will make it suitable for the routine diagnosis of C. trachomatis and N. gonorrhoeae in the resource-limited settings of developing countries.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/isolamento & purificação , Gonorreia/microbiologia , Neisseria gonorrhoeae/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Adulto , Infecções por Chlamydia/diagnóstico , Chlamydia trachomatis/química , Chlamydia trachomatis/classificação , Chlamydia trachomatis/genética , Testes Diagnósticos de Rotina/métodos , Feminino , Fluorescência , Gonorreia/diagnóstico , Humanos , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/genética , Reação em Cadeia da Polimerase/instrumentação , Sensibilidade e Especificidade , Adulto Jovem
13.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29844237

RESUMO

Sialylation of lacto-N-neotetraose (LNnT) extending from heptose I (HepI) of gonococcal lipooligosaccharide (LOS) contributes to pathogenesis. Previously, gonococcal LOS sialyltransterase (Lst) was shown to sialylate LOS in Triton X-100 extracts of strain 15253, which expresses lactose from both HepI and HepII, the minimal structure required for monoclonal antibody (MAb) 2C7 binding. Ongoing work has shown that growth of 15253 in cytidine monophospho-N-acetylneuraminic acid (CMP-Neu5Ac)-containing medium enables binding to CD33/Siglec-3, a cell surface receptor that binds sialic acid, suggesting that lactose termini on LOSs of intact gonococci can be sialylated. Neu5Ac was detected on LOSs of strains 15253 and an MS11 mutant with lactose only from HepI and HepII by mass spectrometry; deleting HepII lactose rendered Neu5Ac undetectable. Resistance of HepII lactose Neu5Ac to desialylation by α2-3-specific neuraminidase suggested an α2-6 linkage. Although not associated with increased factor H binding, HepII lactose sialylation inhibited complement C3 deposition on gonococci. Strain 15253 mutants that lacked Lst or HepII lactose were significantly attenuated in mice, confirming the importance of HepII Neu5Ac in virulence. All 75 minimally passaged clinical isolates from Nanjing, China, expressed HepII lactose, evidenced by reactivity with MAb 2C7; MAb 2C7 was bactericidal against the first 62 (of 75) isolates that had been collected sequentially and were sialylated before testing. MAb 2C7 effectively attenuated 15253 vaginal colonization in mice. In conclusion, this novel sialylation site could explain the ubiquity of gonococcal HepII lactose in vivo Our findings reinforce the candidacy of the 2C7 epitope as a vaccine antigen and MAb 2C7 as an immunotherapeutic antibody.


Assuntos
Gonorreia/microbiologia , Heptoses/metabolismo , Lactose/metabolismo , Lipopolissacarídeos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neisseria gonorrhoeae/metabolismo , Neisseria gonorrhoeae/patogenicidade , Adulto , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , China , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Humanos , Lipopolissacarídeos/química , Masculino , Espectrometria de Massas , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Ácido N-Acetilneuramínico/análise , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/isolamento & purificação
14.
J Biol Chem ; 293(4): 1106-1119, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229778

RESUMO

The ß-barrel assembly machinery (BAM) is a conserved multicomponent protein complex responsible for the biogenesis of ß-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Given its role in the production of OMPs for survival and pathogenesis, BAM represents an attractive target for the development of therapeutic interventions, including drugs and vaccines against multidrug-resistant bacteria such as Neisseria gonorrhoeae The first structure of BamA, the central component of BAM, was from N. gonorrhoeae, the etiological agent of the sexually transmitted disease gonorrhea. To aid in pharmaceutical targeting of BAM, we expanded our studies to BamD and BamE within BAM of this clinically relevant human pathogen. We found that the presence of BamD, but not BamE, is essential for gonococcal viability. However, BamE, but not BamD, was cell-surface-displayed under native conditions; however, in the absence of BamE, BamD indeed becomes surface-exposed. Loss of BamE altered cell envelope composition, leading to slower growth and an increase in both antibiotic susceptibility and formation of membrane vesicles containing greater amounts of vaccine antigens. Both BamD and BamE are expressed in diverse gonococcal isolates, under host-relevant conditions, and throughout different phases of growth. The solved structures of Neisseria BamD and BamE share overall folds with Escherichia coli proteins but contain differences that may be important for function. Together, these studies highlight that, although BAM is conserved across Gram-negative bacteria, structural and functional differences do exist across species, which may be leveraged in the development of species-specific therapeutics in the effort to combat multidrug resistance.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Neisseria gonorrhoeae/química , Proteínas da Membrana Bacteriana Externa/genética , Humanos , Viabilidade Microbiana , Neisseria gonorrhoeae/genética , Domínios Proteicos , Relação Estrutura-Atividade
15.
Pathog Dis ; 75(5)2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28633281

RESUMO

Glycomics is a rapidly growing field that focuses on the structure and function of carbohydrates (glycans) in biological systems. Glycan interactions play a major role in infectious disease, at all stages of colonisation and disease progression. Neisseria meningitidis, the cause of meningococcal sepsis and meningitis, and Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhoea, are responsible for significant morbidity and mortality worldwide. Neisseria meningitidis displays a range of surface glycosylations including capsule polysaccharide, lipooligosaccharide and O-linked glycoproteins. While N. gonorrhoeae does not have a capsule, it does express both lipooligosaccharide and O-linked glycoproteins. Neisseria gonorrhoeae also has the ability to scavenge host sialic acids, while several N. meningitidis serogroups can synthesise sialic acid. Surface expressed sialic acid is key in serum resistance and survival in the host. On the host side, the pathogenic Neisseria protein adhesins such as Opc and NHBA bind to host glycans for adherence and colonisation of host cells. Essentially, from both the bacterial and host perspective, glycan interactions are fundamental in colonisation and disease of pathogenic Neisseria. The key aspects of glycobiology of the pathogenic Neisseria are reviewed herein.


Assuntos
Adesinas Bacterianas/química , Interações Hospedeiro-Patógeno , Neisseria gonorrhoeae/metabolismo , Neisseria meningitidis/metabolismo , Polissacarídeos Bacterianos/química , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Sequência de Carboidratos , Glicômica , Gonorreia/microbiologia , Gonorreia/patologia , Humanos , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/patologia , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/patogenicidade , Neisseria meningitidis/química , Neisseria meningitidis/patogenicidade , Polissacarídeos Bacterianos/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo
16.
Glycobiology ; 27(9): 888-899, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460017

RESUMO

O-acetylation is a common modification of bacterial glycoconjugates. By modifying oligosaccharide structure and chemistry, O-acetylation has important consequences for biotic and abiotic recognition events and thus bacterial fitness in general. Previous studies of the broad-spectrum O-linked protein glycosylation in pathogenic Neisseria species (including N. gonorrhoeae and N. meningitidis) have revealed O-acetylation of some of their diverse glycoforms and identified the committed acetylase, PglI. Herein, we extend these observations by using mass spectrometry to examine a complete set of all glycan variants identified to date. Regardless of composition, all glycoforms and all sugars in the oligosaccharide are subject to acetylation in a PglI-dependent fashion with the only exception of di-N-acetyl-bacillosamine. Moreover, multiple sugars in a single oligosaccharide could be simultaneously modified. Interestingly, O-acetylation status was found to be correlated with altered chain lengths of oligosaccharides expressed in otherwise isogenic backgrounds. Models for how this unprecedented phenomenon might arise are discussed with some having potentially important implications for the membrane topology of glycan O-acetylation. Together, the findings provide better insight into how O-acetylation can both directly and indirectly govern glycoform structure and diversity.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Fímbrias/metabolismo , Glicosiltransferases/metabolismo , Neisseria gonorrhoeae/metabolismo , Polissacarídeos/biossíntese , Processamento de Proteína Pós-Traducional , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Carboidratos , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Glicoconjugados/química , Glicoconjugados/metabolismo , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/genética , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray
17.
Biosens Bioelectron ; 94: 560-567, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28364702

RESUMO

Development of rapid and multiplexed diagnostic tools is a top priority to address the current epidemic problem of sexually transmitted diseases. Here we introduce a novel nanoplasmonic biosensor for simultaneous detection of the two most common bacterial infections: Chlamydia trachomatis and Neisseria gonorrhoeae. Our plasmonic microarray is composed of gold nanohole sensor arrays that exhibit the extraordinary optical transmission (EOT), providing highly sensitive analysis in a label-free configuration. The integration in a microfluidic system and the precise immobilization of specific antibodies on the individual sensor arrays allow for selective detection and quantification of the bacteria in real-time. We achieved outstanding sensitivities for direct immunoassay of urine samples, with a limit of detection of 300 colony forming units (CFU)/mL for C. trachomatis and 1500CFU/mL for N. gonorrhoeae. The multiplexing capability of our biosensor was demonstrated by analyzing different urine samples spiked with either C. trachomatis or N. gonorrhoeae, and also containing both bacteria. We could successfully detect, identify and quantify the levels of the two bacteria in a one-step assay, without the need for DNA extraction or amplification techniques. This work opens up new possibilities for the implementation of point-of-care biosensors that enable fast, simple and efficient diagnosis of sexually transmitted infections.


Assuntos
Técnicas Biossensoriais/métodos , Chlamydia trachomatis/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Neisseria gonorrhoeae/isolamento & purificação , Infecções por Chlamydia/urina , Chlamydia trachomatis/química , DNA Bacteriano/química , DNA Bacteriano/urina , Gonorreia/microbiologia , Gonorreia/urina , Humanos , Neisseria gonorrhoeae/química , Sistemas Automatizados de Assistência Junto ao Leito
18.
Biochem J ; 474(6): 1017-1039, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28126741

RESUMO

Guanosine 5'-triphosphate (GTP) cyclohydrolase-I (GCYH-I) catalyzes the first step in folic acid biosynthesis in bacteria and plants, biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine-modified tRNA nucleosides in bacteria and archaea. The type IB GCYH (GCYH-IB) is a prokaryotic-specific enzyme found in many pathogens. GCYH-IB is structurally distinct from the canonical type IA GCYH involved in biopterin biosynthesis in humans and animals, and thus is of interest as a potential antibacterial drug target. We report kinetic and inhibition data of Neisseria gonorrhoeae GCYH-IB and two high-resolution crystal structures of the enzyme; one in complex with the reaction intermediate analog and competitive inhibitor 8-oxoguanosine 5'-triphosphate (8-oxo-GTP), and one with a tris(hydroxymethyl)aminomethane molecule bound in the active site and mimicking another reaction intermediate. Comparison with the type IA enzyme bound to 8-oxo-GTP (guanosine 5'-triphosphate) reveals an inverted mode of binding of the inhibitor ribosyl moiety and, together with site-directed mutagenesis data, shows that the two enzymes utilize different strategies for catalysis. Notably, the inhibitor interacts with a conserved active-site Cys149, and this residue is S-nitrosylated in the structures. This is the first structural characterization of a biologically S-nitrosylated bacterial protein. Mutagenesis and biochemical analyses demonstrate that Cys149 is essential for the cyclohydrolase reaction, and S-nitrosylation maintains enzyme activity, suggesting a potential role of the S-nitrosothiol in catalysis.


Assuntos
Proteínas de Bactérias/química , GTP Cicloidrolase/química , Guanosina Trifosfato/análogos & derivados , Neisseria gonorrhoeae/química , Trometamina/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Inibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , GTP Cicloidrolase/antagonistas & inibidores , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Expressão Gênica , Guanosina Trifosfato/química , Cinética , Modelos Moleculares , Mutação , Neisseria gonorrhoeae/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Nitrosotióis/química , Especificidade por Substrato
19.
Nat Commun ; 7: 13015, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698424

RESUMO

Neisseria meningitidis use Type IV pili (T4P) to adhere to endothelial cells and breach the blood brain barrier, causing cause fatal meningitis. T4P are multifunctional polymers of the major pilin protein, which share a conserved hydrophobic N terminus that is a curved extended α-helix, α1, in X-ray crystal structures. Here we report a 1.44 Å crystal structure of the N. meningitidis major pilin PilE and a ∼6 Å cryo-electron microscopy reconstruction of the intact pilus, from which we built an atomic model for the filament. This structure reveals the molecular arrangement of the N-terminal α-helices in the filament core, including a melted central portion of α1 and a bridge of electron density consistent with a predicted salt bridge necessary for pilus assembly. This structure has important implications for understanding pilus biology.


Assuntos
Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Neisseria meningitidis/química , Sequência de Aminoácidos , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Neisseria gonorrhoeae/química , Conformação Proteica , Transdução de Sinais , Temperatura
20.
J Theor Biol ; 410: 36-43, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27596531

RESUMO

OBJECTIVES: Resistance to the currently recommended extended-spectrum cephalosporins, which is used to treat Gonorrhea, is increasing continuously and leading to a threat of untreatable infection. It is, therefore, becoming extremely essential to search for new therapeutic strategies to control Gonorrhea. Vaccination may be considered as an effective control measure to control this disease, which is caused by Neisseria gonorrhoeae. METHODS: In-silico hierarchical approach was used to help identify candidate proteins of N. gonorrhoeae that might contribute significantly in vaccine research. In contrast to the conventional vaccine research which requires at least 10-12 years, the present approach would reduce the time period drastically and help to identify Potential Universal Vaccine Candidates (PUVCs). These proteins were further analyzed for the presence of T-cell and linear B-cell epitopes, by using HLAPred and ABCpred servers respectively, in order to facilitate the identification of Multi Epitope Peptide Vaccine Constructs. RESULTS: We have identified 23 non-host candidate proteins, using the proteomic information of four sequenced strains of N. gonorrhoeae namely FA 1090, TCDC_NG08107, NCCP11945 and MS11 and labeled them as PUVCs. Since all these identified 23 PUVCs contained both T cell and B cell epitopes, these have been further reiterated as PUVCs which could be used as promising leads for vaccine development. CONCLUSIONS: This hierarchical approach is the first comprehensive study to identify potential vaccine candidates which once utilized for vaccine development would surely serve as promising tools for effective control of Gonorrhea.


Assuntos
Vacinas Bacterianas/imunologia , Simulação por Computador , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Neisseria gonorrhoeae/imunologia , Vacinas Bacterianas/química , Vacinas Bacterianas/uso terapêutico , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Gonorreia/imunologia , Gonorreia/prevenção & controle , Humanos , Neisseria gonorrhoeae/química , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...