Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chromosoma ; 122(1-2): 47-53, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23412083

RESUMO

The CMG (Cdc45-MCM-GINS) complex is the eukaryotic replicative helicase, the enzyme that unwinds double-stranded DNA at replication forks. All three components of the CMG complex are essential for its function, but only in the case of MCM, the molecular motor that harnesses the energy of ATP hydrolysis to catalyse strand separation, is that function clear. Here, we review current knowledge of the three-dimensional structure of the CMG complex and its components and highlight recent advances in our understanding of its evolutionary origins.


Assuntos
Proteínas de Ciclo Celular/química , DNA Helicases/química , Replicação do DNA/genética , Proteínas de Ligação a DNA/química , Proteína 1 de Manutenção de Minicromossomo/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Evolução Molecular , Humanos , Proteína 1 de Manutenção de Minicromossomo/genética , Conformação Proteica
2.
Extremophiles ; 15(2): 245-52, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21274582

RESUMO

Minichromosome maintenance (MCM) helicases are thought to function as the replicative helicases in archaea and eukarya, unwinding the duplex DNA in the front of the replication fork. The archaeal MCM helicase can be divided into three parts, the N-terminal, catalytic, and C-terminal regions. The N-terminal part of the protein is divided into three domains, A, B, and C, and was shown to be involved in protein multimerization and binding to single- and double-stranded DNA. Two Asp residues found in domain C are conserved among MCM proteins from different archaea. These residues are located in a loop at the interface with domain A. Mutations of these residues in the Methanothermobacter thermautotrophicus MCM protein, Asp202 and Asp203, to Asn result in a significant reduction in the ability of the enzyme to bind DNA and in lower thermal stability. However, the mutant proteins retained helicase and ATPase activities. Further investigation of the DNA binding revealed that the presence of ATP rescues the DNA binding deficiencies by these mutant proteins. Possible roles of these conserved residues in MCM function are discussed.


Assuntos
Ácido Aspártico/química , DNA Helicases/química , Methanobacteriaceae/enzimologia , Proteína 1 de Manutenção de Minicromossomo/química , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria/métodos , Cromatografia em Gel , Dicroísmo Circular/métodos , DNA/química , Análise Mutacional de DNA , DNA de Cadeia Simples/genética , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
3.
Crit Rev Biochem Mol Biol ; 45(3): 243-56, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20441442

RESUMO

The helicase function of the minichromosome maintenance protein (MCM) is essential for genomic DNA replication in archaea and eukaryotes. There has been rapid progress in studies of the structure and function of MCM proteins from different organisms, leading to better understanding of the MCM helicase mechanism. Because there are a number of excellent reviews on this topic, we will use this review to summarize some of the recent progress, with particular focus on the structural aspects of MCM and their implications for helicase function. Given the hexameric and double hexameric architecture observed by X-ray crystallography and electron microscopy of MCMs from archaeal and eukaryotic cells, we summarize and discuss possible unwinding modes by either a hexameric or a double hexameric helicase. Additionally, our recent crystal structure of a full length archaeal MCM has provided structural information on an intact, multi-domain MCM protein, which includes the salient features of four unusual beta-hairpins from each monomer, and the side channels of a hexamer/double hexamer. These new structural data enable a closer examination of the structural basis of the unwinding mechanisms by MCM.


Assuntos
Archaea/genética , Archaea/metabolismo , DNA Arqueal , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Sequência de Aminoácidos , Proteína 1 de Manutenção de Minicromossomo/química , Modelos Moleculares , Dados de Sequência Molecular
5.
Biochemistry ; 48(37): 8774-5, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19702328

RESUMO

Recent work has identified a "glutamate switch" in six of the seven clades of AAA+ ATPases. The glutamate switch acts to transduce information regarding substrate binding to the ATPase active site. We provide biochemical evidence that a highly conserved threonine residue acts as a glutamate switch in the replicative helicase, MCM, and, thus, reveal that the glutamate switch is a feature common to all seven AAA+ clades.


Assuntos
Proteínas Arqueais/química , DnaB Helicases/química , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Proteína 1 de Manutenção de Minicromossomo/química , Homologia Estrutural de Proteína , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico/genética , DnaB Helicases/genética , DnaB Helicases/metabolismo , Proteína 1 de Manutenção de Minicromossomo/genética , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Família Multigênica , Especificidade por Substrato/genética , Sulfolobus solfataricus/enzimologia , Treonina/química , Treonina/genética
7.
Nat Struct Mol Biol ; 12(9): 756-62, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16116441

RESUMO

The homomultimeric archaeal mini-chromosome maintenance (MCM) complex serves as a simple model for the analogous heterohexameric eukaryotic complex. Here we investigate the organization and orientation of the MCM complex of the hyperthermophilic archaeon Sulfolobus solfataricus (Sso) on model DNA substrates. Sso MCM binds as a hexamer and slides on the end of a 3'-extended single-stranded DNA tail of a Y-shaped substrate; binding is oriented so that the motor domain of the protein faces duplex DNA. Two candidate beta-hairpin motifs within the MCM monomer have partially redundant roles in DNA binding. Notably, however, conserved basic residues within these motifs have nonequivalent roles in the helicase activity of MCM. On the basis of these findings, we propose a model for the mechanism of the helicase activity of MCM and note parallels with SV40 T antigen.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Humanos , Proteína 1 de Manutenção de Minicromossomo/química , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Soluções/química , Sulfolobus solfataricus/química
8.
Cell Cycle ; 4(9): 1254-63, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16082227

RESUMO

Minichromosome maintenance (MCM) proteins form a complex and possess helicase activity to unwind the DNA duplex and establish a replication fork. To assure that origins only fire once per cell cycle, the MCM complex is removed from chromatin and inactivated as cells exit S phase. In this report, we demonstrate that CDK2 depletion in human cells leads to an overall phosphorylation defect at mitosis with increased rereplication, correlated with the accumulation of chromatin-bound MCM proteins. We show that CDK2 suppression results in decreased MCM4 phosphorylation at multiple serine and threonine sites. In addition, CDK2 inhibition induces an increase in chromatin-bound replication protein A (RPA) which should bind to single-stranded DNA regions, possibly establishing a replication intermediate that activates the ATR cascade. Finally, we observe that loss of CDK2 function in G1 delays replication initiation while it promotes rereplication in G2/M. Thus, by modulating the phospho-status of MCM4 and regulating origin firing, S phase CDK2 appears to be an integrated component of cellular machinery required for temporally controlling replication activity and maintaining genomic stability.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteína 1 de Manutenção de Minicromossomo/química , Proteína de Replicação A/química , Western Blotting , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Cromatina/química , DNA/química , Feminino , Fase G1 , Fase G2 , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Mitose , Nocodazol/farmacologia , Fosforilação , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Retroviridae/genética , Fase S , Serina/química , Treonina/química , Fatores de Tempo , Transfecção
9.
J Biol Chem ; 279(47): 49222-8, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15371413

RESUMO

Herein we report the identification of amino acids of the Sulfolobus solfataricus mini-chromosome maintenance (MCM)-like DNA helicase (SsoMCM), which are critical for DNA binding/remodeling. The crystallographic structure of the N-terminal portion (residues 2-286) of the Methanothermobacter thermoautotrophicum MCM protein revealed a dodecameric assembly with two hexameric rings in a head-to-head configuration and a positively charged central channel proposed to encircle DNA molecules. A structure-guided alignment of the M. thermoautotrophicum and S. solfataricus MCM sequences identified positively charged amino acids in SsoMCM that could point to the center of the channel. These residues (Lys-129, Lys-134, His-146, and Lys-194) were changed to alanine. The purified mutant proteins were all found to form homo-hexamers in solution and to retain full ATPase activity. K129A, H146A, and K194A SsoMCMs are unable to bind DNA either in single- or double-stranded form in band shift assays and do not display helicase activity. In contrast, the substitution of lysine 134 to alanine affects only binding to duplex DNA molecules, whereas it has no effect on binding to single-stranded DNA and on the DNA unwinding activity. These results have important implications for the understanding of the molecular mechanism of the MCM DNA helicase action.


Assuntos
DNA Helicases/química , DNA/química , Proteína 1 de Manutenção de Minicromossomo/química , Sulfolobus solfataricus/metabolismo , Adenosina Trifosfatases/química , Alanina/química , Sequência de Aminoácidos , Aminoácidos/química , Cromatografia , Cromatografia em Gel , Cristalografia por Raios X , Bases de Dados como Assunto , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Histidina/química , Lisina/química , Methanobacteriaceae/metabolismo , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
10.
Nucleic Acids Res ; 32(8): 2298-305, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15118075

RESUMO

The yeast Mcm1 protein is a founding member of the MADS-box family of transcription factors that is involved in the regulation of diverse sets of genes through interactions with distinct cofactor proteins. Mcm1 interacts with the Matalpha1 protein to activate the expression of the alpha-cell type-specific genes. To understand the requirement of the cofactor alpha1 for Mcm1-alpha1-dependent transcriptional activation we analyzed the recruitment of Mcm1 to the promoters of alpha-specific genes in vivo and found that Mcm1 is able to bind to the promoters of alpha-specific genes in the absence of alpha1. This suggests the function of alpha1 is more complex than simply recruiting Mcm1. Several MADS-box transcription factors, including Mcm1, induce DNA bending and there is evidence the proper bend may be required for transcriptional activation. We analyzed Mcm1-dependent bending of a Mcm1-alpha1 binding site in the presence and absence of alpha1 and found that Mcm1 alone shows a reduced DNA-bend at this site compared with other Mcm1 binding sites. However, the addition of alpha1 markedly increases the DNA-bend and we present evidence this bend is required for full transcriptional activation. These results support a model in which proper DNA-bending by the Mcm1-alpha1 complex is required for transcriptional activation.


Assuntos
DNA Fúngico/química , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Ativação Transcricional , Sequência de Bases , Sítios de Ligação , Sequência Consenso , DNA Fúngico/metabolismo , Substâncias Macromoleculares , Proteína 1 de Manutenção de Minicromossomo/química , Modelos Moleculares , Conformação de Ácido Nucleico , Elementos de Resposta
11.
Protein Sci ; 12(11): 2542-8, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14573865

RESUMO

A sequence in yeast MATalpha2/MCM1/DNA complex that folds into alpha-helix or beta-hairpin depending on the surroundings has been known as "chameleon" sequence. We obtained the free-energy landscape of this sequence by using a generalized-ensemble method, multicanonical molecular dynamics simulation, to sample the conformational space. The system was expressed with an all-atom model in explicit water, and the initial conformation for the simulation was a random one. The free-energy landscape demonstrated that this sequence inherently has an ability to form either alpha or beta structure: The conformational distribution in the landscape consisted of two alpha-helical clusters with different packing patterns of hydrophobic residues, and four beta-hairpin clusters with different strand-strand interaction patterns. Narrow pathways connecting the clusters were found, and analysis on the pathways showed that a compact structure formed at the N-terminal root of the chameleon sequence controls the cluster-cluster transitions. The free-energy landscape indicates that a small conditional change induces alpha-beta transitions. Additional unfolding simulations done with replacing amino acids showed that the chameleon sequence has an advantage to form an alpha-helix. Current study may be useful to understand the mechanism of diseases resulting from abnormal chain folding, such as amyloid disease.


Assuntos
Proteínas Fúngicas/química , Dobramento de Proteína , Sequência de Aminoácidos , DNA Fúngico/química , Proteínas de Homeodomínio/química , Cinética , Proteína 1 de Manutenção de Minicromossomo/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Repressoras/química , Temperatura , Água/química , Leveduras/genética
12.
J Biol Chem ; 278(8): 6093-100, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12473677

RESUMO

Mcm1 is an essential protein required for the efficient replication of minichromosomes and the transcriptional regulation of early cell cycle genes in Saccharomyces cerevisiae. In this study, we report that Mcm1 is an abundant protein that associates globally with chromatin in a punctate pattern. We show that Mcm1 is localized at replication origins and plays an important role in the initiation of DNA synthesis at a chromosomal replication origin in vivo. Using purified Mcm1 protein, we show that Mcm1 binds cooperatively to multiple sites at autonomously replicating sequences. These results suggest that, in addition to its role as a transcription factor for the expression of replication genes, Mcm1 may influence the local structure of replication origins by direct binding.


Assuntos
Replicação do DNA/genética , Proteína 1 de Manutenção de Minicromossomo/genética , Origem de Replicação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteína 1 de Manutenção de Minicromossomo/química , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Dados de Sequência Molecular , Plasmídeos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Cell Biol ; 22(13): 4607-21, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12052870

RESUMO

The yeast Mcm1 protein is a member of the MADS box family of transcriptional regulatory factors, a class of DNA-binding proteins that control numerous cellular and developmental processes in yeast, Drosophila melanogaster, plants, and mammals. Although these proteins bind DNA on their own, they often combine with different cofactors to bind with increased affinity and specificity to their target sites. To understand how this class of proteins functions, we have made a series of alanine substitutions in the MADS box domain of Mcm1 and examined the effects of these mutations in combination with its cofactors that regulate mating in yeast. Our results indicate which residues of Mcm1 are essential for viability and transcriptional regulation with its cofactors in vivo. Most of the mutations in Mcm1 that are lethal affect DNA-binding affinity. Interestingly, the lethality of many of these mutations can be suppressed if the MCM1 gene is expressed from a high-copy-number plasmid. Although many of the alanine substitutions affect the ability of Mcm1 to activate transcription alone or in combination with the alpha 1 and Ste12 cofactors, most mutations have little or no effect on Mcm1-mediated repression in combination with the alpha 2 cofactor. Even nonconservative amino acid substitutions of residues in Mcm1 that directly contact alpha 2 do not significantly affect repression. These results suggest that within the same region of the Mcm1 MADS box domain, there are different requirements for interaction with alpha 2 than for interaction with either alpha1 or Ste12. Our results suggest how a small domain, the MADS box, interacts with multiple cofactors to achieve specificity in transcriptional regulation and how subtle differences in the sequences of different MADS box proteins can influence the interactions with specific cofactors while not affecting the interactions with common cofactors.


Assuntos
Proteína 1 de Manutenção de Minicromossomo/metabolismo , Leveduras/fisiologia , Alanina/genética , Sequência de Bases , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Letais , Proteínas de Homeodomínio/metabolismo , Proteína 1 de Manutenção de Minicromossomo/química , Proteína 1 de Manutenção de Minicromossomo/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Proteínas Repressoras/metabolismo , Reprodução , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
J Biol Chem ; 277(4): 2702-8, 2002 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-11723123

RESUMO

Mini-chromosome maintenance (MCM) proteins were originally identified in yeast, and homologues have been identified in several other eukaryotic organisms, including mammals. These findings suggest that the mechanisms by which eukaryotic cells initiate and regulate DNA replication have been conserved throughout evolution. However, it is clear that many mammalian origins are much more complex than those of yeast. An example is the Chinese hamster dihydrofolate reductase (DHFR) origin, which resides in the spacer between the DHFR and 2BE2121 genes. This origin consists of a broad zone of potential sites scattered throughout the 55-kb spacer, with several subregions (e.g. ori-beta, ori-beta', and ori-gamma) being preferred. We show here that antibodies to human MCMs 2-7 recognize counterparts in extracts prepared from hamster cells; furthermore, co-immunoprecipitation data demonstrate the presence of an MCM2-3-5 subcomplex as observed in other species. To determine whether MCM proteins play a role in initiation and/or elongation in Chinese hamster cells, we have examined in vivo protein-DNA interactions between the MCMs and chromatin in the DHFR locus using a chromatin immunoprecipitation (ChIP) approach. In synchronized cultures, MCM complexes associate preferentially with DNA in the intergenic initiation zone early in S-phase during the time that replication initiates. However, significant amounts of MCMs were also detected over the two genes, in agreement with recent observations that the MCM complex co-purifies with RNA polymerase II. As cells progress through S-phase, the MCMs redistribute throughout the DHFR domain, suggesting a dynamic interaction with DNA. In asynchronous cultures, in which replication forks should be found at any position in the genome, MCM proteins were distributed relatively evenly throughout the DHFR locus. Altogether, these data are consistent with studies in yeast showing that MCM subunits localize to origins during initiation and then migrate outward with the replication forks. This constitutes the first evidence that mammalian MCM complexes perform a critical role during the initiation and elongation phases of replication at the DHFR origin in hamster cells.


Assuntos
Proteína 1 de Manutenção de Minicromossomo/fisiologia , Origem de Replicação , Tetra-Hidrofolato Desidrogenase/genética , Animais , Western Blotting , Células CHO , Linhagem Celular , Movimento Celular , Centrifugação com Gradiente de Concentração , Césio/farmacologia , Cloretos/farmacologia , Cricetinae , Fixadores/farmacologia , Formaldeído/farmacologia , Fase G1 , Humanos , Proteína 1 de Manutenção de Minicromossomo/química , Modelos Químicos , Modelos Genéticos , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Fase S , Especificidade da Espécie , Tetra-Hidrofolato Desidrogenase/química , Fatores de Tempo
15.
J Mol Biol ; 314(3): 495-506, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11846562

RESUMO

Combinatorial DNA binding by proteins for promoter-specific gene activation is a common mode of DNA regulation in eukaryotic organisms, and occurs at the promoter of the c-fos proto-oncogene. The c-fos promoter contains a serum response element (SRE) that mediates ternary complex formation with the Ets proteins SAP-1 or Elk-1 and the MADS-box protein, serum response factor (SRF). Here, we report the crystal structure of a ternary SAP-1/SRF/c-fos SRE DNA complex containing the minimal DNA-binding domains of each protein. The structure of the complex reveals that the SAP-1 monomer and SRF dimer are bound on opposite faces of the DNA, and that the DNA recognition helix of SAP-1 makes direct contact with the DNA recognition helix of one of the two SRF subunits. These interactions facilitate an 82 degrees DNA bend around SRF and a modulation of protein-DNA contacts by each protein when compared to each of the binary DNA complexes. A comparison with a recently determined complex containing SRF, an idealized DNA site, and a SAP-1 fragment containing a SRF-interacting B-box region, shows a similar overall architecture but also shows important differences. Specifically, the comparison suggests that the B-box region of the Ets protein does not significantly influence DNA recognition by either of the proteins, and that the sequence of the DNA target effects the way in which the two proteins cooperate for DNA recognition. These studies have implications for how DNA-bound SRF may modulate the DNA-binding properties of other Ets proteins such as Elk-1, and for how other Ets proteins may modulate the DNA-binding properties of other DNA-bound accessory factors to facilitate promoter-specific transcriptional responses.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Resposta Sérica/química , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/química , DNA/genética , Dimerização , Genes Fúngicos/genética , Humanos , Substâncias Macromoleculares , Proteína 1 de Manutenção de Minicromossomo/química , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Elementos de Resposta/genética , Alinhamento de Sequência , Proteínas Elk-1 do Domínio ets , Proteínas Elk-4 do Domínio ets
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...