Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 816
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569416

RESUMO

Transglutaminase 2 (TG2) is a multifunctional protein widely distributed in various tissues and involved in many physiological and pathological processes. However, its actual role in biological processes is often controversial as TG2 shows different effects in these processes depending on its localization, cell type, or experimental conditions. We characterized the enzymatic and functional properties of TG2 proteins expressed in Danio rerio (zebrafish) to provide the basis for using this established animal model as a reliable tool to characterize TG2 functions in vivo. We confirmed the existence of three genes orthologous to human TG2 (zTGs2) in the zebrafish genome and their expression and function during embryonic development. We produced and purified the zTGs2s as recombinant proteins and showed that, like the human enzyme, zTGs2 catalyzes a Ca2+ dependent transamidation reaction that can be inhibited with TG2-specific inhibitors. In a cell model of human fibroblasts, we also demonstrated that zTGs2 can mediate RGD-independent cell adhesion in the extracellular environment. Finally, we transfected and selected zTGs2-overexpressing HEK293 cells and demonstrated that intracellular zTGs2 plays a very comparable protective/damaging role in the apoptotic process, as hTG2. Overall, our results suggest that zTGs2 proteins behave very similarly to the human ortholog and pave the way for future in vivo studies of TG2 functions in zebrafish.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Apoptose/genética , Catálise , Adesão Celular , Fibroblastos , Expressão Gênica , Células HEK293 , Filogenia , Conformação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase/química , Proteína 2 Glutamina gama-Glutamiltransferase/classificação , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/genética
2.
J Immunol ; 208(9): 2196-2206, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35418468

RESUMO

In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Animais , Vírus de DNA , Fosfotransferases (Aceptor do Grupo Álcool) , Rhabdoviridae , Ubiquitinação , Proteínas Virais , Viremia , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
3.
J Biol Chem ; 298(5): 101838, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339491

RESUMO

Calcium homeostasis modulator 1 (CALHM1) is a voltage- and Ca2+-gated ATP channel that plays an important role in neuronal signaling. However, as the previously reported CALHM structures are all in the ATP-conducting state, the gating mechanism of ATP permeation is still elusive. Here, we report cryo-EM reconstructions of two Danio rerio CALHM1 heptamers with ordered or flexible long C-terminal helices at resolutions of 3.2 Å and 2.9 Å, respectively, and one D. rerio CALHM1 octamer with flexible long C-terminal helices at a resolution of 3.5 Å. Structural analysis shows that the heptameric CALHM1s are in an ATP-nonconducting state with a central pore diameter of approximately 6.6 Å. Compared with those inside the octameric CALHM1, the N-helix inside the heptameric CALHM1 is in the "down" position to avoid steric clashing with the adjacent TM1 helix. Molecular dynamics simulations show that as the N-helix moves from the "down" position to the "up" position, the pore size of ATP molecule permeation increases significantly. Our results provide important information for elucidating the mechanism of ATP molecule permeation in the CALHM1 channel.


Assuntos
Trifosfato de Adenosina , Canais de Cálcio , Proteínas de Peixe-Zebra , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Microscopia Crioeletrônica , Homeostase , Peixe-Zebra , Proteínas de Peixe-Zebra/química
4.
Sci Rep ; 12(1): 2393, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165364

RESUMO

The HSP90/CDC37 chaperone system not only assists the maturation of many protein kinases but also maintains their structural integrity after folding. The interaction of mature kinases with the HSP90/CDC37 complex is governed by the conformational stability of the catalytic domain, while the initial folding of the protein kinase domain is mechanistically less well characterized. DYRK1A (Dual-specificity tyrosine (Y)-phosphorylation Regulated protein Kinase 1A) and DYRK1B are closely related protein kinases with discordant HSP90 client status. DYRK kinases stoichiometrically autophosphorylate on a tyrosine residue immediately after folding, which served us as a traceable marker of successful maturation. In the present study, we used bacterial expression systems to compare the capacity of autonomous maturation of DYRK1A and DYRK1B in the absence of eukaryotic cofactors or chaperones. Under these conditions, autophosphorylation of human DYRK1B was severely compromised when compared with DYRK1A or DYRK1B orthologs from zebrafish and Xenopus. Maturation of human DYRK1B could be restored by bacterial expression at lower temperatures, suggesting that folding was not absolutely dependent on eukaryotic chaperones. The differential folding properties of DYRK1A and DYRK1B were largely due to divergent sequences of the C-terminal lobes of the catalytic domain. Furthermore, the mature kinase domain of DYRK1B featured lower thermal stability than that of DYRK1A when exposed to heat challenge in vitro or in living cells. In summary, our study enhances the mechanistic understanding of the differential thermodynamic properties of two closely related protein kinases during initial folding and as mature kinases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Domínio Catalítico , Proteínas de Ciclo Celular/genética , Chaperoninas/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Fosforilação , Domínios Proteicos , Dobramento de Proteína , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Quinases Dyrk
5.
Sci Rep ; 12(1): 1788, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110592

RESUMO

Histone deacetylases play important biological roles well beyond the deacetylation of histone tails. In particular, HDAC6 is involved in multiple cellular processes such as apoptosis, cytoskeleton reorganization, and protein folding, affecting substrates such as ɑ-tubulin, Hsp90 and cortactin proteins. We have applied a biochemical enzymatic assay to measure the activity of HDAC6 on a set of candidate unlabeled peptides. These served for the calibration of a structure-based substrate prediction protocol, Rosetta FlexPepBind, previously used for the successful substrate prediction of HDAC8 and other enzymes. A proteome-wide screen of reported acetylation sites using our calibrated protocol together with the enzymatic assay provide new peptide substrates and avenues to novel potential functional regulatory roles of this promiscuous, multi-faceted enzyme. In particular, we propose novel regulatory roles of HDAC6 in tumorigenesis and cancer cell survival via the regulation of EGFR/Akt pathway activation. The calibration process and comparison of the results between HDAC6 and HDAC8 highlight structural differences that explain the established promiscuity of HDAC6.


Assuntos
Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Peixe-Zebra/metabolismo , Animais , Ensaios Enzimáticos , Humanos , Conformação Proteica , Especificidade por Substrato , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
6.
J Biomol Struct Dyn ; 40(3): 1260-1272, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32969324

RESUMO

Fumarate hydratase (FH), one of the members of TCA cycle, acts as a catalyte for the synthesis of malate from fumarate. FH has been proposed to play as a tumour suppressor leading to the pathogenicity of leiomyomas, renal cell carcinoma and paraganglioma. Mutations in the active site of FH lead to alteration in the protein structure. Similarly, binding of several chemical inhibitors to the active site also leads to the disruption of protein structural integrity thereby leading to protein dysfunction. Therefore, in order to address this mechanism leading to cancer, the binding efficiency of potential human FH inhibitor citrate to zebrafish fh has been extensively analysed in this study by molecular docking and simulation experiments followed by quantification of fumarate hydratase enzyme activity to validate and confirm the findings. Molecular docking revealed stronger interaction of zebrafish fh protein with inhibitor citrate when compared to natural substrate fumarate. Study on the dynamics of docked structures further confirmed that citrate was found to possess more binding affinity than fumarate. In vitro biochemical analysis also revealed concentration dependent potential inhibitory effect of citrate on zebrafish fh, thus confirming the findings of the in-silico experiments.Communicated by Ramaswamy H. Sarma.


Assuntos
Fumarato Hidratase , Proteínas de Peixe-Zebra/química , Animais , Domínio Catalítico , Fumarato Hidratase/química , Fumarato Hidratase/genética , Simulação de Acoplamento Molecular , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
7.
Molecules ; 26(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834088

RESUMO

Tyrosinase is an oxidase that is the rate-limiting enzyme for controlling the production of melanin in the human body. Overproduction of melanin can lead to a variety of skin disorders. Calycosin is an isoflavone from Astragali Radix, which is a traditional Chinese medicine that exhibits several pharmacological activities including skin whitening. In our study, the inhibitory effect of calycosin on melanin production is confirmed in a zebrafish in vivo model by comparing with hydroquinone, kojic acid, and arbutin, known as tyrosinase inhibitors. Moreover, the inhibitory kinetics of calycosin on tyrosinase and their binding mechanisms are determined using molecular docking techniques, molecular dynamic simulations, and free energy analysis. The results indicate that calycosin has an obvious inhibitory effect on zebrafish pigmentation at the concentration of 7.5 µM, 15 µM, and 30 µM. The IC50 of calycosin is 30.35 µM, which is lower than hydroquinone (37.35 µM), kojic acid (6.51 × 103 µM), and arbutin (3.67 × 104 µM). Furthermore, all the results of molecular docking, molecular dynamics simulations, and free energy analysis suggest that calycosin can directly bind to the active site of tyrosinase with very good binding affinity. The study indicates that the combination of computer molecular modeling and zebrafish in vivo assay would be feasible in confirming the result of the in vitro test and illustrating the target-binding information.


Assuntos
Melaninas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monofenol Mono-Oxigenase , Proteínas de Peixe-Zebra , Peixe-Zebra/metabolismo , Animais , Humanos , Isoflavonas/química , Isoflavonas/farmacologia , Melaninas/antagonistas & inibidores , Melaninas/química , Melaninas/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/farmacologia
8.
Biochemistry ; 60(41): 3058-3070, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609135

RESUMO

Retinal guanylate cyclases (RetGCs) are regulated by a family of guanylate cyclase-activating proteins (called GCAP1-7). GCAPs form dimers that bind to Ca2+ and confer Ca2+ sensitive activation of RetGC during visual phototransduction. The GCAP5 homologue from zebrafish contains two nonconserved cysteine residues (Cys15 and Cys17) that bind to ferrous ion, which stabilizes GCAP5 dimerization and diminishes its ability to activate RetGC. Here, we present NMR and EPR-DEER structural analysis of a GCAP5 dimer in the Mg2+-bound, Ca2+-free, Fe2+-free activator state. The NMR-derived structure of GCAP5 is similar to the crystal structure of Ca2+-bound GCAP1 (root-mean-square deviation of 2.4 Å), except that the N-terminal helix of GCAP5 is extended by two residues, which allows the sulfhydryl groups of Cys15 and Cys17 to become more solvent exposed in GCAP5 to facilitate Fe2+ binding. Nitroxide spin-label probes were covalently attached to particular cysteine residues engineered in GCAP5: C15, C17, T26C, C28, N56C, C69, C105, N139C, E152C, and S159C. The intermolecular distance of each spin-label probe in dimeric GCAP5 (measured by EPR-DEER) defined restraints for calculating the dimer structure by molecular docking. The GCAP5 dimer possesses intermolecular hydrophobic contacts involving the side chain atoms of H18, Y21, M25, F72, V76, and W93, as well as an intermolecular salt bridge between R22 and D71. The structural model of the GCAP5 dimer was validated by mutations (H18E/Y21E, H18A/Y21A, R22D, R22A, M25E, D71R, F72E, and V76E) at the dimer interface that disrupt dimerization of GCAP5 and affect the activation of RetGC. We propose that GCAP5 dimerization may play a role in the Fe2+-dependent regulation of cyclase activity in zebrafish photoreceptors.


Assuntos
Proteínas Ativadoras de Guanilato Ciclase/química , Proteínas de Peixe-Zebra/química , Sequência de Aminoácidos , Animais , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Magnésio/química , Magnésio/metabolismo , Simulação de Acoplamento Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681705

RESUMO

The sigma-1 receptor (S1R) is a highly conserved transmembrane protein highly enriched in mitochondria-associated endoplasmic reticulum (ER) membranes, where it interacts with several partners involved in ER-mitochondria Ca2+ transfer, activation of the ER stress pathways, and mitochondria function. We characterized a new S1R deficient zebrafish line and analyzed the impact of S1R deficiency on visual, auditory and locomotor functions. The s1r+25/+25 mutant line showed impairments in visual and locomotor functions compared to s1rWT. The locomotion of the s1r+25/+25 larvae, at 5 days post fertilization, was increased in the light and dark phases of the visual motor response. No deficit was observed in acoustic startle response. A critical role of S1R was shown in ER stress pathways and mitochondrial activity. Using qPCR to analyze the unfolded protein response genes, we observed that loss of S1R led to decreased levels of IRE1 and PERK-related effectors and increased over-expression of most of the effectors after a tunicamycin challenge. Finally, S1R deficiency led to alterations in mitochondria bioenergetics with decreased in basal, ATP-linked and non-mitochondrial respiration and following tunicamycin challenge. In conclusion, this new zebrafish model confirmed the importance of S1R activity on ER-mitochondria communication. It will be a useful tool to further analyze the physiopathological roles of S1R.


Assuntos
Mitocôndrias/metabolismo , Receptores sigma/metabolismo , Resposta a Proteínas não Dobradas , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Larva/fisiologia , Locomoção , Proteínas de Membrana/metabolismo , Fenótipo , Receptores sigma/química , Receptores sigma/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Receptor Sigma-1
10.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502064

RESUMO

Retinitis pigmentosa (RP) is an inherited retinal disease (IRD) with an overall prevalence of 1 in 4000 individuals. Mutations in EYS (Eyes shut homolog) are among the most frequent causes of non-syndromic autosomal recessively inherited RP and act via a loss-of-function mechanism. In light of the recent successes for other IRDs, we investigated the therapeutic potential of exon skipping for EYS-associated RP. CRISPR/Cas9 was employed to generate zebrafish from which the region encompassing the orthologous exons 37-41 of human EYS (eys exons 40-44) was excised from the genome. The excision of these exons was predicted to maintain the open reading frame and to result in the removal of exactly one Laminin G and two EGF domains. Although the eysΔexon40-44 transcript was found at levels comparable to wild-type eys, and no unwanted off-target modifications were identified within the eys coding sequence after single-molecule sequencing, EysΔexon40-44 protein expression could not be detected. Visual motor response experiments revealed that eysΔexon40-44 larvae were visually impaired and histological analysis revealed a progressive degeneration of the retinal outer nuclear layer in these zebrafish. Altogether, the data obtained in our zebrafish model currently provide no indications for the skipping of EYS exons 37-41 as an effective future treatment strategy for EYS-associated RP.


Assuntos
Modelos Animais de Doenças , Proteínas do Olho/genética , Retinose Pigmentar/genética , Proteínas de Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , Éxons , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Terapia Genética/métodos , Fenótipo , Domínios Proteicos , Retinose Pigmentar/patologia , Retinose Pigmentar/terapia , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
11.
Elife ; 102021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528510

RESUMO

We previously described X-ray histotomography, a high-resolution, non-destructive form of X-ray microtomography (micro-CT) imaging customized for three-dimensional (3D), digital histology, allowing quantitative, volumetric tissue and organismal phenotyping (Ding et al., 2019). Here, we have combined micro-CT with a novel application of ionic silver staining to characterize melanin distribution in whole zebrafish larvae. The resulting images enabled whole-body, computational analyses of regional melanin content and morphology. Normalized micro-CT reconstructions of silver-stained fish consistently reproduced pigment patterns seen by light microscopy, and further allowed direct quantitative comparisons of melanin content across wild-type and mutant samples, including subtle phenotypes not previously noticed. Silver staining of melanin for micro-CT provides proof-of-principle for whole-body, 3D computational phenomic analysis of a specific cell type at cellular resolution, with potential applications in other model organisms and melanocytic neoplasms. Advances such as this in whole-organism, high-resolution phenotyping provide superior context for studying the phenotypic effects of genetic, disease, and environmental variables.


Assuntos
Imageamento Tridimensional/métodos , Melaninas , Coloração pela Prata/métodos , Microtomografia por Raio-X/métodos , Proteínas de Peixe-Zebra , Animais , Melaninas/análise , Melaninas/química , Peixe-Zebra , Proteínas de Peixe-Zebra/análise , Proteínas de Peixe-Zebra/química
12.
J Mol Biol ; 433(22): 167272, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34592217

RESUMO

The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Calmodulina/química , Calmodulina/genética , Motivos EF Hand , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana Transportadoras/genética , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Termodinâmica , Vitamina A/metabolismo , Proteínas de Peixe-Zebra/genética
13.
Biochem Biophys Res Commun ; 579: 81-88, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34592574

RESUMO

Zebrafish Liver-enriched gene 1a (Leg1a) and Leg1b are liver-produced serum proteins encoded by two adjacently linked homologous genes leg1a and leg1b, respectively. We previously showed that maternal-zygotic (MZ) leg1a null mutant developed a small liver at 3.5 days post-fertilization (dpf) during winter-time or under UV-treatment and displayed an abnormal stature at its adulthood. It is puzzling why Leg1b, which shares 89.3% identity with Leg1a and co-expressed with Leg1a, cannot fully compensate for the loss-of-function of Leg1a in the leg1azju1 MZ mutant. Here we report that Leg1a and Leg1b share eight cysteine residues but differ in amino acid residue 358, which is a serine in Leg1a but cysteine (C358) in Leg1b. We find that Leg1b forms an intermolecular disulfide bond through C358. Mutating C358 to Methionine (M358) does not affect Leg1b secretion whereas mutating other conserved cysteine residues do. We propose that the intermolecular disulfide bond in Leg1b might establish a rigid structure that makes it functionally different from Leg1a under certain oxidative conditions.


Assuntos
Dissulfetos/química , Regulação da Expressão Gênica , Fígado/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/química , Animais , Proteínas Sanguíneas/química , Cisteína/genética , Masculino , Mutagênese Sítio-Dirigida , Oxigênio/química , Análise de Componente Principal , Conformação Proteica , Serina/química , Regulação para Cima , Peixe-Zebra
14.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360576

RESUMO

Noncoding RNAs have been known to contribute to a variety of fundamental life processes, such as development, metabolism, and circadian rhythms. However, much remains unrevealed in the huge noncoding RNA datasets, which require further bioinformatic analysis and experimental investigation-and in particular, the coding potential of lncRNAs and the functions of lncRNA-encoded peptides have not been comprehensively studied to date. Through integrating the time-course experimentation with state-of-the-art computational techniques, we studied tens of thousands of zebrafish lncRNAs from our own experiments and from a published study including time-series transcriptome analyses of the testis and the pineal gland. Rhythmicity analysis of these data revealed approximately 700 rhythmically expressed lncRNAs from the pineal gland and the testis, and their GO, COG, and KEGG pathway functions were analyzed. Comparative and conservative analyses determined 14 rhythmically expressed lncRNAs shared between both the pineal gland and the testis, and 15 pineal gland lncRNAs as well as 3 testis lncRNAs conserved among zebrafish, mice, and humans. Further, we computationally analyzed the conserved lncRNA-encoded peptides, and revealed three pineal gland and one testis lncRNA-encoded peptides conserved among these three species, which were further investigated for their three-dimensional (3D) structures and potential functions. Our computational findings provided novel annotations and regulatory mechanisms for hundreds of rhythmically expressed pineal gland and testis lncRNAs in zebrafish, and set the stage for their experimental studies in the near future.


Assuntos
Ritmo Circadiano , Glândula Pineal/metabolismo , RNA Longo não Codificante/genética , Testículo/metabolismo , Transcriptoma , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Masculino , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
15.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361083

RESUMO

The mammalian protein prestin is expressed in the lateral membrane wall of the cochlear hair outer cells and is responsible for the electromotile response of the basolateral membrane, following hyperpolarisation or depolarisation of the cells. Its impairment marks the onset of severe diseases, like non-syndromic deafness. Several studies have pointed out possible key roles of residues located in the Transmembrane Domain (TMD) that differentiate mammalian prestins as incomplete transporters from the other proteins belonging to the same solute-carrier (SLC) superfamily, which are classified as complete transporters. Here, we exploit the homology of a prototypical incomplete transporter (rat prestin, rPres) and a complete transporter (zebrafish prestin, zPres) with target structures in the outward open and inward open conformations. The resulting models are then embedded in a model membrane and investigated via a rigorous molecular dynamics simulation protocol. The resulting trajectories are analyzed to obtain quantitative descriptors of the equilibration phase and to assess a structural comparison between proteins in different states, and between different proteins in the same state. Our study clearly identifies a network of key residues at the interface between the gate and the core domains of prestin that might be responsible for the conformational change observed in complete transporters and hindered in incomplete transporters. In addition, we study the pathway of Cl- ions in the presence of an applied electric field towards their putative binding site in the gate domain. Based on our simulations, we propose a tilt and shift mechanism of the helices surrounding the ion binding cavity as the working principle of the reported conformational changes in complete transporters.


Assuntos
Proteínas de Transporte de Ânions/química , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Transportadores de Sulfato/química , Proteínas de Peixe-Zebra/química , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/metabolismo , Sítios de Ligação , Estrutura Secundária de Proteína , Ratos , Homologia de Sequência , Transportadores de Sulfato/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
16.
Nucleic Acids Res ; 49(15): 8961-8973, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34365506

RESUMO

Histone recognition constitutes a key epigenetic mechanism in gene regulation and cell fate decision. PHF14 is a conserved multi-PHD finger protein that has been implicated in organ development, tissue homeostasis, and tumorigenesis. Here we show that PHF14 reads unmodified histone H3(1-34) through an integrated PHD1-ZnK-PHD2 cassette (PHF14PZP). Our binding, structural and HDX-MS analyses revealed a feature of bipartite recognition, in which PHF14PZP utilizes two distinct surfaces for concurrent yet separable engagement of segments H3-Nter (e.g. 1-15) and H3-middle (e.g. 14-34) of H3(1-34). Structural studies revealed a novel histone H3 binding mode by PHD1 of PHF14PZP, in which a PHF14-unique insertion loop but not the core ß-strands of a PHD finger dominates H3K4 readout. Binding studies showed that H3-PHF14PZP engagement is sensitive to modifications occurring to H3 R2, T3, K4, R8 and K23 but not K9 and K27, suggesting multiple layers of modification switch. Collectively, our work calls attention to PHF14 as a 'ground' state (unmodified) H3(1-34) reader that can be negatively regulated by active marks, thus providing molecular insights into a repressive function of PHF14 and its derepression.


Assuntos
Histonas/química , Histonas/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Regulação Alostérica , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutagênese , Proteínas Nucleares/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química , Proteínas de Peixe-Zebra/genética
17.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445435

RESUMO

Retinal guanylate cyclases (RetGCs) promote the Ca2+-dependent synthesis of cGMP that coordinates the recovery phase of visual phototransduction in retinal rods and cones. The Ca2+-sensitive activation of RetGCs is controlled by a family of photoreceptor Ca2+ binding proteins known as guanylate cyclase activator proteins (GCAPs). The Mg2+-bound/Ca2+-free GCAPs bind to RetGCs and activate cGMP synthesis (cyclase activity) at low cytosolic Ca2+ levels in light-activated photoreceptors. By contrast, Ca2+-bound GCAPs bind to RetGCs and inactivate cyclase activity at high cytosolic Ca2+ levels found in dark-adapted photoreceptors. Mutations in both RetGCs and GCAPs that disrupt the Ca2+-dependent cyclase activity are genetically linked to various retinal diseases known as cone-rod dystrophies. In this review, I will provide an overview of the known atomic-level structures of various GCAP proteins to understand how protein dimerization and Ca2+-dependent conformational changes in GCAPs control the cyclase activity of RetGCs. This review will also summarize recent structural studies on a GCAP homolog from zebrafish (GCAP5) that binds to Fe2+ and may serve as a Fe2+ sensor in photoreceptors. The GCAP structures reveal an exposed hydrophobic surface that controls both GCAP1 dimerization and RetGC binding. This exposed site could be targeted by therapeutics designed to inhibit the GCAP1 disease mutants, which may serve to mitigate the onset of retinal cone-rod dystrophies.


Assuntos
Cálcio/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/química , Ferro/metabolismo , Proteínas de Peixe-Zebra/química , Peixe-Zebra/metabolismo , Animais , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Transdução de Sinal Luminoso , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas de Peixe-Zebra/metabolismo
18.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206401

RESUMO

Wingless-type MMTV integration site family, member 16 (wnt16), is a wnt ligand that participates in the regulation of vertebrate skeletal development. Studies have shown that wnt16 can regulate bone metabolism, but its molecular mechanism remains largely undefined. We obtained the wnt16-/- zebrafish model using the CRISPR-Cas9-mediated gene knockout screen with 11 bp deletion in wnt16, which led to the premature termination of amino acid translation and significantly reduced wnt16 expression, thus obtaining the wnt16-/- zebrafish model. The expression of wnt16 in bone-related parts was detected via in situ hybridization. The head, spine, and tail exhibited significant deformities, and the bone mineral density and trabecular bone decreased in wnt16-/- using light microscopy and micro-CT analysis. RNA sequencing was performed to explore the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the down-regulated DEGs are mainly concentrated in mTOR, FoxO, and VEGF pathways. Protein-protein interaction (PPI) network analysis was performed with the detected DEGs. Eight down-regulated DEGs including akt1, bnip4, ptena, vegfaa, twsg1b, prkab1a, prkab1b, and pla2g4f.2 were validated by qRT-PCR and the results were consistent with the RNA-seq data. Overall, our work provides key insights into the influence of wnt16 gene on skeletal development.


Assuntos
Osso e Ossos/anormalidades , Anormalidades Musculoesqueléticas/genética , Anormalidades Musculoesqueléticas/metabolismo , Osteogênese/genética , Proteínas Wnt/deficiência , Proteínas de Peixe-Zebra/deficiência , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ontologia Genética , Anotação de Sequência Molecular , Anormalidades Musculoesqueléticas/diagnóstico , Fenótipo , Transcriptoma , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
19.
Biochem Biophys Res Commun ; 560: 32-36, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33965786

RESUMO

Eleven genes, including prss59.1, were selected as candidate ovulation-inducing genes on the basis of microarray analysis and RNA sequencing in our previous study. To address the role of prss59.1, the prss59.1 gene knock-out zebrafish strain is currently being established by genome editing. In this study, for further phenotypic analysis of prss59.1, biochemical characterization of Prss59.1 was conducted using recombinant protein. A C-terminal histidine-tagged version of zebrafish Prss 59.1 was constructed. Although E. coli-produced recombinant Prss59.1 showed almost no activity, peptidase activities appeared after denaturation and renaturation. Zebrafish Prss59.1 showed the highest activity against Lys-MCA. The optimal temperature and pH of the activity toward Lys-MCA were 37 °C and pH 8.0, respectively. The Km value was 0.17 mM. Thus, zebrafish Prss59.1 possesses the closed character of trypsin, as expected from the DNA sequence.


Assuntos
Peptídeo Hidrolases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Análise de Sequência de Proteína , Especificidade por Substrato , Temperatura , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/isolamento & purificação
20.
Nucleic Acids Res ; 49(13): 7239-7255, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34023900

RESUMO

Gene expression is regulated at many levels including co- or post-transcriptionally, where chemical modifications are added to RNA on riboses and bases. Expression control via RNA modifications has been termed 'epitranscriptomics' to keep with the related 'epigenomics' for DNA modification. One such RNA modification is the N6-methylation found on adenosine (m6A) and 2'-O-methyladenosine (m6Am) in most types of RNA. The N6-methylation can affect the fold, stability, degradation and cellular interaction(s) of the modified RNA, implicating it in processes such as splicing, translation, export and decay. The multiple roles played by this modification explains why m6A misregulation is connected to multiple human cancers. The m6A/m6Am writer enzymes are RNA methyltransferases (MTases). Structures are available for functionally characterized m6A RNA MTases from human (m6A mRNA, m6A snRNA, m6A rRNA and m6Am mRNA MTases), zebrafish (m6Am mRNA MTase) and bacteria (m6A rRNA MTase). For each of these MTases, we describe their overall domain organization, the active site architecture and the substrate binding. We identify areas that remain to be investigated, propose yet unexplored routes for structural characterization of MTase:substrate complexes, and highlight common structural elements that should be described for future m6A/m6Am RNA MTase structures.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/química , Adenosina/metabolismo , Animais , Bactérias/enzimologia , Humanos , Metiltransferases/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...