Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
PLoS One ; 16(8): e0249075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339440

RESUMO

Liquisolid compact is a novel dosage form in which a liquid medication (liquid drug, drug solution/dispersion in non-volatile solvent/solvent system) is converted to a dry, free flowing powder and compressed. Objective of the study was to elucidate the effect of carrier material on release characteristics of clopidogrel from liquisolid compacts. Different formulations of liquisolid compacts were developed using microcrystalline cellulose, starch maize, polyvinyl pyrollidone and hydroxypropyl methylcellulose as carrier material in three concentrations (40, 30 and 20%, w/w). Liquid vehicle was selected on the basis of solubility of clopidogrel. Colloidal silicondioxide was used as coating material and ratio of carrier to coating material was kept 10. A control formulation comprised of microcrystalline cellulose (diluents), tabletose-80 (diluents), primojel (disintegrant) and magnesium stearate (lubricant) was prepared by direct compression technique and was used for comparison. All the formulations were evaluated at pre and post compression level. Acid solubility profile showed higher solubility in HCl buffer pH2 (296.89±3.49 µg/mL). Mixture of propylene glycol and water (2:1, v/v) was selected as liquid vehicle. Drug content was in the range of 99-101% of the claimed quantity. All the formulations showed better mechanical strength and their friability was within the official limits (<1%). Microcrystalline cellulose and starch maize resulted in faster drug release while polyvinyl pyrollidone and HPMC resulted in sustaining drug release by gel formation. It is concluded from results that both fast release and sustained release of clopidogrel can be achieved by proper selection of carrier material.


Assuntos
Clopidogrel/administração & dosagem , Portadores de Fármacos/farmacocinética , Celulose/farmacocinética , Clopidogrel/química , Clopidogrel/farmacocinética , Derivados da Hipromelose/farmacocinética , Veículos Farmacêuticos/farmacocinética , Povidona/farmacocinética , Solubilidade , Amido/farmacocinética
2.
AAPS PharmSciTech ; 22(5): 183, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132921

RESUMO

The current study evaluated the effect of location and amount of various superdisintegrants on the properties of tablets made by twin-screw melt granulation (TSMG). Sodium-croscarmellose (CCS), crospovidone (CPV), and sodium starch glycolate (SSG) were used in various proportions intra- and extra-granular. Tabletability, compactibility, compressibility as well as friability, disintegration, and dissolution performance were assessed. The extra-granular addition resulted in the fasted disintegration and dissolution. CPV performed superior to CCS and SSG. Even if the solid fraction (SF) of the granules was lower for CPV, only a minor decrease in tabletability was observed, due to the high plastic deformation of the melt granules. The intra-granular addition of CPV resulted in a more prolonged dissolution profile, which could be correlated to a loss in porosity during tableting. The 100% intra-granular addition of the CPV resulted in a distinct decrease of the disintegration efficiency, whereas the performance of SSG was unaffected by the granulation process. CCS was not suitable to be used for the production of an immediate-release formulation, when added in total proportion into the granulation phase, but its efficiency was less impaired compared to CPV. Shortest disintegration (78 s) and dissolution (Q80: 4.2 min) was achieved with CPV extra-granular. Using CPV and CCS intra-granular resulted in increased disintegration time and Q80. However, at a higher level of appx. 500 s and appx. 15 min, only SSG showed a process and location independent disintegration and dissolution performance.


Assuntos
Carboximetilcelulose Sódica/síntese química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Povidona/síntese química , Carboximetilcelulose Sódica/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes/síntese química , Excipientes/farmacocinética , Excipientes Farmacêuticos/síntese química , Excipientes Farmacêuticos/farmacocinética , Porosidade , Povidona/farmacocinética , Solubilidade , Comprimidos , Resistência à Tração
3.
AAPS PharmSciTech ; 22(5): 196, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34184149

RESUMO

In a formulation, traces of peroxides in copovidone can impact the stability of drug substances that are prone to oxidation. The present study aimed to investigate the impact of peroxides in novel Plasdone™ S630 Ultra and compare it with regular Plasdone™ S630 on the oxidative degradation of quetiapine fumarate amorphous solid dispersions prepared via hot-melt extrusion technique. The miscibility of copovidones with drug was determined using the Hansen solubility parameter, and the results indicated a miscible drug-polymer system. Melt viscosity as a function of temperature was determined for the drug-polymer physical mixture to identify the suitable hot-melt extrusion processing temperature. The binary drug and polymer (30:70 weight ratio) amorphous solid dispersions were prepared at a processing temperature of 160°C. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies of amorphous solid dispersions revealed the formation of a single-phase amorphous system with intermolecular hydrogen bonding between the drug and polymer. The milled extrudates were compressed into tablets by using extragranular components and evaluated for tabletability. Stability studies of the milled extrudates and tablet formulations were performed to monitor the oxidative degradation impurity (N-oxide). The N-oxide impurity levels in the quetiapine fumarate - Plasdone™ S630 Ultra milled extrudates and tablet formulations were reduced by 2- and 3-folds, respectively, compared to those in quetiapine fumarate - Plasdone™ S630. The reduced oxidative degradation and improved hot-melt extrusion processability of Plasdone™ S630 Ultra make it a better choice for oxidation-labile drugs over Plasdone™ S630 copovidone.


Assuntos
Tecnologia de Extrusão por Fusão a Quente/métodos , Excipientes Farmacêuticos/síntese química , Povidona/síntese química , Pirrolidinas/síntese química , Fumarato de Quetiapina/síntese química , Compostos de Vinila/síntese química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Temperatura Alta , Oxirredução , Excipientes Farmacêuticos/farmacocinética , Povidona/farmacocinética , Pirrolidinas/farmacocinética , Fumarato de Quetiapina/farmacocinética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Compostos de Vinila/farmacocinética
4.
ACS Appl Mater Interfaces ; 12(51): 56792-56804, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33306342

RESUMO

Radionuclide-functionalized drug delivery vehicles capable of being imaged via positron emission tomography (PET) are of increasing interest in the biomedical field as they can reveal the in vivo behavior of encapsulated therapeutics with high sensitivity. However, the majority of current PET-guided theranostic agents suffer from poor retention of radiometal over time, low drug loading capacities, and time-limited PET imaging capability. To overcome these challenges, we have developed hollow microcapsules with a thin (<100 nm) multilayer shell as advanced theranostic delivery systems for multiday PET tracking in vivo. The 3 µm capsules were fabricated via the aqueous multilayer assembly of a natural antioxidant, tannic acid (TA), and a poly(N-vinylpyrrolidone) (PVPON) copolymer containing monomer units functionalized with deferoxamine (DFO) to chelate the 89Zr radionuclide, which has a half-life of 3.3 days. We have found using radiochromatography that (TA/PVPON-DFO)6 capsules retained on average 17% more 89Zr than their (TA/PVPON)6 counterparts, which suggests that the covalent attachment of the DFO to PVPON provides stable 89Zr chelation. In vivo PET imaging studies performed in mice demonstrated that excellent stability and imaging contrast were still present 7 days postinjection. Animal biodistribution analyses showed that capsules primarily accumulated in the spleen, liver, and lungs with negligible accumulation in the femur, with the latter confirming the stable binding of the radiotracer to the capsule walls. The application of therapeutic ultrasound (US) (60 s of 20 kHz US at 120 W cm-2) to Zr-functionalized capsules could release the hydrophilic anticancer drug doxorubicin from the capsules in the therapeutic amounts. Polymeric capsules with the capability of extended in vivo PET-based tracking and US-induced drug release provide an advanced platform for development of precision-targeted therapeutic carriers and could aid in the development of more effective drug delivery systems.


Assuntos
Antineoplásicos/uso terapêutico , Quelantes/química , Meios de Contraste/química , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Animais , Cápsulas , Quelantes/farmacocinética , Meios de Contraste/farmacocinética , Desferroxamina/química , Desferroxamina/farmacocinética , Portadores de Fármacos/farmacocinética , Feminino , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons/métodos , Povidona/química , Povidona/farmacocinética , Medicina de Precisão/métodos , Radioisótopos/química , Taninos/química , Taninos/farmacocinética , Ondas Ultrassônicas , Zircônio/química
5.
Drug Deliv ; 27(1): 642-651, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32329377

RESUMO

Sinomenine (SIN) is an anti-inflammatory alkaloid derived from Sinomenium acutum, and the products sinomenine hydrochloride (SH) tablets and injections have been marketed in China to treat rheumatoid arthritis (RA). Oral administration of SH has shortcomings of gastrointestinal irritation and low bioavailability. The injection may require professional training and higher cost. It is of interest to develop an alternative form that is easier to administer and avoids the first-pass metabolism. In this study, SH-loaded dissolving microneedles (SH-MN) were fabricated using polyvinyl pyrrolidone and chondroitin sulfate with a casting method. In percutaneous permeation studies of In vitro, the cumulative permeation and permeation rate of SH-MN were 5.31 and 5.06 times higher than that of SH-gel (SH-G). In percutaneous pharmacokinetic studies, the values of the area under the curve after administration of SH-MN in the skin and blood were 1.43- and 1.63-fold higher than that of SH-G, respectively. In percutaneous absorption studies, SH-MN could absorb into tissue fluid; and dissolve after skin penetration. The drug was released along the channel and spread to surrounding skin tissue. After 4 h, the needle tip was almost completely dissolved, and the drug could penetrate to a depth of 200 µm under the skin. These results demonstrate that the SH-MN is an effective, safe, and simple strategy for transdermal SH delivery.


Assuntos
Antirreumáticos/administração & dosagem , Antirreumáticos/farmacocinética , Morfinanos/administração & dosagem , Morfinanos/farmacocinética , Povidona/administração & dosagem , Administração Cutânea , Animais , Sulfatos de Condroitina/administração & dosagem , Sulfatos de Condroitina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Agulhas , Permeabilidade , Povidona/farmacocinética , Ratos , Ratos Sprague-Dawley , Pele/metabolismo , Absorção Cutânea
6.
Drug Dev Ind Pharm ; 46(4): 606-620, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32204609

RESUMO

Soluble microneedles (MNs) of four different hydrophilic polymers namely sodium carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP) K30, PVP K90 and sodium hyaluronate (HU) were fabricated by mold casting technique. When exposed to gamma radiation, a dose of 25 kilogray (kGy) was found to render the microneedle (MN) sterile. However, CMC was found to form MNs with poor mechanical properties, whereas PVP K30 MNs were drastically deformed upon exposure to applied dose as observed in bright field microscopy. Scanning electron microscopy (SEM) revealed that morphology of PVP K90 and HU MNs were not significantly affected at the applied dose. The appearances of characteristic peaks of irradiated MNs of PVP K90 and HU in Fourier-transform infrared spectra suggested structural integrity of the polymers on irradiation. Differential scanning calorimetry (DSC) indicated gamma irradiation failed to alter the glass transition temperature and thus mechanical properties of PVP K90 MNs. However, DSC and Powder X-ray Diffraction (PXRD) conclusively indicated that the degree in crystallinity of HU was substantially reduced on irradiation. In vitro dissolution profiles of sterile PVP K90 and HU MNs were similar to un-irradiated MNs with a similarity factor (f2) of 64 and 54, respectively. In vivo dissolution studies in human subjects indicated that sterile MNs of PVP K90 and HU exhibited dissolution of 78.45 ± 1.09 and 78.57 ± 0.70%, respectively, after 20 min. The studies suggested that PVP K90 and HU could be suitable polymers to fabricate soluble MNs as the structural, morphological, microstructural and dissolution properties remained unaltered post γ sterilization.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Raios gama/efeitos adversos , Polímeros/efeitos da radiação , Esterilização/métodos , Adesivo Transdérmico , Varredura Diferencial de Calorimetria , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/farmacocinética , Carboximetilcelulose Sódica/efeitos da radiação , Liberação Controlada de Fármacos/efeitos da radiação , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Ácido Hialurônico/efeitos da radiação , Interações Hidrofóbicas e Hidrofílicas/efeitos da radiação , Polímeros/química , Polímeros/farmacocinética , Povidona/análogos & derivados , Povidona/química , Povidona/farmacocinética , Povidona/efeitos da radiação , Solubilidade , Difração de Raios X
7.
Int J Pharm ; 578: 119043, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31962190

RESUMO

This study aimed to develop an evaluation approach for supersaturation by employing an in vitro bio-mimicking apparatus designed to predict in vivo performance. The Biphasic Gastrointestinal Simulator (BGIS) is composed of three chambers with absorption phases that represent the stomach, duodenum, and jejunum, respectively. The concentration of apatinib in each chamber was detected by fiber optical probes in situ. The dissolution data and the pharmacokinetic data were correlated by GastroplusTM. The precipitates were characterized by polarizing microscope, Scanning Electron Microscopy, Powder X-ray diffraction and Differential scanning calorimetry. According to the results, Vinylpyrrolidone-vinyl acetate copolymer (CoPVP) prolonged supersaturation by improving solubility and inhibiting crystallization, while Hydroxypropyl methylcellulose (HPMC) prolonged supersaturation by inhibiting crystallization alone. Furthermore, a predictive in vitro-in vivo correlation was established, which confirmed the anti-precipitation effect of CoPVP and HPMC on in vitro performance and in vivo behavior. In conclusion, CoPVP and HPMC increased and prolonged the supersaturation of apatinib, and then improved its bioavailability. Moreover, BGIS was demonstrated to be a significant approach for simulating in vivo conditions for in vitro-in vivo correlation in a supersaturation study. This study presents a promising approach for evaluating supersaturation, screening precipitation inhibitors in vitro, and predicting their performances in vivo.


Assuntos
Mucosa Gástrica/metabolismo , Derivados da Hipromelose , Absorção Intestinal , Povidona/análogos & derivados , Administração Oral , Animais , Disponibilidade Biológica , Duodeno , Derivados da Hipromelose/administração & dosagem , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacocinética , Jejuno , Masculino , Camundongos Endogâmicos C57BL , Povidona/administração & dosagem , Povidona/química , Povidona/farmacocinética , Piridinas/administração & dosagem , Piridinas/sangue , Piridinas/química , Piridinas/farmacocinética , Estômago
8.
Int J Pharm ; 566: 299-306, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31150773

RESUMO

Vitamin B12 plays an essential role in one-carbon metabolism in the human body. A deficiency in this vitamin can lead to severe haematopoietic and neuropsychiatric disorders and is currently treated by oral or parenteral administration of exogenous vitamin. Unfortunately, the absorption of orally taken vitamin B12 is low and highly variable, while injections can cause pain and anxiety. Thus, an efficient alternative drug delivery system for overcoming these shortcomings is highly desirable. Novel polymeric microneedle (MN) arrays have the potential for minimally invasive transdermal treatment of vitamin B12 deficiency. Bilayer dissolving MN arrays (19 × 19 needles, 600 µm height) containing 135 µg vitamin B12 were cast using two different aqueous polymer blends. MN arrays showed sufficient mechanical strength for skin insertion, dissolved rapidly and delivered 72.92% of their drug load in vitro over 5 h. Ultimately, the potential of delivering a therapeutically relevant dose of vitamin B12 transdermally was demonstrated in vivo in Sprague-Dawley rats by comparison to subcutaneous injections. Maximum plasma levels of 0.37 µg/mL occurred 30 min post-MN application, highlighting the ability of fabricated MN arrays to rapidly deliver vitamin B12 transdermally.


Assuntos
Sistemas de Liberação de Medicamentos , Microinjeções , Agulhas , Vitamina B 12/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Administração Cutânea , Animais , Feminino , Povidona/administração & dosagem , Povidona/farmacocinética , Ratos Sprague-Dawley , Pele/metabolismo , Absorção Cutânea , Suínos , Vitamina B 12/sangue , Vitamina B 12/farmacocinética , Complexo Vitamínico B/sangue , Complexo Vitamínico B/farmacocinética
9.
Int J Pharm ; 566: 229-238, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31136778

RESUMO

Sorafenib, a potent anticancer drug, has low absorption in the gastrointestinal tract due to its poor aqueous solubility. The main purpose of this investigation was to design sorafenib nanoparticle using a newly developed technique, nanoparticulation using fat and supercritical fluid (NUFS™) to improve the absorption of sorafenib. The quality by design (QbD) tool was adopted to define the optimal formulation variables: hydroxypropyl methyl cellulose (HPMC), polyvinyl pyrrolidone K30 (PVP), and poloxamer. The studied response variables were particle size of nanoparticle, dissolution (5, 60, and 180 min), drug concentration time profile of nanoparticle formulations, and maximum drug concentration. The result of particle size revealed that an increase in concentration of poloxamer and HPMC decreased the particle size of nanoparticles (p < 0.05). Likewise, the concentration of drug release at different time point (5, 60, and 180 min) showed HPMC and poloxamer had positive effects on drug dissolution while PVP had negative effects on it. The design space was built in accordance with the particle size of nanoparticle (target < 500 nm) and dissolution of sorafenib (target > 7 µm/mL), following failure probability analysis using Monte Carlo simulations. In vivo pharmacokinetics studies in beagle dogs demonstrated that optimized formulation of sorafenib (F3 and F4 tablets) exhibited higher blood drug profiles indicating better absorption compared to the reference tablet (Nexavar®). In conclusion, this study showed the importance of systematic formulation design for understanding the effect of formulation variables on the characteristics of nanoparticles of the poorly soluble drug.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Sorafenibe/administração & dosagem , Administração Oral , Animais , Antineoplásicos/sangue , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Cães , Desenho de Fármacos , Liberação Controlada de Fármacos , Derivados da Hipromelose/administração & dosagem , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacocinética , Masculino , Nanopartículas/química , Tamanho da Partícula , Poloxâmero/administração & dosagem , Poloxâmero/química , Poloxâmero/farmacocinética , Povidona/administração & dosagem , Povidona/química , Povidona/farmacocinética , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Sorafenibe/sangue , Sorafenibe/química , Sorafenibe/farmacocinética
10.
AAPS PharmSciTech ; 20(5): 193, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31115746

RESUMO

Three polymers, polyvinylpyrrolidone (PVP K30), hydroxypropyl methyl cellulose (HPMC E5), and Kollidone VA64 (PVP-VA64), have been assessed for their impact on the nucleation and crystal growth of indomethacin (IND) from supersaturation solutions. PVP was the most effective inhibitor on IND nucleation among three polymers, but the effect of three polymers on inhibiting nucleation is quite limited when the degree of supersaturation S is higher than about 9. Analysis of the nucleation data by classical nucleation theory model generally afforded good data fitting with the model and showed that addition of polymers may affect the crystal/solution interfacial free energy γ and also the pre-exponential kinetic factor. PVP-VA showed better inhibitory effects on crystal growth of IND when the polymer concentration is high (0.1%, w/w) as reflected by the crystal growth inhibition factor R, and PVP exhibited relatively stronger effects on inhibiting crystal growth at low polymer concentrations (0.005%, w/w). The crystal growth inhibitory effect of polymers should be attributable to the retardation of the surface integration of the drug, and such effect should also be polymer and drug dependent. The enhancement of supersaturation level of IND should be attributable to both nucleation and crystal growth inhibition by polymers. The nucleation and crystal growth rate of α-polymorph IND is higher than that of γ-polymorph, and α-polymorph is the predominant form appeared in supersaturated solutions. A rational selection of the appropriate polymer for specific drug is critical for developing supersaturated drug delivery formulations.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Indometacina/síntese química , Polímeros/síntese química , Anti-Inflamatórios não Esteroides/farmacocinética , Cristalização/métodos , Composição de Medicamentos , Derivados da Hipromelose/síntese química , Derivados da Hipromelose/farmacocinética , Indometacina/farmacocinética , Soluções Farmacêuticas/síntese química , Soluções Farmacêuticas/farmacocinética , Polímeros/farmacocinética , Povidona/síntese química , Povidona/farmacocinética , Solubilidade
11.
Nanoscale ; 11(11): 4767-4780, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30816394

RESUMO

Nano-MoS2 has been extensively investigated in materials science and biomedicine. However, the effects of different methods of exposure on their translocation, biosafety, and biotransformation-related degradability remain unclear. In this study, we combined the advantages of synchrotron radiation (SR) X-ray absorption near-edge structure (XANES) and high-resolution single-cell SR transmission X-ray microscopy (SR-TXM) with traditional analytical techniques to investigate translocation, precise degraded species/ratio, and correlation between the degradation and toxicity levels of polyvinylpyrrolidone-modified 2H-phase MoS2 nanosheets (MoS2-PVP NSs). These NSs demonstrated different biodegradability levels in biomicroenvironments with H2O2, catalase, and human myeloperoxidase (hMPO) (H2O2 < catalase < hMPO). The effects of NSs and their biodegraded byproducts on cell viability and 3D translocation at the single-cell level were also assessed. Toxicity and translocation in mice via intravenous (i.v.), intraperitoneal (i.p.), and intragastric (i.g.) administration routes guided by fluorescence (FL) imaging were investigated within the tested dosage. After i.g. administration, NSs accumulated in the gastrointestinal organs and were excreted from feces within 48 h. After i.v. injection, NSs showed noticeable clearance due to their decreased accumulation in the liver and spleen within 30 days when compared with that in the i.p. group, which exhibited slight accumulation in the spleen. This work paves the way for understanding the biological behaviors of nano-MoS2 using SR techniques that provide more opportunities for future applications.


Assuntos
Dissulfetos/farmacocinética , Dissulfetos/toxicidade , Molibdênio/farmacocinética , Molibdênio/toxicidade , Nanoestruturas/toxicidade , Povidona/farmacocinética , Povidona/toxicidade , Animais , Biotransformação , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/administração & dosagem , Dissulfetos/química , Vias de Administração de Medicamentos , Masculino , Camundongos Endogâmicos BALB C , Molibdênio/administração & dosagem , Molibdênio/química , Nanomedicina , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Povidona/administração & dosagem , Povidona/química , Distribuição Tecidual
12.
AAPS PharmSciTech ; 19(7): 3040-3047, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30084069

RESUMO

Surfactants are commonly incorporated in conventional and enabled formulations to enhance the rate and extent of dissolution of drugs exhibiting poor aqueous solubility. Generally the interactions between the drug and excipients are systematically evaluated, however, limited attention is paid towards understanding the effect of interaction between functional excipients and its impact on the performance of the product. In the current study, the effect of potential interaction between a nonionic polymer binder, povidone, and anionic surfactant docusate sodium on the rate and extent of dissolution of a drug exhibiting poor aqueous solubility was evaluated by varying the proportions of the binder and the surfactant in the formulation. Potential complexation or aggregation between the excipients was investigated by fluorescence spectroscopy and zeta potential measurements of the aqueous solutions of docusate sodium, povidone, and sodium lauryl sulfate (SLS). The rate and extent of drug release was found to decrease with an increase in the proportion of docusate sodium and povidone in the formulations. Difference in magnitude of surface charge (zeta potential) of docusate sodium in presence of povidone indicated potential surfactant-polymer aggregation during dissolution which was corroborated by CAC/CMC values derived from fluorescence spectroscopic measurements. The decrease in the rate of drug release was attributed to an increase in the viscosity of the microenvironment of dissolving particles due to the interaction of docusate sodium and povidone in the aqueous media during dissolution. These findings highlight the importance of systematic evaluation of the interaction of ionic surfactants with the polymeric components within the formulation to ensure the appropriate selection of the type of surfactant as well as its proportion in the formulation.


Assuntos
Liberação Controlada de Fármacos , Polímeros/química , Tensoativos/química , Interações Medicamentosas/fisiologia , Liberação Controlada de Fármacos/fisiologia , Concentração Osmolar , Polímeros/farmacocinética , Povidona/química , Povidona/farmacocinética , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/farmacocinética , Solubilidade , Tensoativos/farmacocinética , Água/química
13.
Biomater Sci ; 6(10): 2566-2570, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30106396

RESUMO

We studied the role of the additives trehalose and poly(vinyl pyrrolidone) in the physical and pharmacokinetic properties of peptide drug incorporated hyaluronic acid microneedles. Poly(vinyl pyrrolidone) increases the mechanical strength of microneedles and ameliorates drug bioavailability in vivo, suggesting that poly(vinyl pyrrolidone) can be a promising additive in the fabrication of peptide drug-encapsulated fully dissolving microneedles.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Hialurônico/administração & dosagem , Agulhas , Hormônio Paratireóideo/administração & dosagem , Povidona/administração & dosagem , Trealose/administração & dosagem , Animais , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Microinjeções , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/química , Hormônio Paratireóideo/farmacocinética , Povidona/química , Povidona/farmacocinética , Ratos , Trealose/química , Trealose/farmacocinética
14.
Int J Pharm ; 548(1): 104-112, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29936200

RESUMO

d-ß-hydroxybutyrate and melatonin (BHB/MLT) infusion improves survival in hemorrhagic shock models. The original BHB/MLT formulation contains dimethyl sulfoxide (DMSO) to increase melatonin solubility. We formulated BHB/MLT solutions wherein DMSO was replaced either with 10% polyvinylpyrrolidone (BHB/MLT/PVP) or with 5% hydroxypropyl-ß-cyclodextrin/2.5% PVP/2.5% polyethylene glycol 400 (BHB/MLT/CD). Safety and efficacy of the new and the original BHB/MLT solution were tested in a lethal rat hemorrhagic shock model, with seven groups: 1) sham, 2) shock, untreated, 3) shock, lactated Ringer's solution (LR), 4) shock, 4 M BHB/MLT/DMSO, 5) shock, 2 M BHB/MLT/DMSO, 6) shock, BHB/MLT/PVP and 7) shock, BHB/MLT/CD. BHB/MLT/DMSO was given at full strength and 1:1 dilution to match the concentration of the novel formulations. Rats were anesthetized, instrumented, and 40% of the total blood volume was withdrawn in three steps, followed by four-hour long shock. Treatment boluses were infused half-way throughout hemorrhage. Survival was highest in BHB/MLT/CD-treated rats (8/10), followed by the BHB/MLT/PVP (6/10), 4 M BHB/MLT/DMSO (5/10) or 2 M BHB/MLT/DMSO (5/10), LR (3/10) and the untreated group (0/11). Survival did not differ significantly between BHB/MLT groups (p > 0.05), but was significantly higher in BHB/MLT/CD than in LR-treated animals (p = 0.018). BHB/MLT/PVP and BHB/MLT/CD constitute promising candidates for clinical hemorrhagic shock treatment.


Assuntos
Ácido 3-Hidroxibutírico/administração & dosagem , Melatonina/administração & dosagem , Choque Hemorrágico/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/farmacocinética , Animais , Dimetil Sulfóxido/administração & dosagem , Dimetil Sulfóxido/química , Dimetil Sulfóxido/farmacocinética , Modelos Animais de Doenças , Masculino , Melatonina/química , Melatonina/farmacocinética , Povidona/administração & dosagem , Povidona/química , Povidona/farmacocinética , Ratos Sprague-Dawley , Choque Hemorrágico/sangue , Choque Hemorrágico/fisiopatologia
15.
J Pharm Sci ; 107(9): 2428-2438, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859957

RESUMO

Poly(2-ethyl-2-oxazoline) (PEOX), a biocompatible polymer considered as pseudopolypeptide, was introduced as a potential alternative to the commonly used polymer, poly(vinylpyrrolidone) (PVP) for the preparation of solid dispersion with a poorly soluble drug. Glipizide (GPZ), a Biopharmaceutical Classification System class II model drug, was selected for solubility and dissolution rate study. GPZ-polymer solid dispersions and physical mixtures were characterized and investigated by X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy, and FTIR spectroscopy. The impact of polymers on crystal nucleation kinetics was studied, and PEOX exhibited strong inhibitory effect compared with PVP. Solubility and dissolution behavior of the prepared solid dispersions and their physical blends were in vitro examined and evaluated. A significant enhancement in GPZ solubility was obtained with PEOX compared with the pure drug and solid dispersion with PVP. A big improvement in the intrinsic dissolution rate (45 times) and dissolved amount of GPZ (58 times) was achieved with PEOX in fasted state simulated intestinal fluid, against comparable enhancement observed with PEOX and PVP in phosphate buffer at pH 6.8. Lower molecular weight of PEOX-5K (5000 g/mol) was found to be superior to higher molecular weight PEOX-50K (50,000 g/mol) in the improvement of dissolution behavior. The findings of this study with GPZ as a model drug introduce lower molecular weight PEOX as a promising polymeric carrier toward better oral bioavailability of poorly soluble drugs.


Assuntos
Química Farmacêutica/métodos , Portadores de Fármacos/química , Excipientes Farmacêuticos/química , Poliaminas/química , Povidona/química , Varredura Diferencial de Calorimetria/métodos , Portadores de Fármacos/análise , Portadores de Fármacos/farmacocinética , Excipientes Farmacêuticos/análise , Excipientes Farmacêuticos/farmacocinética , Poliaminas/análise , Poliaminas/farmacocinética , Povidona/análise , Povidona/farmacocinética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
16.
J Pharm Sci ; 107(9): 2385-2398, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29752945

RESUMO

Solid dispersions of spironolactone with Soluplus® and polyvinylpyrrolidone were prepared by spray drying according to a mixture experimental design and evaluated for moisture content, particle size, drug solubility, crystallinity (powder X-ray diffraction and differential scanning calorimetry), and physicochemical interactions (Fourier-transform infrared spectroscopy, Raman). In vitro dissolution was evaluated for the spray dried product itself and after compression into tablets, and prediction models were derived using multiple linear regression analysis. The spray dried products consisted of amorphous drug, indicated by the absence of crystalline powder X-ray diffraction peaks. Amorphization and interactions impacted changes in the Fourier-transform infrared spectroscopy spectra in the ranges 2900-3000 cm-1 (C-H) and 1600-1800 cm-1 (C=O) and caused merging at 1690 cm-1 (C=O of lactone) and 1670 cm-1 (C=O of thioacetyl group). In the Raman spectra, amorphization and interactions resulted in disappearance of peak at 1690 cm-1 (C=O) and merging of peaks at 582 and 600 cm-1 (C-S). Hydrogen bonding between the thioacetyl group of the drug with the hydroxyl groups of Soluplus® caused marked suppression of the peak at 1190 cm-1 (R-C(=O)-S vibration). Amorphization and interactions resulted in improved solubility and dissolution which was greatest for drug/Soluplus® ratio 1:4 and was also demonstrated in the corresponding tablets.


Assuntos
Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Polietilenoglicóis/síntese química , Polivinil/síntese química , Povidona/síntese química , Espironolactona/síntese química , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes Farmacêuticos/síntese química , Excipientes Farmacêuticos/farmacocinética , Polietilenoglicóis/farmacocinética , Polivinil/farmacocinética , Povidona/farmacocinética , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espironolactona/farmacocinética , Comprimidos , Difração de Raios X/métodos
17.
Pharm Res ; 35(4): 79, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29492686

RESUMO

PURPOSE: To understand hydrolysis and alcoholysis of polyvinylpyrrolidone-co-vinylacetate (PVPVA) during formulation and storage, elucidate the reaction mechanism, establish an intrinsic kinetic model, and apply this model coupled with GastroPlus™ modeling to predict the amount of PVPVA degradation in vivo. METHODS: The experimental approach includes the detection of the polymer reaction by solution nuclear magnetic resonance (NMR) and the measurement of reaction product concentration via gas chromatography (GC). The theoretical approach includes the establishment of the intrinsic kinetic model and the application of GastroPlus™ to predict the degree of PVPVA degradation. RESULTS: The kinetic model established is a first order reaction between PVPVA and 2-propanol (IPA) or water under an acidic condition. The application of this kinetic model shows that between 1.7 and 6.8 mg of degradant is formed in the GI tract for a 850 mg dose of PVPVA. CONCLUSIONS: The results from this application provide valuable input for process development and the risk analysis of the degradation of PVPVA.


Assuntos
Excipientes/química , Modelos Biológicos , Modelos Químicos , Povidona/análogos & derivados , 2-Propanol/química , Simulação por Computador , Composição de Medicamentos , Armazenamento de Medicamentos , Excipientes/farmacocinética , Estudos de Viabilidade , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Mucosa Intestinal/metabolismo , Espectroscopia de Ressonância Magnética , Povidona/química , Povidona/farmacocinética , Software , Água/química
18.
Parasitol Res ; 117(3): 705-712, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29327323

RESUMO

Albendazole (ABZ), a benzimidazole widely used to control gastrointestinal parasites, is poorly soluble in water, resulting in variable and incomplete bioavailability. This has favored the appearance ABZ-resistant nematodes and, consequently, an increase in its clinical ineffectiveness. Among the pharmaceutical techniques developed to increase drug efficacy, cyclodextrins (CDs) and other polymers have been extensively used with water-insoluble pharmaceutical drugs to increase their solubility and availability. Our objective was to prepare ABZ formulations, including ß-cyclodextrin (ßCD) or hydroxypropyl-ß-cyclodextrin (HPßCD), associated or not to the water-soluble polymer polyvinylpyrrolidone (PVP). These formulations had their solubility and anthelmintic effect both evaluated in vitro. Also, their anthelmintic efficacy was evaluated in lambs naturally infected with gastrointestinal nematodes (GIN) through the fecal egg count (FEC) reduction test. In vitro, the complex ABZ/HPßCD had higher solubility than ABZ/ßCD. The addition of PVP to the complexes increased solubility and dissolution rates more effectively for ABZ/HPßCD than for ABZ/ßCD. In vivo, 48 lambs naturally infected with GIN were divided into six experimental groups: control, ABZ, ABZ/ßCD, ABZ/ßCD-PVP, ABZ/HPßCD, and ABZ/HPßCD-PVP. Each treated animal received 10 mg/kg of body weight (based on the ABZ dose) for three consecutive days. After 10 days of the last administered dose, treatment efficacy was calculated. The efficacy values were as follows: ABZ (70.33%), ABZ/ßCD (85.33%), ABZ/ßCD-PVP (82.86%), ABZ/HPßCD (78.37%), and ABZ/HPßCD-PVP (43.79%). In vitro, ABZ/HPßCD and ABZ/HPßCD-PVP had high solubility and dissolution rates. In vivo, although the efficacies of ABZ/ßCD, ABZ/ßCD-PVP, and ABZ/HPßCD increased slightly when compared to pure ABZ, this increase was not significant (P > 0.05).


Assuntos
Albendazol/farmacocinética , Antiparasitários/farmacocinética , Ciclodextrinas/farmacocinética , Nanopartículas/química , Povidona/farmacocinética , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Albendazol/química , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacocinética , Antiparasitários/química , Disponibilidade Biológica , Ciclodextrinas/química , Composição de Medicamentos , Enteropatias Parasitárias/tratamento farmacológico , Enteropatias Parasitárias/veterinária , Masculino , Nematoides , Infecções por Nematoides/tratamento farmacológico , Infecções por Nematoides/veterinária , Povidona/química , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/parasitologia , Solubilidade , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacocinética
19.
J Control Release ; 270: 23-36, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29196041

RESUMO

Recent evidences suggest that insulin delivery to the brain can be an important pharmacological therapy for some neurodegenerative pathologies, including Alzheimer disease (AD). Due to the presence of the Blood Brain Barrier, a suitable carrier and an appropriate route of administration are required to increase the efficacy and safety of the treatment. Here, poly(N-vinyl pyrrolidone)-based nanogels (NG), synthetized by e-beam irradiation, alone and with covalently attached insulin (NG-In) were characterized for biocompatibility and brain delivery features in a mouse model. Preliminarily, the biodistribution of the "empty" nanocarrier after intraperitoneal (i.p.) injection was investigated by using a fluorescent-labeled NG. By fluorescence spectroscopy, SEM and dynamic light scattering analyses we established that urine clearance occurs in 24h. Histological liver and kidneys inspections indicated that no morphological alterations of tissues occurred and no immunological response was activated after NG injection. Furthermore, after administration of the insulin-conjugated nanogels (NG-In) through the intranasal route (i.n.) no alteration or immunogenic response of the nasal mucosa was observed, suggesting that the formulation is well tolerated in mouse. Moreover, an enhancement of NG-In delivery to the different brain areas and of its biological activity, measured as Akt activation levels, with reference to free insulin administration was demonstrated. Taken together, these results indicate that the synthesized NG-In enhances brain insulin delivery upon i.n. administration and strongly encourage its further evaluation as therapeutic agent against some neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Portadores de Fármacos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Acrilatos/administração & dosagem , Acrilatos/farmacocinética , Administração Intranasal , Animais , Portadores de Fármacos/farmacocinética , Géis , Hipoglicemiantes/farmacocinética , Insulina/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Mucosa Nasal/metabolismo , Povidona/administração & dosagem , Povidona/farmacocinética
20.
Biomacromolecules ; 18(8): 2552-2563, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28700211

RESUMO

We report a versatile synthesis for polyphenolic polymersomes of controlled submicron (<500 nm) size for intracellular delivery of high and low molecular weight compounds. The nanoparticles are synthesized by stabilizing the vesicular morphology of thermally responsive poly(N-vinylcaprolactam)n-b-poly(N-vinylpyrrolidone)m (PVCLn-PVPONm) diblock copolymers with tannic acid (TA), a hydrolyzable polyphenol, via hydrogen bonding at a temperature above the copolymer's lower critical solution temperature (LCST). The PVCL179-PVPONm diblock copolymers are produced by controlled reversible addition-fragmentation chain transfer (RAFT) polymerization of PVPON using PVCL as a macro-chain transfer agent. The size of the TA-locked (PVCL179-PVPONm) polymersomes at room temperature and upon temperature variations are controlled by the PVPON chain length and TA:PVPON molar unit ratio. The particle diameter decreases from 1000 to 950, 770, and 250 nm with increasing PVPON chain length (m = 107, 166, 205, 234), and it further decreases to 710, 460, 290, and 190 nm, respectively, upon hydrogen bonding with TA at 50 °C. Lowering the solution temperature to 25 °C results in a slight size increase for vesicles with longer PVPON. We also show that TA-locked polymersomes can encapsulate and store the anticancer drug doxorubicin (DOX) and higher molecular weight fluorescein isothiocyanate (FITC)-dextran in a physiologically relevant pH and temperature range. Encapsulated DOX is released in the nuclei of human alveolar adenocarcinoma tumor cells after 6 h incubation via biodegradation of the TA shell with the cytotoxicity of DOX-loaded polymersomes being concentration-dependent. Our approach offers biocompatible and intracellular degradable nanovesicles of controllable size for delivery of a variety of encapsulated materials. Considering the particle monodispersity, high loading capacity, and a facile two-step aqueous assembly based on the reversible temperature-responsiveness of PVCL, these polymeric vesicles have significant potential as novel drug nanocarriers and provide a new perspective for fundamental studies on thermo-triggered polymer assemblies in solutions.


Assuntos
Adenocarcinoma Bronquioloalveolar/tratamento farmacológico , Antineoplásicos , Caprolactama/análogos & derivados , Doxorrubicina , Portadores de Fármacos , Neoplasias Pulmonares/tratamento farmacológico , Polímeros , Polifenóis , Povidona , Células A549 , Adenocarcinoma Bronquioloalveolar/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Caprolactama/química , Caprolactama/farmacocinética , Caprolactama/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Temperatura Alta , Humanos , Neoplasias Pulmonares/metabolismo , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacologia , Polifenóis/química , Polifenóis/farmacocinética , Polifenóis/farmacologia , Povidona/química , Povidona/farmacocinética , Povidona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...