Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Br J Nutr ; 124(9): 881-889, 2020 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-32517818

RESUMO

The razor clam, Sinonovacula constricta, contains high levels of long-chain PUFA (LC-PUFA), which are critical for human health. In addition, S. constricta is the first marine mollusc demonstrated to possess Δ6 fatty acyl desaturase (Fad) and complete LC-PUFA biosynthetic ability, providing a good representative to investigate the molecular mechanism of sterol regulatory element binding proteins (SREBP) in regulating Δ6 Fad for LC-PUFA biosynthesis in marine molluscs. Herein, S. constricta SREBP and Δ6 Fad promoter were cloned and characterised. Subsequently, dual luciferase and electrophoretic mobility shift assays were conducted to explore the SREBP binding elements in the core regulatory region of S. constricta Δ6 Fad promoter. Results showed that S. constricta SREBP had a very conservative basic helix-loop-helix-leucine zipper motif, while S. constricta Δ6 Fad promoter exhibited very poor identity with teleost Fads2 promoters, indicating their differentiation during evolution. A 454 bp region harbouring a core sequence in S. constricta Δ6 Fad promoter was predicted to be essential for the transcriptional activation by SREBP. This was the first report on the regulatory mechanism of LC-PUFA biosynthesis in marine molluscs, which would facilitate optimising the LC-PUFA biosynthetic pathway of bivalves in further studies.


Assuntos
Bivalves/genética , Ácidos Graxos Insaturados/biossíntese , Proteínas de Peixes/fisiologia , Linoleoil-CoA Desaturase/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Transcrição Gênica/genética , Animais
2.
Fish Physiol Biochem ; 46(4): 1349-1359, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32239337

RESUMO

Fish are a major source of beneficial n-3 LC-PUFA in human diet, and there is considerable interest to elucidate the mechanism and regulatory aspects of LC-PUFA biosynthesis in farmed species. Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis involves the activities of two groups of enzymes, the fatty acyl desaturase (Fads) and elongase of very long-chain fatty acid (Elovl). The promoters of elovl5 elongase, which catalyses the rate-limiting reaction of elongating polyunsaturated fatty acid (PUFA), have been previously described and characterized from several marine and diadromous teleost species. We report here the cloning and characterization of elovl5 promoter from two freshwater fish species, the carnivorous snakehead fish (Channa striata) and zebrafish. Results show the presence of sterol-responsive elements (SRE) in the core regulatory region of both promoters, suggesting the importance of sterol regulatory element-binding protein (Srebp) in the regulation of elovl5 for both species. Mutagenesis luciferase and electrophoretic mobility shift assays further validate the role of SRE for basal transcriptional activation. In addition, several Sp1-binding sites located in close proximity with SRE were present in the snakehead promoter, with one having a potential synergy with SRE in the regulation of elovl5 expression. The core zebrafish elovl5 promoter fragment also directed in vivo expression in the yolk syncytial layer of developing zebrafish embryos.


Assuntos
Acetiltransferases/fisiologia , Peixes/fisiologia , Fator de Transcrição Sp1/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Ativação Transcricional/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Clonagem Molecular , DNA/genética , DNA/isolamento & purificação , Luciferases/genética , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Transfecção
3.
PLoS One ; 15(2): e0228845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053662

RESUMO

Sterol regulatory element-binding protein (SREBP), a highly conserved family of membrane-bound transcription factors, is an essential regulator for cellular cholesterol and lipid homeostasis in mammalian cells. Sre1, the homolog of SREBP in the fission yeast Schizosaccharomyces pombe (S. pombe), regulates genes involved in the transcriptional responses to low sterol as well as low oxygen. Previous study reported that casein kinase 1 family member Hhp2 phosphorylated the Sre1 N-terminal transcriptional factor domain (Sre1N) and accelerated Sre1N degradation, and other kinases might exist for regulating the Sre1 function. To gain insight into the mechanisms underlying the Sre1 activity and to identify additional kinases involved in regulation of Sre1 function, we developed a luciferase reporter system to monitor the Sre1 activity through its binding site called SRE2 in living yeast cells. Here we showed that both ergosterol biosynthesis inhibitors and hypoxia-mimic CoCl2 caused a dose-dependent increase in the Sre1 transcription activity, concurrently, these induced transcription activities were almost abolished in Δsre1 cells. Surprisingly, either AMPKα Subunit Ssp2 deletion or Glycogen Synthase Kinases Gsk3/Gsk31 double deletion significantly suppressed ergosterol biosynthesis inhibitors- or CoCl2-induced Sre1 activity. Notably, the Δssp2Δgsk3Δgsk31 mutant showed further decreased Sre1 activity when compared with their single or double deletion. Consistently, the Δssp2Δgsk3Δgsk31 mutant showed more marked temperature sensitivity than any of their single or double deletion. Moreover, the fluorescence of GFP-Sre1N localized at the nucleus in wild-type cells, but significantly weaker nuclear fluorescence of GFP-Sre1N was observed in Δssp2, Δgsk3Δgsk31, Δssp2Δgsk3, Δssp2Δgsk31 or Δssp2Δgsk3Δgsk31 cells. On the other hand, the immunoblot showed a dramatic decrease in GST-Sre1N levels in the Δgsk3Δgsk31 or the Δssp2Δgsk3Δgsk31 cells but not in the Δssp2 cells. Altogether, our findings suggest that Gsk3/Gsk31 may regulate Sre1N degradation, while Ssp2 may regulate not only the degradation of Sre1N but also its translocation to the nucleus.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transporte Biológico , Regulação Fúngica da Expressão Gênica/genética , Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Quinases da Glicogênio Sintase/metabolismo , Quinases da Glicogênio Sintase/fisiologia , Oxigênio/metabolismo , Fosforilação , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Esteróis , Fatores de Transcrição/metabolismo , Ativação Transcricional
4.
PLoS One ; 15(2): e0228436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027669

RESUMO

BACKGROUND: Cytochrome P450 1b1 (Cyp1b1) deletion and dietary retinol deficiency during pregnancy (GVAD) affect perinatal liver functions regulated by Srebp. Cyp1b1 is not expressed in perinatal liver but appears in the E9.5 embryo, close to sites of retinoic acid (RA) signaling. HYPOTHESIS: Parallel effects of Cyp1b1 and retinol on postnatal Srebp derive from effects in the developing liver or systemic signaling. APPROACH: Cluster postnatal increases in hepatic genes in relation to effects of GVAD or Cyp1b1 deletion. Sort expression changes in relation to genes regulated by Srebp1 and Srebp2.Test these treatments on embryos at E9.5, examining changes at the site of liver initiation. Use in situ hybridization to resolve effects on mRNA distributions of Aldh1a2 and Cyp26a1 (RA homeostasis); Hoxb1 and Pax6 (RA targets). Assess mice lacking Lrat and Rbp4 (DKO mice) that severely limits retinol supply to embryos. RESULTS: At birth, GVAD and Cyp1b1 deletion stimulate gene markers of hepatic stellate cell (HSC) activation but also suppress Hamp. These treatments then selectively prevent the postnatal onset of genes that synthesize cholesterol (Hmgcr, Sqle) and fatty acids (Fasn, Scd1), but also direct cholesterol transport (Ldlr, Pcsk9, Stard4) and retinoid synthesis (Aldh1a1, Rdh11). Extensive support by Cyp1b1 is implicated, but with distinct GVAD interventions for Srebp1 and Srebp2. At E9.5, Cyp1b1 is expressed in the septum transversum mesenchyme (STM) with ß-carotene oxygenase (Bco1) that generates retinaldehyde. STM provides progenitors for the HSC and supports liver expansion. GVAD and Cyp1b1-/- do not affect RA-dependent Hoxb1 and Pax6. In DKO embryos, RA-dependent Cyp26a1 is lost but Hoxb1 is sustained with Cyp1b1 at multiple sites. CONCLUSION: Cyp1b1-/- suppresses genes supported by Srebp. GVAD effects distinguish Srebp1 and Srebp2 mediation. Srebp regulation overlaps appreciably in cholesterol and retinoid homeostasis. Bco1/Cyp1b1 partnership in the STM may contribute to this later liver regulation.


Assuntos
Colesterol/biossíntese , Citocromo P-450 CYP1B1/fisiologia , Desenvolvimento Fetal , Fígado/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Tretinoína/metabolismo , Animais , Animais Recém-Nascidos , Citocromo P-450 CYP1B1/genética , Embrião de Mamíferos , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Desenvolvimento Fetal/genética , Fígado/efeitos dos fármacos , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Tretinoína/farmacologia
5.
J Clin Endocrinol Metab ; 104(10): 4783-4792, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150065

RESUMO

CONTEXT: LH receptor (LHR) expression has been shown to be regulated posttranscriptionally by LHR mRNA binding protein (LRBP) in rodent and human ovaries. LRBP was characterized as mevalonate kinase. The gene that encodes mevalonate kinase is a member of a family of genes that encode enzymes involved in lipid synthesis and are regulated by the transcription factor sterol regulatory element binding proteins (SREBPs). OBJECTIVE: The current study examined the regulation of LHR mRNA expression in human granulosa-lutein cells in response to alterations in cholesterol metabolism. DESIGN: Using atorvastatin, an inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase to inhibit cholesterol biosynthesis, we examined its effect on LHR mRNA expression. The effect of atorvastatin on SREBP and mRNA expression as well as LHR mRNA binding protein expression was examined. Finally, the effect of atorvastatin on human chorionic gonadotropin (hCG)-stimulated progesterone production and the expression of key steroidogenic enzymes was also examined. RESULTS: Statin treatment reduced LHR mRNA expression by increasing the levels of SREBP1a and SREBP2, leading to an increase in LRBP. RNA gel shift assay showed that increased binding of LHR mRNA to LRBP occurred in response to atorvastatin, leading to LHR mRNA degradation. The granulosa-lutein cells pretreated with atorvastatin also showed decreased responsiveness to hCG by decreasing the mRNA and protein expression of steroidogenic enzymes. Atorvastatin also attenuated LH/hCG-induced progesterone production. CONCLUSION: These results imply that LHR mRNA expression by the human granulosa-lutein cells is regulated by cholesterol, through a mechanism involving SREBP and SREBP cleavage activating protein serving as the cholesterol sensor.


Assuntos
Células Lúteas/metabolismo , Receptores do LH/genética , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Atorvastatina/farmacologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Lúteas/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia
6.
Nat Genet ; 50(2): 206-218, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335545

RESUMO

Lipids, either endogenously synthesized or exogenous, have been linked to human cancer. Here we found that PML is frequently co-deleted with PTEN in metastatic human prostate cancer (CaP). We demonstrated that conditional inactivation of Pml in the mouse prostate morphs indolent Pten-null tumors into lethal metastatic disease. We identified MAPK reactivation, subsequent hyperactivation of an aberrant SREBP prometastatic lipogenic program, and a distinctive lipidomic profile as key characteristic features of metastatic Pml and Pten double-null CaP. Furthermore, targeting SREBP in vivo by fatostatin blocked both tumor growth and distant metastasis. Importantly, a high-fat diet (HFD) induced lipid accumulation in prostate tumors and was sufficient to drive metastasis in a nonmetastatic Pten-null mouse model of CaP, and an SREBP signature was highly enriched in metastatic human CaP. Thus, our findings uncover a prometastatic lipogenic program and lend direct genetic and experimental support to the notion that a Western HFD can promote metastasis.


Assuntos
Lipogênese/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Células PC-3 , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética
7.
Nat Rev Endocrinol ; 13(12): 710-730, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28849786

RESUMO

Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Núcleo Celular/fisiologia , Proliferação de Células , Células/metabolismo , Diabetes Mellitus , Dislipidemias , Metabolismo Energético , Homeostase , Humanos , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas , Hepatopatia Gordurosa não Alcoólica , Fenômenos Fisiológicos da Nutrição , Obesidade , Insuficiência Renal Crônica , Transdução de Sinais
8.
J Biol Chem ; 292(7): 3016-3028, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28003358

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are the key transcription factors that modulate lipid biosynthesis. SREBPs are synthesized as endoplasmic reticulum-bound precursors that require proteolytic activation in the Golgi apparatus. The stability and maturation of precursor SREBPs depend on their binding to SREBP cleavage-activating protein (SCAP), which escorts the SCAP-SREBP complex to the Golgi apparatus. In this study, we identified heat shock protein (HSP) 90 as a novel SREBP regulator that binds to and stabilizes SCAP-SREBP. In HepG2 cells, HSP90 inhibition led to proteasome-dependent degradation of SCAP-SREBP, which resulted in the down-regulation of SREBP target genes and the reduction in intracellular triglyceride and cholesterol levels. We also demonstrated in vivo that HSP90 inhibition decreased SCAP-SREBP protein, down-regulated SREBP target genes, and reduced lipids levels in mouse livers. We propose that HSP90 plays an indispensable role in SREBP regulation by stabilizing the SCAP-SREBP complex, facilitating the activation of SREBP to maintain lipids homeostasis.


Assuntos
Proteínas de Choque Térmico HSP90/fisiologia , Homeostase/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Metabolismo dos Lipídeos , Proteínas de Membrana/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Linhagem Celular , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Estabilidade Proteica , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
9.
FEBS J ; 283(15): 2767-78, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26881388

RESUMO

Metabolic reprogramming is a central feature of transformed cells. Cancer metabolism is now fully back in the focus of cancer research, as the interactions between oncogenic signalling and cellular metabolic processes are uncovered. One aspect of metabolic reprogramming in cancer is alterations in lipid metabolism. In contrast to most untransformed tissues, which satisfy their demand from dietary lipids, cancer cells frequently re-activate de novo lipogenesis. However, compounds targeting fatty acid synthase (FASN), a multiprotein complex integral to lipogenesis, have so far shown limited efficacy in pre-clinical cancer models and to date only one FASN inhibitor has entered clinical trials. Recently, a number of studies have suggested that enhanced production of fatty acids in cancer cells could also increases their dependence on the activity of desaturases, a class of enzymes that insert double bonds into acyl-CoA chains. Targeting desaturase activity could provide a window of opportunity to selectively interfere with the metabolic activity of cancer cells. This review will summarise some key findings that implicate altered lipid metabolism in cancer and investigate the molecular interactions between lipid desaturation and cancer cell survival.


Assuntos
Antineoplásicos/uso terapêutico , Lipogênese/efeitos dos fármacos , Estearoil-CoA Dessaturase/antagonistas & inibidores , Antineoplásicos/farmacologia , Hipóxia Celular , Estresse do Retículo Endoplasmático , Ácidos Graxos/biossíntese , Humanos , Metabolismo dos Lipídeos , Lipídeos/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia
10.
Annu Rev Nutr ; 35: 321-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26185979

RESUMO

The synthesis of lipids in response to food intake represents a key advantage that allows organisms to survive when energy availability is limited. In mammals, circulating levels of insulin and nutrients, which fluctuate between fasting and feeding, dictate whether lipids are synthesized or catabolized by tissues. The mechanistic target of rapamycin (mTOR), a kinase that is activated by anabolic signals, plays fundamental roles in regulating lipid biosynthesis and metabolism in response to nutrition. The mTOR kinase nucleates two large protein complexes named mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Following their activation, these complexes facilitate the accumulation of triglycerides by promoting adipogenesis and lipogenesis and by shutting down catabolic processes such as lipolysis and ß-oxidation. Here, we review and discuss the roles of mTOR complexes in various aspects of lipid metabolism in mammals. We also use this opportunity to discuss the implication of these relations to the maintenance of systemic lipid homeostasis.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Adipogenia/fisiologia , Animais , Dieta , Ingestão de Alimentos/fisiologia , Homeostase , Humanos , Lipogênese/fisiologia , Lipólise , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/fisiologia , Fenômenos Fisiológicos da Nutrição , Oxirredução , Transdução de Sinais/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Triglicerídeos/metabolismo
11.
An. R. Acad. Farm ; 80(1): 14-48, ene.-mar. 2014. graf
Artigo em Espanhol | IBECS | ID: ibc-121836

RESUMO

El hígado graso no alcohólico (HGNA) es una enfermedad que se define como un espectro continuo que oscila entre una esteatosis macrovesicular, de curso clínico favorable, hasta un cuadro de esteatohepatitis no alcohólica (EHNA), que da lugar a daños irreversibles y que se ha convertido en los últimos años en un problema sanitario de primera magnitud. El HGNA se caracteriza por una infiltración grasa de los hepatocitos que se asocia con un estado de resistencia a la insulina y por ello ligado, como factor de riesgo, al síndrome metabólico. Los factores de transcripción SREBP-1c (proteína de unión al elemento regulador del esterol), ChREBP (proteína de unión al elemento de respuesta a carbohidratos) y LXR (receptor X hepático) son reguladores fundamentales de la homeostasis lipídica y glucídica y de la inflamación, cuya activación regula al alza genes implicados en la síntesis de novo de los ácidos grasos en respuesta a insulina, glucosa y oxiesteroles, tanto en condiciones fisiológicas como patológicas. En esta revisión se describen datos recientes sobre la biología, la regulación y la coordinación funcional entre SREBP-1c, ChREBP y LXR y su relación con el HGNA. El desarrollo de agonistas selectivos de estos factores les hacen ser prometedoras dianas en el tratamiento del HGNA y de la EHNA


Nonalcoholic fatty liver disease (NAFLD) has become a major public health issue that comprises a disease spectrum which ranges from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH), leading to irreversible liver damages. Deposition of excess triglycerides within liver cells is the hallmark of NAFLD, which is associated with a loss of insulin sensitivity. A growing body of evidence implicates the lipogenic transcription factors SREBP-1c (sterol regulatory element-binding protein), ChREBP (carbohydrate responsive element-binding protein) and LXR (liver X receptor) in the pathogenesis of NAFLD. These factors have emerged as central regulators of the de novo fatty acid synthesis, the glucose homeostasis and the inflammation in response to insulin, glucose and oxysterols, under both physiological and physiopathological conditions. In this review we describe recent findings in the biology, the function and the cross-regulation between SREBP-1c, ChREBP and LXR on the control of lipid and glucose metabolism and their link to NAFLD. Specific pharmacologic ligands are available, making them attractive therapeutic targets for NAFLD and NASH


Assuntos
Humanos , Fígado Gorduroso/fisiopatologia , Fatores de Transcrição/análise , Lipogênese/fisiologia , Ácidos Graxos/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia
12.
Am J Physiol Endocrinol Metab ; 306(2): E123-30, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24302009

RESUMO

Intracellular lipid accumulation, inflammatory responses, and subsequent apoptosis are the major pathogenic events of metabolic disorders, including atherosclerosis and nonalcoholic fatty liver diseases. Recently, a novel regulatory oxysterol, 5-cholesten-3b, 25-diol 3-sulfate (25HC3S), has been identified, and hydroxysterol sulfotransferase 2B1b (SULT2B1b) has been elucidated as the key enzyme for its biosynthesis from 25-hydroxycholesterol (25HC) via oxysterol sulfation. The product 25HC3S and the substrate 25HC have been shown to coordinately regulate lipid metabolism, inflammatory responses, and cell proliferation in vitro and in vivo. 25HC3S decreases levels of the nuclear liver oxysterol receptor (LXR) and sterol regulatory element-binding proteins (SREBPs), inhibits SREBP processing, subsequently downregulates key enzymes in lipid biosynthesis, decreases intracellular lipid levels in hepatocytes and THP-1-derived macrophages, prevents apoptosis, and promotes cell proliferation in liver tissues. Furthermore, 25HC3S increases nuclear PPARγ and cytosolic IκBα and decreases nuclear NF-κB levels and proinflammatory cytokine expression and secretion when cells are challenged with LPS and TNFα. In contrast to 25HC3S, 25HC, a known LXR ligand, increases nuclear LXR and decreases nuclear PPARs and cytosol IκBα levels. In this review, we summarize our recent findings, including the discovery of the regulatory oxysterol sulfate, its biosynthetic pathway, and its functional mechanism. We also propose that oxysterol sulfation functions as a regulatory signaling pathway.


Assuntos
Ésteres do Colesterol/metabolismo , Hidroxicolesteróis/metabolismo , Inflamação/metabolismo , Sulfatases/metabolismo , Animais , Proliferação de Células , Humanos , Metabolismo dos Lipídeos , Receptores X do Fígado , Receptores Nucleares Órfãos/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia
13.
Cell Metab ; 18(1): 106-17, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23823481

RESUMO

Liver X receptors (LXRs) regulate lipogenesis and inflammation, but their contribution to the metabolic syndrome is unclear. We show that LXRs modulate key aspects of the metabolic syndrome in mice. LXRαß-deficient-ob/ob (LOKO) mice remain obese but show reduced hepatic steatosis and improved insulin sensitivity compared to ob/ob mice. Impaired hepatic lipogenesis in LOKO mice is accompanied by reciprocal increases in adipose lipid storage, reflecting tissue-selective effects on the SREBP, PPARγ, and ChREBP lipogenic pathways. LXRs are essential for obesity-driven SREBP-1c and ChREBP activity in liver, but not fat. Furthermore, loss of LXRs in obesity promotes adipose PPARγ and ChREBP-ß activity, leading to improved insulin sensitivity. LOKO mice also exhibit defects in ß cell mass and proliferation despite improved insulin sensitivity. Our data suggest that sterol sensing by LXRs in obesity is critically linked with lipid and glucose homeostasis and provide insight into the complex relationships between LXR and insulin signaling.


Assuntos
Tecido Adiposo/fisiologia , Resistência à Insulina/fisiologia , Lipogênese/fisiologia , Fígado/fisiologia , Obesidade/fisiopatologia , Receptores Nucleares Órfãos/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Modelos Animais de Doenças , Fígado Gorduroso/fisiopatologia , Técnica Clamp de Glucose , Homeostase/fisiologia , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/fisiologia , Receptores Nucleares Órfãos/deficiência , Receptores Nucleares Órfãos/genética , PPAR gama/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Fatores de Transcrição/fisiologia
14.
Nat Med ; 19(6): 722-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23708292

RESUMO

Hepatitis C virus (HCV) interacts extensively with host factors to not only establish productive infection but also trigger unique pathological processes. Our recent genome-wide siRNA screen demonstrated that IκB kinase-α (IKK-α) is a crucial host factor for HCV. Here we describe a new nuclear factor κB (NF-κB)-independent and kinase-mediated nuclear function of IKK-α in HCV assembly. HCV, through its 3' untranslated region, interacts with DEAD box polypeptide 3, X-linked (DDX3X) to activate IKK-α, which translocates to the nucleus and induces a CBP/p300-mediated transcriptional program involving sterol regulatory element-binding proteins (SREBPs). This innate pathway induces lipogenic genes and enhances core-associated lipid droplet formation to facilitate viral assembly. Chemical inhibitors of IKK-α suppress HCV infection and IKK-α-induced lipogenesis, offering a proof-of-concept approach for new HCV therapeutic development. Our results show that HCV uses a novel mechanism to exploit intrinsic innate responses and hijack lipid metabolism, which may contribute to high chronicity rates and the pathological hallmark of steatosis in HCV infection.


Assuntos
Hepatite C/metabolismo , Quinase I-kappa B/fisiologia , Lipogênese , Montagem de Vírus , Regiões 3' não Traduzidas , Transporte Ativo do Núcleo Celular , RNA Helicases DEAD-box/fisiologia , Hepatite C/virologia , Humanos , NF-kappa B/fisiologia , Fosforilação , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Fatores de Transcrição de p300-CBP/fisiologia
15.
Acta Biochim Biophys Sin (Shanghai) ; 45(1): 2-10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23257291

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the biosynthesis of cholesterol, fatty acid, and triglyceride. They control the expression of crucial genes involved in lipogenesis and uptake. In this review, we summarize the processing of SREBPs and their regulation by insulin, cAMP, and vitamin A, and the relationship between miRNA and lipid metabolism. We also discuss the recent functional studies on SREBPs. These discoveries suggest that inhibition of SREBP can be a novel strategy to treat metabolic diseases, such as type II diabetes, insulin resistance, fatty liver, and atherosclerosis.


Assuntos
Proteínas de Ligação a Elemento Regulador de Esterol/efeitos dos fármacos , Animais , AMP Cíclico/fisiologia , Humanos , Insulina/fisiologia , Metabolismo dos Lipídeos , Doenças Metabólicas/terapia , RNA Mensageiro/genética , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Vitamina A/fisiologia
16.
Int J Biol Sci ; 8(3): 310-27, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355267

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a promising therapeutic target for treating coronary heart disease. We report a novel antibody 1B20 that binds to PCSK9 with sub-nanomolar affinity and antagonizes PCSK9 function in-vitro. In CETP/LDLR-hemi mice two successive doses of 1B20, administered 14 days apart at 3 or 10 mpk, induced dose dependent reductions in LDL-cholesterol (≥ 25% for 7-14 days) that correlated well with the extent of PCSK9 occupancy by the antibody. In addition, 1B20 induces increases in total plasma antibody-bound PCSK9 levels and decreases in liver mRNA levels of SREBP-regulated genes PCSK9 and LDLR, with a time course that parallels decreases in plasma LDL-cholesterol (LDL-C). Consistent with this observation in mice, in statin-responsive human primary hepatocytes, 1B20 lowers PCSK9 and LDLR mRNA levels and raises serum steady-state levels of antibody-bound PCSK9. In addition, mRNA levels of several SREBP regulated genes involved in cholesterol and fatty-acid synthesis including ACSS2, FDPS, IDI1, MVD, HMGCR, and CYP51A1 were decreased significantly with antibody treatment of primary human hepatocytes. In rhesus monkeys, subcutaneous (SC) dosing of 1B20 dose-dependently induces robust LDL-C lowering (maximal ~70%), which is correlated with increases in target engagement and total antibody-bound PCSK9 levels. Importantly, a combination of 1B20 and Simvastatin in dyslipidemic rhesus monkeys reduced LDL-C more than either agent alone, consistent with a mechanism of action that predicts additive effects of anti-PCSK9 agents with statins. Our results suggest that antibodies targeting PCSK9 could provide patients powerful LDL lowering efficacy on top of statins, and lower cardiovascular risk.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , LDL-Colesterol/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Imunização Passiva , Síndrome Metabólica/terapia , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/imunologia , Serina Endopeptidases/imunologia , Sinvastatina/uso terapêutico , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Anticolesterolemiantes/administração & dosagem , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Perfilação da Expressão Gênica , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macaca mulatta , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Camundongos , Camundongos Transgênicos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/biossíntese , Pró-Proteína Convertases/genética , RNA Mensageiro/metabolismo , Receptores de LDL/biossíntese , Receptores de LDL/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Sinvastatina/administração & dosagem
17.
Trends Endocrinol Metab ; 23(2): 65-72, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22154484

RESUMO

Recent advances have significantly increased our understanding of how sterol regulatory element binding proteins (SREBPs) are regulated at the transcriptional and post-transcriptional levels in response to cellular signaling. The phosphatidyl inositol-3-kinase (PI3K) and SREBP pathways intersect at multiple points, and recent insights demonstrate the importance of tight regulation of the PI3K pathway for regulating SREBPs in the adaptation to fluctuating dietary calorie load in the mammalian liver. In addition, genetic and genome-wide approaches highlight new functions for SREBPs in connecting lipid metabolism with other cellular processes where lipid pathway flux affects physiologic or pathophysiologic adaptation, such as cancer, steatosis, and innate immunity. This review focuses on recent advances and new roles for mammalian SREBPs in physiology and metabolism.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Animais , Autofagia/fisiologia , Núcleo Celular/metabolismo , Humanos , Imunidade Inata/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , MicroRNAs/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia , Sulfotransferases/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
19.
Neurobiol Dis ; 44(1): 116-24, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21726644

RESUMO

ß-Amyloid hyperproduction has been observed in response to alterations in neuronal intracellular cholesterol storage, efflux, and synthesis, induced in rats by a high-fat diet. It has been suggested that cholesterol homeostasis is altered in Alzheimer's disease resulting in higher ß- and γ-secretase activity. In the current study the neuronal activation status of sterol regulatory element binding protein 2 (SREBP2) as well as its involvement in ß-secretase BACE1 activity was investigated in high-fat fed rats (26% fat and 4% cholesterol for 20 weeks), and in SK-N-BE neuroblastoma cells exposed to 20 µM cholesterol. This work demonstrates that in the brain a hyperlipidic diet is able to induce a hyper-expression of BACE1 and determine an unbalance in cerebral cholesterol homeostasis so that SREBP2 is activated. In addition, we show for the first time the involvement of SREBP2 on expression of BACE1 in SK-N-BE cells exposed to high cholesterol. Although the enhanced risk of Alzheimer's disease in metabolic syndrome is related to several factors, our results suggest that SREBP2, which can be modulated by the impairment of cerebral cholesterol homeostasis, has a direct role on BACE1 expression and may be involved in Alzheimer's disease progression.


Assuntos
Secretases da Proteína Precursora do Amiloide/biossíntese , Ácido Aspártico Endopeptidases/biossíntese , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Colesterol na Dieta/farmacologia , Imunoprecipitação da Cromatina , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Citosol/metabolismo , Dieta , Teste de Tolerância a Glucose , Hidroxicolesteróis/metabolismo , Insulina/sangue , Lipídeos/sangue , Masculino , Neurônios/enzimologia , Neurônios/fisiologia , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Extratos de Tecidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...