Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Water Res ; 256: 121558, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604065

RESUMO

The biodegradation of antibiotics in aquatic environment is consistently impeded by the widespread presence of heavy metals, necessitating urgent measures to mitigate or eliminate this environmental stress. This work investigated the degradation of sulfamethoxazole (SMX) by the white-rot fungus Phanerochaete chrysosporium (WRF) under heavy metal cadmium ion (Cd2+) stress, with a focus on the protective effects of reduced graphene oxide (RGO). The pseudo-first-order rate constant and removal efficiency of 5 mg/L SMX in 48 h by WRF decrease from 0.208 h-1 and 55.6% to 0.08 h-1 and 28.6% at 16 mg/L of Cd2+, while these values recover to 0.297 h-1 and 72.8% by supplementing RGO. The results demonstrate that RGO, possessing excellent biocompatibility, effectively safeguard the mycelial structure of WRF against Cd2+ stress and provide protection against oxidative damage to WRF. Simultaneously, the production of manganese peroxidase (MnP) by WRF decreases to 38.285 U/L in the presence of 24 mg/L Cd2+, whereas it recovers to 328.51 U/L upon the supplement of RGO. RGO can induce oxidative stress in WRF, thereby stimulating the secretion of laccase (Lac) and MnP to enhance the SMX degradation. The mechanism discovered in this study provides a new strategy to mitigate heavy metal stress encountered by WRF during antibiotic degradation.


Assuntos
Biodegradação Ambiental , Cádmio , Grafite , Phanerochaete , Sulfametoxazol , Phanerochaete/metabolismo , Sulfametoxazol/metabolismo , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo
2.
J Hazard Mater ; 465: 133469, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219585

RESUMO

The bulky phenolic compound tetrabromobisphenol A (TBBPA) is a brominated flame retardant used in a wide range of products; however, it diffuses into the environment, and has been reported to have toxic effects. Although it is well-known that white-rot fungi degrade TBBPA through ligninolytic enzymes, no other metabolic enzymes have yet been identified, and the toxicity of the reaction products and their risks have not yet been examined. We found that the white-rot fungus Phanerochaete sordida YK-624 converted TBBPA to TBBPA-O-ß-D-glucopyranoside when grown under non-ligninolytic-enzyme-producing conditions. The metabolite showed less cytotoxicity and mitochondrial toxicity than TBBPA in neuroblastoma cells. From molecular biological and genetic engineering experiments, two P. sordida glycosyltransferases (PsGT1c and PsGT1e) that catalyze the glycosylation of TBBPA were newly identified; these enzymes showed dramatically different glycosylation activities for TBBPA and bisphenol A. The results of computational analyses indicated that the difference in substrate specificity is likely due to differences in the structure of the substrate-binding pocket. It appears that P. sordida YK-624 takes up TBBPA, and reduces its cytotoxicity via these glycosyltransferases.


Assuntos
Phanerochaete , Bifenil Polibromatos , Biotransformação , Phanerochaete/metabolismo , Bifenil Polibromatos/metabolismo , Glicosiltransferases/metabolismo
3.
Chemosphere ; 345: 140427, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844703

RESUMO

Perfluorooctanoic acid (PFOA) is becoming a concern due to its persistence, bioaccumulation, and potential harmful effects on humans and the environment. In this study, the fungus Phanerochaete chrysosporium (P. chrysosporium) was used to remove the PFOA in liquid culture system. The results showed that the average activities of laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP) enzymes secreted by P. chrysosporium were 0.0003 U/mL, 0.013 U/mL, and 0.0059 U/mL, respectively, during the incubation times of 0-75 days. The pH of 3 and incubation time of 45-55 days were the optimum parameters for the three enzymes activities. The enzyme activities in P. chrysosporium incubation system were firstly inhibited by adding PFOA and then they were enhanced after 14 days. The maximum removal efficiency of PFOA (69.23%) was achieved after 35 days in P. chrysosporium incubation system with an initial PFOA concentration of 0.002 mM and no veratryl alcohol (VA). Adsorption was not a main pathway for PFOA removal and the PFOA adsorbed in fungi mycelial mat accounted for merely 1.91%. The possible products of PFOA contained partially fluorinated aldehyde, alcohol, and aromatic ring. These partially fluorinated compounds might result from PFOA degradation via a combination of cross-coupling and rearrangement of free radicals.


Assuntos
Fluorocarbonos , Phanerochaete , Humanos , Phanerochaete/metabolismo , Peroxidases/metabolismo , Caprilatos/metabolismo , Fluorocarbonos/metabolismo , Lacase/metabolismo
4.
Sci Total Environ ; 905: 166767, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37660814

RESUMO

Removal of recalcitrant lignin from wastewater remains a critical bottleneck in multiple aspects relating to microbial carbon cycling ranging from incomplete treatment of biosolids during wastewater treatment to limited conversion of biomass feedstock to biofuels. Based on previous studies showing that the white rot fungus Phanerochaete chrysosporium and Fenton chemistry synergistically degrade lignin, we sought to determine optimum levels of Fenton addition and the mechanisms underlying this synergy. We tested the extent of degradation of lignin under different ratios of Fenton reagents and found that relatively low levels of H2O2 and Fe(II) enhanced fungal lignin degradation, achieving 80.4 ± 1.61 % lignin degradation at 1.5 mM H2O2 and 0.3 mM Fe(II). Using a combination of whole-transcriptome sequencing and iron speciation assays, we determined that at these concentrations, Fenton chemistry induced the upregulation of 80 differentially expressed genes in P. ch including several oxidative enzymes. This study underlines the importance of non-canonical, auxiliary lignin-degrading pathways in the synergy between white rot fungi and Fenton chemistry in lignin degradation. We also found that, relative to the abiotic control, P. ch. increases the availability of Fe(II) for the production of hydroxyl radicals in the Fenton reaction by recycling Fe(III) (p < 0.001), decreasing the Fe(II) inputs necessary for lignin degradation via the Fenton reaction.


Assuntos
Phanerochaete , Phanerochaete/metabolismo , Lignina/metabolismo , Peróxido de Hidrogênio/metabolismo , Compostos Férricos/metabolismo , Indução Enzimática , Ferro/metabolismo , Compostos Ferrosos/metabolismo
5.
Bioresour Technol ; 384: 129291, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37295477

RESUMO

This study aimed to explore the effect of regulating pH and Phanerochaete chrysosporium inoculation at the cooling stage of composting on the lignocellulose degradation, humification process and related precursors as well as fungal community for secondary fermentation. Results showed that composting with P. chrysosporium inoculation and pH regulation (T4) had 58% cellulose decomposition, 73% lignin degradation and improved enzyme activities for lignin decomposition. There was 81.98% increase of humic substance content and more transformation of polyphenols and amino acids in T4 compared to control. Inoculating P. chrysosporium affected the fungal community diversity, and regulating pH helped to increase the colonization of P. chrysosporium. Network analysis showed that the network complexity and synergy between microorganisms was improved in T4. Correlation and Random Forest analysis suggested that enriched Phanerochaete and Thermomyces in the mature stage of T4 were key taxa for lignocellulose degradation, and humic acid formation by accumulating precursors.


Assuntos
Compostagem , Micobioma , Phanerochaete , Phanerochaete/metabolismo , Lignina/metabolismo , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Solo
6.
J Hazard Mater ; 450: 131007, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871371

RESUMO

Six-carbon-chained polyfluoroalkyl substances, such as 6:2 fluorotelomer alcohol (6:2 FTOH), are being used to replace longer chained compounds in the manufacture of various commercial products. This study examined the effects of growth substrates and nutrients on specific intracellular and extracellular enzymes mediating 6:2 FTOH aerobic biotransformation by the white-rot fungus, Phanerochaete chrysosporium. Cellulolytic conditions with limited glucose were a suitable composition, resulting in high 5:3 FTCA yield (37 mol%), which is a key intermediate in 6:2 FTOH degradation without forming significant amounts of terminal perfluorocarboxylic acids (PFCAs). Sulfate and ethylenediaminetetraacetic acid (EDTA) were also essential for 5:3 FTCA production, but, at lower levels, resulted in the buildup of 5:2 sFTOH (52 mol%) and 6:2 FTUCA (20 mol%), respectively. In non-ligninolytic nutrient-rich medium, 45 mol% 6:2 FTOH was transformed but produced only 12.7 mol% 5:3 FTCA. Enzyme activity studies imply that cellulolytic conditions induce the intracellular cytochrome P450 system. In contrast, extracellular peroxidase synthesis is independent of 6:2 FTOH exposure. Gene expression studies further verified that peroxidases were relevant in catalyzing the downstream transformations from 5:3 FTCA. Collectively, the identification of nutrients and enzymatic systems will help elucidate underlying mechanisms and biogeochemical conditions favorable for fungal transformation of PFCA precursors in the environment.


Assuntos
Fluorocarbonos , Phanerochaete , Fluorocarbonos/metabolismo , Biotransformação , Óxidos de Enxofre , Phanerochaete/metabolismo
7.
Bioresour Technol ; 373: 128717, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773812

RESUMO

This study was aimed at exploring the effect of antagonism of Trichoderma reesei (T.r) and Phanerochaete chrysosporium (P.c) on humification during fermentation of rice (RS) and canola straw (CS). Results showed that exogeneous fungi accelerated straw degradation and enzyme activities of CMCase, xylanase and LiP. P.c inhibited the activity of LiP when co-existing with T.r beginning, it promoted the degradation of lignin and further increased the production of humus-like substances (HLS) and humic-like acid (HLA) in later fermentation when nutrients were insufficient. The HLS of RTP was 54.9 g/kg RS, higher than the other treatments, and displayed more complex structure and higher thermostability. Brucella and Bacillus were the main HLA bacterial producers. P.c was the HLA fungal producer, while T.r assisted FLA and polyphenol transformation. Therefore, RTP was recommended to advance technologies converting crop straw into humus resources.


Assuntos
Phanerochaete , Trichoderma , Phanerochaete/metabolismo , Solo , Antibiose , Lignina/metabolismo , Trichoderma/metabolismo
8.
J Hazard Mater ; 448: 130878, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731319

RESUMO

Since the 1980s, plastic waste in the environment has been accumulating, and little is known about fungi biodegradation, especially in dry environments. Therefore, the research on plastic degradation technology is urgent. In this study, we demonstrated that Phanerochaete chrysosporium (P. chrysposporium), a typical species of white rot fungi, could react as a highly efficient biodegrader of polylactic acid (PLA), and 34.35 % of PLA degradation was obtained during 35-day incubation. A similar mass loss of 19.71 % could be achieved for polystyrene (PS) degradation. Here, we presented the visualization of the plastic deterioration process and their negative reciprocal on cell development, which may be caused by the challenge of using PS as a substrate. The RNA-seq analysis indicated that adaptations in energy metabolism and cellular defense were downregulated in the PS group, while lipid synthesis was upregulated in the PLA-treated group. Possible differentially expressed genes (DEG) of plastic degradation, such as hydrophobic proteins, lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac), Cytochrome P450 (CYP450), and genes involved in styrene or benzoic acid degradation pathways have been recorded, and we proposed a PS degradation pathway.


Assuntos
Basidiomycota , Phanerochaete , Plásticos/metabolismo , Peroxidases/metabolismo , Basidiomycota/metabolismo , Fungos/metabolismo , Biodegradação Ambiental , Poliésteres , Phanerochaete/metabolismo , Lignina/metabolismo
9.
Chemosphere ; 311(Pt 1): 136975, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283437

RESUMO

Imidacloprid (IMI), a typic neonicotinoid insecticide, is widely used and persist in soils with long half-time causing serious threat to ecosystem and human health. It is urgent to develop suitable and effective methods to accelerate it degradation and alleviate its negative impacts in soil. In this study, the introduction of functional microbe white-rot fungus Phanerochaete chrysosporium to remediate IMI contaminated wetland soil was carried out. The remediation performance and the response of the soil microbial community were examined. The results showed that P. chrysosporium could improve the degradation of IMI in soil no matter the soil was sterilized or not. The bioaugmentation was especially observed in non-sterilized soil under the inoculation patterns of FE and SP with the maximum IMI degradation rate of 91% and 93% in 7 days, respectively. The invertase activity in soil was also enhanced with P. chrysosporium inoculation. Microbial community analysis revealed that P. chrysosporium inoculation could increase the diversity and richness of bacterial community, and stimulate some IMI degraders genera including Ochrobactrum, Leifsonia, Achromobacter, and Bacillus. Moreover, the xenobiotic degradation and metabolism pathway was generally enhanced with P. chrysosporium inoculation based on PICRUSt analysis. These obtained results demonstrated that the introduction of white-rot fungus is of great potentially enabling the remediation of neonicotinoids contaminated soil.


Assuntos
Inseticidas , Microbiota , Phanerochaete , Poluentes do Solo , Humanos , Phanerochaete/metabolismo , Inseticidas/metabolismo , Biodegradação Ambiental , Áreas Alagadas , Neonicotinoides/metabolismo , Solo , Poluentes do Solo/análise , Microbiologia do Solo
10.
J Biosci Bioeng ; 135(1): 17-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36344390

RESUMO

The white-rot fungus Phanerochaete chrysosporium can degrade lignin polymers using extracellular, non-specific, one-electron oxidizing enzymes. This results in the formation of guaiacyl (G), syringyl (S), and hydroxyphenyl (H) units, such as vanillic acid, syringic acid, and p-hydroxybenzoic acid (p-HBA) and the corresponding aldehydes, which are further metabolized intracellularly. Therefore, the aim of this study was to identify proteins involved in the hydroxylation of H-unit fragments such as p-HBA and its decarboxylated product hydroquinone (HQ) in P. chrysosporium. A flavoprotein monooxygenase (FPMO), PcFPMO2, was identified and its activity was characterized. Recombinant PcFPMO2 with an N-terminal polyhistidine tag was produced in Escherichia coli and purified. In the presence of NADPH, PcFPMO2 used six phenolic compounds as substrates. PcFPMO2 catalyzed the hydroxylation of the H-unit fragments such as p-HBA and HQ, and the G-unit derivative methoxyhydroquinone (MHQ). The highest catalytic efficiency (kcat/Km) was observed with HQ, indicating that PcFPMO2 could be involved in HQ hydroxylation in vivo. Additionally, PcFPMO2 converted MHQ to 3-, 5-, and 6-methoxy-1,2,4-trihydroxybenzene (3-, 5-, and 6-MTHB), respectively, suggesting that PcFPMO2 might partially be involved in MHQ degradation, following aromatic ring fission, via three MTHBs. FPMOs are divided into eight groups (groups A to H). This is the first study to show MHQ hydroxylase activity of a FPMO-group A superfamily member. These findings highlight the unique substrate spectrum of PcFPMO2, making it an attractive candidate for biotechnological applications.


Assuntos
Phanerochaete , Phanerochaete/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , NADP/metabolismo , Fenóis/metabolismo , Lignina/metabolismo
11.
Environ Sci Pollut Res Int ; 30(4): 9060-9065, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36308661

RESUMO

To explore the mechanism of Phanerochaete chrysosporium (P. chrysosporium) inoculation driving the humification process of maize straw composting, the treatments without P. chrysosporium inoculation (T1) and that with P. chrysosporium inoculation (T2) were carried out separately during the secondary fermentation of the co-composting of maize straw and rapeseed cake. The key microorganisms were determined by evaluating the succession of the fungal community and its relationship with humification process parameters. The results showed that P. chrysosporium inoculation (T2) reduced fungal diversity but increased the relative abundance of Coprinopsis and Talaromyces. At the end of the composting (day 36), the relative abundance of Talaromyces and Coprinopsis in T2 increased by 1223.7% and 30.2%, respectively, compared with T1. Combined CCA and SEMs analyses demonstrated the microbially driven mechanisms that enhance the humification process of composting, that is, P. chrysosporium inoculation promoted lignin continuous degradation by promoting the relative abundance of Talaromyces and Coprinopsis during the secondary fermentation of composting; meanwhile, P. Chrysosporium inoculation further intensified the biological process of humification in composting.


Assuntos
Agaricales , Compostagem , Phanerochaete , Talaromyces , Solo , Phanerochaete/metabolismo , Fermentação
12.
Bioresour Technol ; 368: 128314, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36375698

RESUMO

Paddy straw (PS) and pine needles (PN) are one of the challenging biomasses in terms of disposal and compost making due to their high silica and tannin contents. Particulate air pollution, loss of biodiversity and respiratory impairments are some of disastrous outcomes caused by burning. However, high percentage of cellulose and hemicellulose makes them potential substrate for paper and pulp industries. The main aim of work was to study and utilize a combinatorial approach of weak chemical treatment and lignin degrading fungal species as agents of effective production of lignin modifying enzymes (LME's) for lignin depolymerisation from the biomasses. Phanerochaete chrysosporium was found to be the best degrader of lignin (47.11 % in PS + PN in 28 days) with maximum LME's production between 10th-17th days. Efficient lignin degradation in the PS and PN biomass will aid further application in pulp production supporting the transition to a circular economy in a greener way.


Assuntos
Lignina , Phanerochaete , Lignina/metabolismo , Biomassa , Phanerochaete/metabolismo , Celulose/metabolismo , Metabolismo Secundário
13.
Environ Technol ; 44(15): 2280-2287, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34986752

RESUMO

Acetamiprid (ACE) belongs to the group of neonicotinoid pesticides, which have become the most widely utilised pesticides around the world in the last two decades. The ability of Phanerochaete sordida YK-624 to degrade ACE under ligninolytic conditions has been demonstrated; however, the functional genes involved in ACE degradation have not been fully elucidated. In the present study, the differentially expressed genes of P. sordida YK-624 under ACE-degrading conditions and in the absence of ACE were elucidated by RNA sequencing (RNA-Seq). Based on the gene ontology enrichment results, the cell wall and cell membrane were significantly affected under ACE-degrading conditions. This result suggested that intracellular degradation of ACE might be mediated by this fungus. In addition, genes in metabolic pathways were the most enriched upregulated differentially expressed genes according to the KEGG pathway analysis. Eleven differentially expressed genes characterised as cytochrome P450s were upregulated, and these genes were determined to be particularly important for ACE degradation by P. sordida YK-624 under ligninolytic conditions.


Assuntos
Praguicidas , Phanerochaete , Praguicidas/metabolismo , Neonicotinoides , Phanerochaete/genética , Phanerochaete/metabolismo , Análise de Sequência de RNA
14.
Commun Biol ; 5(1): 1254, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385496

RESUMO

Activity-based protein profiling (ABPP) has emerged as a versatile biochemical method for studying enzyme activity under various physiological conditions, with applications so far mainly in biomedicine. Here, we show the potential of ABPP in the discovery of biocatalysts from the thermophilic and lignocellulose-degrading white rot fungus Phanerochaete chrysosporium. By employing a comparative ABPP-based functional screen, including a direct profiling of wood substrate-bound enzymes, we identify those lignocellulose-degrading carbohydrate esterase (CE1 and CE15) and glycoside hydrolase (GH3, GH5, GH16, GH17, GH18, GH25, GH30, GH74 and GH79) enzymes specifically active in presence of the substrate. As expression of fungal enzymes remains challenging, our ABPP-mediated approach represents a preselection procedure for focusing experimental efforts on the most promising biocatalysts. Furthermore, this approach may also allow the functional annotation of domains-of-unknown functions (DUFs). The ABPP-based biocatalyst screening described here may thus allow the identification of active enzymes in a process of interest and the elucidation of novel biocatalysts that share no sequence similarity to known counterparts.


Assuntos
Phanerochaete , Phanerochaete/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo
15.
Appl Microbiol Biotechnol ; 106(18): 6277-6287, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35986779

RESUMO

Environmental bisphenol F (BPF) has a cyclic endocrine disruption effect, seriously threatening animal and human health. It is frequently detected in environmental samples worldwide. For BPF remediation, biological methods are more environmentally friendly than physicochemical methods. White-rot fungi have been increasingly studied due to their potential capability to degrade environmental pollutants. Phanerochaete sordida YK-624 has been shown to degrade BPF by ligninolytic enzymes under ligninolytic conditions. In the present study, degradation of BPF under non-ligninolytic conditions (no production of ligninolytic enzymes) was investigated. Our results showed that BPF could be completely removed after 7-d incubation. A metabolite of BPF, 4,4'-dihydroxybenzophenone (DHBP) was identified by mass spectrometry and nuclear magnetic resonance, and DHBP was further degraded by this fungus to form 4-hydroxyphenyl 4-hydroxybenzoate (HPHB). DHBP and HPHB were the intermediate metabolites of BPF and would be further degraded by P. sordida YK-624. We also found that cytochrome P450s played an important role in BPF degradation. Additionally, transcriptomic analysis further supported the involvement of these enzymes in the action of BPF degradation. Therefore, BPF is transformed to DHBP and then to HPHB likely oxidized by cytochrome P450s in P. sordida YK-624. Furthermore, the toxicological studies demonstrated that the order of endocrine-disrupting activity for BPF and its metabolites was HPHB > BPF > DHBP. KEY POINTS: • White-rot fungus Phanerochaete sordida YK-624 could degrade BPF. • Cytochrome P450s were involved in the BPF degradation. • The order of endocrine disrupting activity was: HPHB > BPF > DHBP.


Assuntos
Compostos Benzidrílicos , Phanerochaete , Fenóis , Compostos Benzidrílicos/metabolismo , Biotransformação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Phanerochaete/metabolismo , Fenóis/metabolismo
16.
Bioresour Technol ; 361: 127687, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35878774

RESUMO

Fungal pretreatment can selectively degrade partial biomass components, which undoubtedly exerts a significant influence on biomass pyrolysis behavior. The corn stover was pretreated with Phanerochaete chrysosporium, and its influence on the physicochemical properties and pyrolysis behaviors of biomass together with the product characteristics were investigated. The Phanerochaete chrysosporium was more active to degrade hemicellulose and lignin. The hemicellulose and lignin contents in corn stover were decreased by 35.14 % and 31.80 %, respectively, after five weeks pretreatment, compared to the untreated sample. The reaction activation energy decreased from 52.89 kJ·mol-1 for the untreated sample to 40.88 kJ·mol-1 for the sample pretreated for five weeks. The Phanerochaete chrysosporium pretreatment was beneficial to the biochar production but exerted an unfavorable effect on the texture structure. The Phanerochaete chrysosporium also had an obvious influence on the bio-oil compositions. This study can provide a scientific reference for the application of biological pretreatment for biomass pyrolysis technology.


Assuntos
Phanerochaete , Biomassa , Lignina/química , Phanerochaete/metabolismo , Pirólise , Zea mays/química
17.
Bioprocess Biosyst Eng ; 45(5): 815-828, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35318496

RESUMO

The long start-up period is a major challenging issue for the widespread application of aerobic granular sludge (AGS). In this study, a novel rapid start-up strategy was developed by inoculating Phanerochaete chrysosporium (P. chrysosporium) pellets as the induced nucleus in a sequencing batch airlift reactor (SBAR) to enhance activated sludge granulation. The results demonstrated that P. chrysosporium pellets could effectively shorten the aerobic granulation time from 32 to 20 days. The AGS promoted by P. chrysosporium pellets had a larger average diameter (2.60-2.74 mm) than that without P. chrysosporium pellets (1.78-1.88 mm) and had better biomass retention capacity and sedimentation properties; its mixed liquor suspended solids (MLSS) and sludge volume index (SVI30) reached approximately 5.2 g/L and 45 mL/g, respectively. The addition of P. chrysosporium pellets promoted the secretion of extracellular polymeric substances (EPS), especially protein (PN). The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in P. chrysosporium pellets reactor were 98.91%, 89.17%, 64.73%, and 94.42%, respectively, which were higher than those in the reactor without P. chrysosporium pellets (88.73%, 82.09%, 55.75%, and 88.92%). High throughput sequencing analysis indicated that several functional genera that were responsible for the formation of aerobic granules and the removal of pollutants, such as Acinetobacter, Pseudomonas, Janthinobacterium, and Enterobacter, were found to be predominant in the mature sludge granules promoted by P. chrysosporium pellets.


Assuntos
Phanerochaete , Esgotos , Aerobiose , Reatores Biológicos , Nitrogênio/metabolismo , Phanerochaete/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos/métodos
18.
Sci Rep ; 12(1): 1129, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064211

RESUMO

The study sought to investigate the potentials of axenic cultures of Pleurotus ostreatus, Phanerochaete chrysosporium and their coculture (P. chrysosporium and P. ostreatus) to break down lignin and to enhance the rumen fermentability of rice straw. Rice straw was fermented by two lignin-degrading fungi, namely, P. ostreatus, P. chrysosporium and its coculture (P. ostreatus and P. chrysosporium) with uninoculated straw as control under solid-state fermentation employing a completely randomized research design. The coculture exhibited a mutual intermingling plus inhibition interaction. The fungi treatment increased the crude protein from (5.1%) in the control to (6.5%, 6.6%, and 6.7%) in the P. ostreatus, P. chrysosporium and coculture respectively. The coculture treated straw had a lower lignin content (5.3%) compared to the P. chrysosporium (6.2%) with the P. ostreatus recording the least (3.3%) lignin fraction. Treatment of rice straw with coculture improved the in vitro dry matter digestibility (68.1%), total volatile fatty acids (35.3 mM), and total gas (57.4 ml/200 mg) compared to P. chrysosporium (45.1%, 32.2 mM, 44.4 ml/200 mg) but was second to P. ostreatus (75.3%, 38.3 mM, 65.6 ml/200 mg). Instead of an anticipated synergistic effect from the coculture, a competitive antagonistic effect was rather observed at the end of the study, a condition that can be attributed to the coculture behavior.


Assuntos
Fermentação , Lignina/metabolismo , Phanerochaete/metabolismo , Pleurotus/metabolismo , Ração Animal , Animais , Técnicas de Cocultura , Oryza/química , Ruminantes
19.
Sci Total Environ ; 818: 151672, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34793791

RESUMO

Azo dyes in wastewater have great threats to environment and human health. White-rot fungi (WRF) have broad-spectrum potential for such refractory organics bioremediation; however, their applications are largely restrained by the poor viability owning to microbial invasion under non-sterile conditions. In this study, short-term pre-exposure to silver ion (Ag+) was demonstrated to be a practical, economic, and green method to enhance the perdurability of azo dyes decoloration by WRF Phanerochaete chrysosporium under non-sterile conditions. In control (without Ag+ pre-exposure), decoloration deactivated since cycle 7 (<10%), whereas in Ag+ pre-exposure groups, the decoloration ratios remained 91.5%-94.7% after 7 cycles. Variations in decoloration-related extracellular lignin enzyme activities were consistent with the decoloration effectiveness. The enhanced decoloration capability in Ag+ pre-exposure groups under non-sterile conditions could be ascribed to the selectively antimicrobial action by Ag+. The released Ag+ from the self-assembled silver nanoparticles (AgNPs) could selectively "stimulate" the proliferation and viability of P. chrysosporium, and simultaneously inhibit the growths of invasive microorganisms. The pyrosequencing results indicated that genus Sphingomonas (24.1%-31.3%) was the main invasive bacteria in Ag+ pre-exposure groups after long-term operation owing to the AgNPs passivation. As control, the invasive fungi (Asterotremella humicola) and bacteria (Burkholderia spp.) occurred in control after short-term operation, and genus Burkholderia (74.9%) dominated after long-term operation, leading to decoloration deactivation. Overall, these findings offer a new insight into the bio-nano interactions between WRF and invasive microorganisms in response to Ag+ or biogenic AgNPs, and could extend WRF application perspective under non-sterile conditions in future.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Phanerochaete , Anti-Infecciosos/metabolismo , Biodegradação Ambiental , Fungos , Humanos , Nanopartículas Metálicas/toxicidade , Phanerochaete/metabolismo , Prata/metabolismo
20.
BMC Microbiol ; 21(1): 318, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34784888

RESUMO

BACKGROUND: Solid-state fermentation is a fungal culture technique used to produce compounds and products of industrial interest. The growth behaviour of filamentous fungi on solid media is challenging to study due to the intermixity of the substrate and the growing organism. Several strategies are available to measure indirectly the fungal biomass during the fermentation such as following the biochemical production of mycelium-specific components or microscopic observation. The microscopic observation of the development of the mycelium, on lignocellulosic substrate, has not been reported. In this study, we set up an experimental protocol based on microscopy and image processing through which we investigated the growth pattern of Phanerochaete chrysosporium on different Miscanthus x giganteus biomass fractions. RESULTS: Object coalescence, the occupied surface area, and radial expansion of the colony were measured in time. The substrate was sterilized by autoclaving, which could be considered a type of pre-treatment. The fastest growth rate was measured on the unfractionated biomass, followed by the soluble fraction of the biomass, then the residual solid fractions. The growth rate on the different fractions of the substrate was additive, suggesting that both the solid and soluble fractions were used by the fungus. Based on the FTIR analysis, there were differences in composition between the solid and soluble fractions of the substrate, but the main components for growth were always present. We propose using this novel method for measuring the very initial fungal growth by following the variation of the number of objects over time. Once growth is established, the growth can be followed by measurement of the occupied surface by the mycelium. CONCLUSION: Our data showed that the growth was affected from the very beginning by the nature of the substrate. The most extensive colonization of the surface was observed with the unfractionated substrate containing both soluble and solid components. The methodology was practical and may be applied to investigate the growth of other fungi, including the influence of environmental parameters on the fungal growth.


Assuntos
Phanerochaete/crescimento & desenvolvimento , Biomassa , Fermentação , Cinética , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Phanerochaete/química , Phanerochaete/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...